412 000 произведений, 108 200 авторов.

Электронная библиотека книг » Уильям Уоллер » Гайд по астрономии. Путешествие к границам безграничного космоса » Текст книги (страница 5)
Гайд по астрономии. Путешествие к границам безграничного космоса
  • Текст добавлен: 1 июля 2025, 14:44

Текст книги "Гайд по астрономии. Путешествие к границам безграничного космоса"


Автор книги: Уильям Уоллер



сообщить о нарушении

Текущая страница: 5 (всего у книги 13 страниц)

А теперь, когда мы добрались до границ известной Вселенной, давайте глубже вникнем в ее миры, начав с нашей Солнечной системы, – единственной звездной и планетной системы, которую мы можем непосредственно исследовать.

ЧАСТЬ II. СОСТАВЛЯЮЩИЕ КОСМОСА

4. Знакомство с Солнечной системой


Разумные существа других систем, изучая солнечную систему с полной беспристрастностью, сделали бы, по всей вероятности, такую запись о Солнце: «Звезда x, спектральный класс G2, четыре планеты плюс обломки» [4].

Айзек Азимов. «Эссе 16. Клянусь Юпитером!» из сборника эссе «Вид с высоты»

Если бы эта книга была посвящена лишь Солнечной системе, а содержание ее распределялось бы по массе, то в ней говорилось бы только о Солнце – на него приходится 99,86 % от общей массы системы. Все остальные планеты, астероиды, плутоиды и кометы уместились бы на половине последней страницы. Но мы поступим по-другому: Солнце и его «компания» предстанут в книге просто как небольшая система среди множества звездных и планетных миров, составляющих наш Млечный Путь. Что же, давайте познакомимся с родной системой – ради нее самой и ради того, чтобы получить ориентиры для познания всего, что скрыто за ее пределами.

Общий план

Общий план нашей Солнечной системы можно представить по-разному. Например, в Вашингтоне, округ Колумбия, на Национальной аллее есть модель, сделанная в масштабе десять миллиардов к одному. Солнце в ней не больше грейпфрута, Земля, расположенная в 15 метрах от него – с маковое зернышко; Юпитер, находящийся в 78 метрах – с большую черничную ягоду; а Нептун, отдаленный на 430 метров – с горошинку перца. Такая «линейная» визуализация позволяет ясно увидеть, насколько обширно пространство, разделившее планеты, по сравнению с их размерами. Мысленно увидеть Солнечную систему можно и иначе – для этого лучше всего логарифмически «сжать» расстояния, что поможет воспринять весь их диапазон, охватывающий планеты и внешние кометы. Такая интерпретация показана на рис. 4.1.

Рис. 4.1. «Пространственное распределение планет, астероидов и комет по логарифмической шкале расстояний, разделенной на равные промежутки разными степенями числа 10. Логарифмическое масштабирование позволяет сжать огромный динамический диапазон расстояний в единую карту. Приблизительное удвоение расстояний между планетами в соответствии с правилом Тициуса – Боде проявляется здесь в виде равномерно распределенных пространственных интервалов. Пояс астероидов, состоящий из каменистых объектов, наиболее заполнен в зоне между Марсом и Юпитером. Пояс Койпера – это множество ледяных небесных тел, расположенных за пределами орбиты Нептуна: к ним относится Плутон, родственные ему плутоиды и гораздо меньшие кометы. За пределами пояса Койпера Солнечная система простирается к ближайшей звездной системе (α Центавра) и преодолевает половину расстояния до нее. Эту самую отдаленную часть Солнечной системы занимает кометный рой – облако Оорта. Вас впечатляет, что Сатурн в 10 раз дальше от Солнца, чем Земля? Облако Оорта – в 5000–50 000 раз дальше! (Изображение любезно предоставлено Wikimedia Commons.)

ВЗГЛЯД НА СОЛНЕЧНУЮ СИСТЕМУ

Большинство небесных тел в Солнечной системе играют с нами в прятки, но очень многое можно увидеть, просто взглянув вверх. И кроме того, нет ничего лучше, чем видеть эти чудеса своими глазами.

Смотреть на Солнце, не соблюдая мер предосторожности, достаточно опасно. Один из самых безопасных способов – проекция. Простая камера-обскура получится из картонной коробки: нужно вырезать с одной ее стороны, прямо посередине, отверстие диаметром 5 см и накрыть его кусочком алюминиевой фольги, а в нем проколоть маленькую дырочку. Если направить это отверстие в сторону Солнца, на другую сторону коробки спроецируется изображение. Кроме того, за Солнцем можно наблюдать через майларовые фильтры с отражающими покрытиями – они продаются как в виде «солнцезащитных штор», так и в форме специально подобранных фильтров для телескопа. Наконец, есть автономные телескопы, которые отфильтровывают весь свет, кроме особого красного излучения, производимого хромосферой, – бурным внешним слоем Солнца.

Меркурий и Венера не просто так названы «утренними звездами» и «вечерними звездами». Их часто можно увидеть на востоке перед самым восходом Солнца и на западе сразу после заката. За Меркурием лучше всего наблюдать, когда он находится в своей наибольшей элонгации и удален от Солнца максимально далеко. Степень удаления не превышает 28°, поэтому Меркурий всегда находится на довольно ярком небе. Венера намного щедрее: ее максимальное удаление – 47°, поэтому ее можно увидеть и тогда, когда стемнеет. Если смотреть в небольшой телескоп, Меркурий почти не раскрывает своих тайн, а вот Венера гораздо более приветлива, так что можно различить ее фазу.

Марс, Юпитер и Сатурн обращаются вокруг Солнца значительно дальше земной орбиты, и поэтому степень их удаления от Солнца, если смотреть с Земли, не ограничена ничем. За этими планетами лучше всего наблюдать, когда они находятся напротив Солнца, – тогда в полночь по местному времени кажется, что они поднимаются на вершину небосвода. Такое противостояние случается у Марса примерно раз в 780 дней, у Юпитера – раз в 399 дней, а у Сатурна – раз в 378 дней. Угловые размеры этих планет максимальны именно во время противостояния, поскольку и они, и Земля в этот момент находятся по одну сторону от Солнца и, следовательно, располагаются ближе всего друг к другу на своих орбитах. При наблюдении невооруженным глазом Марс имеет красноватый оттенок, Юпитер гораздо белее, а Сатурн приобретает желтовато-коричневый цвет.

Если посмотреть на Марс в бинокль, возможно, вы лучше увидите его ржавый цвет, но не более того. Верно сфокусированный телескоп – рефлектор или рефрактор, – как правило, позволит рассмотреть одну или обе полярные шапки и ряд затемненных объектов, таких как Большой Сирт. В хорошо настроенный бинокль виден значительный объем Юпитера и четыре галилеевых спутника. В любительские телескопы хорошо заметны прекрасные темные пояса и светлые зоны исполинской планеты, а также объекты поменьше, в том числе красочные завитки, яркие и темные участки и само Большое красное пятно.

Сатурн вдвое дальше Юпитера и в бинокль виден значительно хуже – разве что становится более заметным его желтовато-коричневый цвет и бросается в глаза Титан, его самый крупный спутник. Возможно, кто-то даже увидит в Сатурне асимметрию, подобно Галилею, который более 400 лет назад рассмотрел в свою подзорную трубу странные выпуклые «ушки». А чтобы они предстали в виде изящных колец, которыми по праву славится Сатурн, нужен приличный телескоп.

Уран и Нептун невооруженным глазом не увидеть. Достойный бинокль и подробная карта неба позволят найти Уран, но Нептун виден исключительно в телескоп, и в любом случае вы увидите только мерцающие точки, причем Уран будет казаться зеленоватым, а Нептун – более голубоватым. Учитывая, что эти крупные планеты были совершенно неизвестны во времена Американской революции, возможно, любая возможность их увидеть вас воодушевит.

Каждое десятилетие в Солнечную систему залетает несколько комет, которые приближаются к ее внутренним областям и устраивают великолепное шоу. Недавний «демонстрационный полет», видимый невооруженным глазом, исполнила в 2020 году комета NEOWISE. У самых впечатляющих кометных явлений есть характерные особенности – блистающее ядро, из которого исходят прямой плазменный хвост и изогнутый пылевой шлейф. Телескопы позволят увеличить изображение ядра и комы, и можно будет увидеть изогнутые потоки – при условии, что вы достаточно далеко от источников светового загрязнения.

Планеты земной группы

Ближайшие к Солнцу планеты (Меркурий, Венера, система Земля – Луна и Марс) имеют среднюю плотность, которая согласуется с тем, что они почти полностью состоят из камня. Кроме того, они намного меньше газовых гигантов (Юпитера и Сатурна) и ледяных гигантов (Урана и Нептуна), пребывающих во внешней Солнечной системе. Возможно, их самая характерная черта – это их непосредственная близость к нашей звезде. Обильно согретые солнечным светом в самом начале своего формирования, планеты земной группы, по всей видимости, не могли накапливать и удерживать водород и гелий, на которые приходится основная масса Юпитера и Сатурна – эти газы слишком летучие, чтобы оставаться на месте под активным влиянием Солнца. В итоге возникли восхитительные уникальные миры – совершенно несхожие и непредставимо загадочные. На рис. 4.2 показано внутреннее строение планет земной группы. У Меркурия аномально большое металлическое ядро, размеры которого составляют 75 % его радиуса и 42 % его объема. А металлическое ядро Луны, напротив, очень маленькое. Считается, что Венера и Земля по внутреннему строению похожи друг на друга: на ядра приходится примерно 55 % их радиусов и 16 % их объемов. Марс по размерам находится между Меркурием и «сестрами-близнецами» – Венерой и Землей.

Магматическая активность на поверхности этих небесных тел возрастает с увеличением их размера. Например, Луна, Меркурий и Марс некогда были активны, но уже примерно миллиард лет на них почти ничего не происходит. Земля и Венера, напротив, продолжают активно преображать свой внешний облик. Атмосфера, по всей видимости, тоже зависит от массы. На Луне и Меркурии имеются лишь малейшие следы атмосферных газов. Марс занимает промежуточное положение: в его атмосфере преобладает углекислый газ, но давление на поверхности составляет всего 1/157 от земного. А вот Венера скрыта облаками углекислого газа, количество которого в 93 раза превышает уровень, свойственный Земле, поэтому парниковый эффект нагревает ее поверхность до 477 °C – такая температура достаточно высока, чтобы расплавить свинец и испарить серу.

Рис. 4.2. Изображения планет земной группы и Луны в разрезе. У каждой планеты есть металлическое ядро (разного размера), мантия и кора. (Источник: NASA.)

Газовые гиганты


Юпитер и Сатурн, подобно уличным хулиганам, наводят свои порядки по всей Солнечной системе. В частности, Юпитер когда-то помешал сформироваться настоящей планете – она могла появиться в зоне, занятой в наши дни астероидами. Его гравитационное воздействие вытеснило большую часть субпланетных обломков, некогда занимавших эту кольцевую зону, за пределы Солнечной системы или к Солнцу, и осталась лишь горстка астероидов, которую мы видим сегодня. Сурово Юпитер обошелся и с кометами – вытеснил их с «родных земель» вблизи орбиты Нептуна и перенаправил во внутреннюю Солнечную систему или к кометному облаку Оорта, расположенному в 5000–50 000 а. е. от Солнца. Конечно, эти гигантские миры по праву вызывают наш интерес, а их системы колец и группы спутников поистине поразительны.

Юпитер

Юпитер, названный в честь верховного бога древних римлян, содержит более трех четвертей всего планетарного вещества в Солнечной системе. Нам это известно, поскольку мы можем отслеживать орбитальные движения его спутников и знаем, как далеко от них до Юпитера, а закон всемирного тяготения Ньютона помогает нам определить гравитационную массу, ответственную за поддержание этих движений. Расчетная масса, в 318 раз превышающая земную, и объем, в котором поместилось бы 1405 таких планет, как наша, дает среднюю плотность 1,34 г/см3. Эта величина примерно равняется трети средней плотности каменистой Земли и очень близка к плотности воды в земных океанах (1 г/см3). Если честно, Юпитер лучше было бы назвать не «газовым гигантом», а «жидким». Его внутреннее строение остается довольно неопределенным, но считается, что он содержит относительно плотное ядро неизвестного состава, окруженное последовательными слоями жидкого атомарного водорода – настолько плотного, что он проводит электричество подобно металлу, – а дальше идут слои жидкого молекулярного водорода, газообразного молекулярного водорода, аммиака и воды (рис. 4.3). Со всем этим богатством Юпитер совершает полный оборот вокруг своей оси за каждые 9,8 часа, отчего в атмосферных поясах, зонах и пятнах планеты рождаются сильные ветры. Вокруг этого гиганта, охваченного вихрями, обращаются по меньшей мере семьдесят девять спутников, включая четыре галилеевых – это Ио, Европа, Ганимед и Каллисто, – каждый из которых сам по себе может рассматриваться как удивительный мир.

Рис. 4.3.Вверху: схематичное изображение газовых гигантов в разрезе. Различные слои основаны на физических моделях. В каждом случае природа ядра наименее определена. Внизу: снимок Юпитера, сделанный космическим аппаратом «Кассини». Видны темные пояса, более яркие зоны, белые овалы и Большое красное пятно. Черная точка – это тень Европы, спутника Юпитера, второго по отдаленности из четырех, открытых Галилеем. (Вверху: материалы любезно предоставлены NASA / Лунно-планетный институт; внизу: материалы любезно предоставлены NASA / JPL / Аризонский университет.)

Сатурн

При взгляде в хороший телескоп вид прославленных колец Сатурна поражает воображение (рис. 4.4). Многим кажется, что перед ними предстает невозможное явление – как если бы кто-то подвесил перед телескопом модель. Сатурн во многом напоминает Юпитер: во-первых, по составу он подобен Солнцу, причем почти весь его объем приходится на водород (а вот гелия, как ни странно, очень мало). Во-вторых, он быстро вращается: одни сатурнианские сутки занимают всего 10,6 земного часа, и это стремительное вращение превратило планетную атмосферу в полосчатые циркуляционные системы, похожие на параллельные темные пояса и яркие зоны Юпитера. В-третьих, Сатурн, как и Юпитер, до сих пор излучает энергию, высвобожденную при гравитационном коллапсе его родительского облака. А кроме того, обе планеты излучают больше тепла, чем получают от Солнца.

Считается, что кольца Сатурна состоят из различных льдов, объединенных в неимоверно тонкие концентрические полосы. Возможно, сами кольца недолговечны и появляются и исчезают в масштабах примерно 100 млн лет. За их пределами вокруг планеты вращается более шестидесяти спутников, в том числе Титан – единственный спутник в Солнечной системе, обладающий плотной атмосферой, – и Энцелад, с поверхности которого извергаются жидкие гейзеры.

Рис. 4.4. Сатурн и его ледяные кольца – одно из самых потрясающих зрелищ в Солнечной системе. Поскольку ось его вращения на 27° наклонена к плоскости его орбиты, Сатурн, если смотреть с Земли, меняет свой внешний вид в течение одного сатурнианского года (29,5 земного года). Как показано на этом снимке, сделанном космическим телескопом «Хаббл», с 2000 по 2006 год система колец Сатурна из почти закрытой стала почти открытой, а в его южном полушарии настало лето. (Материалы любезно предоставлены NASA / Проект «Наследие Хаббла» / STScI.)

Ледяные гиганты


Люди античного мира знали о Меркурии, Венере, Марсе, Юпитере и Сатурне, поскольку эти планеты можно увидеть и отследить невооруженным глазом. Но лишь после того, как был создан телескоп, удалось дополнить шесть главных планет (считая и Землю) более удаленными и гораздо более тусклыми мирами. Ими стали Уран и Нептун, самые удаленные крупные планеты в Солнечной системе. Плутон гораздо меньше, и в 2006 году он был официально понижен до второстепенного статуса «карликовой планеты», в то время как поиски другой крупной «планеты Х» пока ни к чему не привели.

Уран

Уран обращается вокруг Солнца на расстоянии 19,2 а. е. – в четыре раза дальше, чем Юпитер, и вдвое дальше, чем Сатурн. Поэтому он получает 1/16 излучения, получаемого Юпитером, и 1/4 того, которое доходит до Сатурна. При равновесной температуре –208 °C аммиак и вода, присутствовавшие в атмосфере Урана, полностью замерзли и «выпали снегом». В атмосфере остался лишь избыток молекулярного водорода и газообразного метана. Метан преимущественно поглощает красный свет Солнца, отражая при этом зеленый и голубой свет, и из-за этой «пристрастной» отражательной способности видимая атмосфера Урана кажется зеленоватой.

Масса планеты (в 14 раз больше земной) и размер (в 4 раза больше земного) дают среднюю плотность 1,3 г/см3. Исходя из этих объемных свойств, планетологи заключают, что Уран содержит ядро из металла и камня, толстый промежуточный слой ледяной взвеси, внешний слой жидкого молекулярного водорода и разреженную атмосферу (рис. 4.5), так что прозвище «ледяной гигант» ему вполне подходит. Однако эти выводы сделаны совсем недавно, а до 1995 года в книгах, посвященных планетам, утверждалось, что во внутренних слоях Урана и Нептуна преобладает жидкий водород.

Об Уране мы знали очень мало, пока в 1986 году мимо него не пролетел космический зонд «Вояджер-2». Во время краткого сближения зонда с планетой удалось подтвердить, что ось вращения Урана наклонена на 98° – так, что он почти лежит на боку. Такой экстремальный наклон приводит к самым аномальным временам года в Солнечной системе. Когда северный полюс планеты направлен к Солнцу, ее северное полушарие непрерывно освещено дневным светом, а южное пребывает в постоянной темноте. Эти экстремальные периоды солнцестояния в каждом полушарии меняются местами по прошествии половины уранианского года (42 земных года). Как именно Уран перевернулся «с ног на голову», остается неясным, но многие астрономы подозревают, что его ориентацию могло изменить сильное столкновение с неким блуждающим телом размером с планету.

Рис. 4.5. Схема внутреннего строения Урана (в равной степени применимая к Нептуну) и необычные конфигурации осей вращения и магнитных полей у этих «ледяных гигантов». (Вверху: по источнику Astronomy, C. J. Peterson; внизу: по источнику NASA’s Cosmos.)

Магнитное поле Урана ведет себя еще более странно. Во-первых, его магнитная ось в направлении с севера на юг наклонена на 60° к оси вращения планеты. У Земли это смещение намного меньше – всего 11°. Напрашивается вывод, что внутренняя часть

Урана, формирующая магнитное поле, циркулирует в противоположном направлении по сравнению с его внешней поверхностью. Во-вторых, магнитная ось даже не проходит через центр планеты, а значительно смещена к одной стороне Урана. Как это может происходить, остается загадкой.

Вокруг Урана обращается свыше двадцати семи спутников, большинство из которых названы в честь вымышленных персонажей пьес Уильяма Шекспира.

Нептун

Я с теплотой вспоминаю 25 августа 1989 года, когда «Вояджер-2», проведя 12 с лишним лет в путешествиях по межпланетному пространству, наконец добрался до Нептуна. В те дни я преподавал астрономию в Вашингтонском университете в Сиэтле. Интернета тогда еще не было, а телеканалы посвящали эпохальному облету очень мало эфирного времени. К счастью, в рамках своих аудиовизуальных услуг университет предоставлял доступ к телевизионному монитору, который принимал передачи от Лаборатории реактивного движения NASA, как только Сеть дальней космической связи транслировала по радиоантеннам сигналы с «Вояджера-2».

В компании приятелей-астрономов я устроился на ковре в маленькой комнате без окон – и там своими глазами увидел первые снимки Нептуна, переданные с Нептуна. Пока они медленно, строка за строкой, выстраивались на телевизионном мониторе, черно-белые изображения показывали серую планету с отчетливым темным пятном и яркими полосами (рис. 4.6). Становилось очевидно, что Нептун напоминал Юпитер с его Большим красным пятном, только полос на нем было поменьше. Я не спал до рассвета, пока шесть часов спустя на мониторе не начали прокручиваться изображения Тритона, крупнейшего спутника Нептуна. Ого! Я даже и не мыслил увидеть нечто подобное. Сморщенную, словно дыня, поверхность Тритона испещряли мириады темных прожилок, протянувшихся там, где когда-то давно извергались ледяные гейзеры. Это было невероятно.

Рис. 4.6. Снимок Нептуна с «Вояджера-2». Видны атмосферные полосы и Большое темное пятно. Рядом, для сравнения, помещена Земля. (Материалы любезно предоставлены NASA / Лабораторией реактивного движения Калифорнийского технологического института [NASA/JPL–Caltech].)

Многоволновые изображения, спектроскопия и зондирование системы Нептуна in situ по-прежнему дают нам «львиную долю» всех наших сведений об этом далеком мире. Так мы узнали, что планета обладает сильным магнитным полем, а ее магнитная ось, как и у Урана, значительно наклонена и смещена от центра (рис. 4.5). Кроме того, Нептун напоминает Уран по размеру и массе, и поэтому, по всей видимости, сходен с ним как по внутреннему строению – камень, слякотная вода, жидкий водород, – так и по составу атмосферы, в которой присутствуют газообразный водород, гелий и метан. По виду Нептун определенно более голубоватый, чем Уран, – возможно, из-за того, что на нем выше концентрация атмосферного метана, или по причине иного, неизвестного атмосферного эффекта. Также Нептун излучает значительно больше тепла, чем получает от Солнца, и этот тепловой избыток объясняет наличие сильных ветров и циклонической активности, которое обнаружил «Вояджер-2». После того как мы получили с зонда первые снимки Нептуна, наблюдения за планетой велись с помощью космического телескопа «Хаббл», и мы увидели, что темные пятна, яркие облака и различные полосы появляются и исчезают. И более того, к середине 1990-х годов, когда «Хаббл» начал получать снимки Нептуна, Большое темное пятно, запечатленное «Вояджером-2», уже исчезло.

Сейчас известно, что вокруг Нептуна обращаются четырнадцать спутников, названные в честь второстепенных водных божеств из греческой мифологии. Шесть из них обнаружил «Вояджер-2», а о самом недавнем открытии объявили в 2013 году, спустя двадцать четыре года после той эпохальной встречи. Безусловно, самый крупный из спутников – Тритон. Приборы на борту «Вояджера-2» показали, что его поверхность покрывают различные виды снега, в том числе замороженный азот, вода и углекислый газ. Если бы Титан, спутник Сатурна (имеющий схожий размер), можно было перенести на орбиту Нептуна, его плотная атмосфера (имеющая схожий состав), вероятно, кристаллизовалась бы и выпала на поверхность в виде снега. А поэтому Тритон, скорее всего, лишен атмосферы: на нем просто слишком холодно, чтобы ее поддерживать.

Плутон

До самого недавнего времени считалось, что Тритон, спутник Нептуна, – это приемлемый аналог Плутона с точки зрения размера, массы и состава. Однако все изменилось в 2015 году, когда миссия «Новые горизонты», пролетев мимо ледяной карликовой планеты, сделала яркие снимки ее неоднородной поверхности. Оказалось, что у Плутона, проецируемая площадь поверхности которого ненамного выше, чем у Бразилии, много интересных особенностей, указывающих как на древнюю, так и на более близкую к нашему времени криогенную активность, совершенно непохожую на ту, что наблюдается на Тритоне.

Космический мусор

В Солнечной системе много небесных объектов, которые гораздо меньше восьми главных планет. Они занимают три отчетливых кольца, окружающих Солнце. Большинство каменистых тел располагаются между орбитами Марса и Юпитера, в так называемом поясе астероидов. Их сотни тысяч, но их общая масса не превышает 4 % массы Луны. Около половины этой массы содержится в четырех крупнейших объектах – это Церера, Веста, Паллада и Гигея. В начале XIX века, когда их впервые удалось обнаружить, им присвоили статус планет, что увеличило общее число последних в Солнечной системе. Но позже, когда таких небесных тел стало еще больше, знаменитые астрономы решили понизить их статус до малых планет или просто астероидов – и сделали это в 1850-х годах.

Аналогичное понижение статуса Плутона произошло в 2006 году по той же причине. Подобно многим малым планетам, составляющим пояс астероидов, Плутон и его многочисленные карликовые родственники, расположенные за орбитой Нептуна, занимают общее кольцо – пояс Койпера. Считается, что в этой ледяной бездне рождаются все кометы. Однако основное «хранилище» комет сегодня находится гораздо дальше – это облако Оорта. Мы знаем это, поскольку скорость многих комет, проходящих на наших глазах через внутренние области Солнечной системы, позволила бы им в самой дальней точке пути отдалиться от Солнца на 5000–50 000 а. е. и оказаться далеко за пределами пояса Койпера.

Как астероиды, так и кометы порой обретают такую орбиту, что проходят тревожно близко к Земле. Их мощные удары оставили на нашей планете не только множество кратеров, но и железные и каменные метеориты, которые можно найти в музеях естественной истории.

Завершающий пассаж

Уже на протяжении 60 лет мы отправляем к планетам космические аппараты, и за это время мы своими глазами увидели невероятные миры, каждый из которых поразительно отличается от других и рассказывает свою волнительную историю. Однако описания, приведенные выше, следует воспринимать как наилучшие современные оценки, которые могут радикально обновиться в любой момент. Карл Саган, планетолог и популяризатор науки, когда-то выразился так: «Где-то далеко своего открытия ждет нечто невероятное». И действительно, изучать Солнечную систему в XXI веке – значит возвести эти слова в рабочий принцип.

За пределами Солнечной системы нас ждет головокружительное разнообразие звезд. Но прежде чем отправиться к ним, нам следует получше познакомиться с нашей родной звездой – Солнцем.

5. Звезда по имени Солнце


Даже повелевая столькими планетами, что обращаются вокруг него, Солнце все же питает зреющую виноградную гроздь, как будто в целой Вселенной оно не имеет иных занятий.

Галилео Галилей. Диалог о двух главнейших системах мира

Наша звезда властвует над остальными планетами и осколками, как Бог над смертными людьми. Неудивительно, что во многих пантеистических древних культурах Солнце почиталось как главное божество. Сегодня астрономы знают, что оно в 109 раз больше, в 1,3 миллиона раз объемнее и в 333 000 раз массивнее Земли. Озаряя космическое пространство, Солнце излучает в верхние слои земной атмосферы 1350 Вт/м2 энергии, причем около двух третей от этого излучения доходит до поверхности нашей планеты. Проследив за этим излучением на протяжении 150 млн км, разделивших Землю и Солнце, астрономы подсчитали, что абсолютная светимость нашей звезды составляет около 4 1026 Вт – это 400 триллионов триллионов ватт. За одну секунду Солнце вырабатывает достаточно энергии, чтобы удовлетворить все текущие потребности человечества на следующие 845 000 лет.

Строение Солнца

Согласно лучшей модели, которую нам удалось создать, Солнце представляет собой шар из перегретых газов, который сам поддерживает свою деятельность. В каждом слое внутренней части Солнца вес вышележащего вещества в точности уравновешивается внешним давлением, которое в этом слое оказывают горячие газы (рис. 5.1). Этот идеальный баланс между гравитацией, направленной внутрь, и давлением, направленным наружу, известен как гидростатическое равновесие. Чем глубже слой, тем больше вес вышележащего вещества – и тем выше давление, необходимое для противодействия этому весу, а возрастает оно благодаря сочетанию большей плотности газа и более высоких температур. Объединив основные законы термодинамики с гравитационной физикой, астрофизики смогли вычислить радиальные профили плотности и температуры, которые, по всей видимости, характерны для Солнца (рис. 5.2).

Рис. 5.1. Благодаря гидростатическому равновесию Солнце не сжимается само по себе и не расширяется бесконтрольно. В каждом слое весу вещества, давящего сверху, противостоит равное давление, оказываемое на этот слой нагретыми газами. В самых глубоких слоях сила гравитационного притяжения и сила давления достигают огромных значений. (По источнику: Horizons: Exploring the Universe, Michael Seeds, Cengage Learning [2002].)

Рис. 5.2. Радиальные профили плотности и температуры газа внутри Солнца, рассчитанные исходя из основных законов ньютоновского тяготения и классической термодинамики. Первичный источник энергии находится в ядре Солнца, высокая температура и плотность которого позволяют совершаться термоядерным реакциям. Энергия, выделяемая в ходе этих реакций, восполняет энергию, излучаемую в космическое пространство с поверхности Солнца.

Плотность в ядре Солнца превышает плотность любого земного вещества. Преодолев половину пути от ядра до видимой поверхности Солнца, газы разрежаются на два порядка, достигая значений плотности, близких к таковым у воды (около 1 г/см3). Примерно на 90 % пути к поверхности плотность эквивалентна плотности земной атмосферы на уровне моря, а затем она «входит в крутое пике» и в конечном счете стремительно падает, понижаясь более чем на десять порядков (в 10 миллиардов раз) по мере того, как мы удаляемся от видимой поверхности в разреженную атмосферу Солнца – корону.

Энергия Солнца

Температура в ядре Солнца оценивается примерно в 15 млн кельвинов. Шкала Кельвина начинается с абсолютного нуля (–273 °C). Температура наших тел примерно равна 37 °C, что эквивалентно 310 К. Солнечное ядро намного-намного горячее. Наряду с несколькими квантовыми эффектами этого хватает, чтобы четыре атомных ядра водорода (4 протона) слились в одно атомное ядро гелия (2 протона + 2 нейтрона), а возникающий при этом избыточный заряд выделился в форме двух позитронов. Масса четырех сочетающихся протонов превышает массу одиночного атомного ядра гелия, причем излишек составляет 0,007 от изначальной массы протонов (просто подумайте о Джеймсе Бонде). Он преобразуется в энергию в соответствии со знаменитым уравнением Эйнштейна E = mc2, где E – излишек энергии в расчете на реакцию, m – излишек массы (0,007 от реакционной), а с – скорость света (с = 3 108 м/с). Поскольку скорость света – невероятно большая величина, даже небольшой излишек массы может привести к огромному излишку энергии. По ходу термоядерной реакции избыточная энергия высвобождается в виде гамма-квантов и нейтрино (рис. 5.3). Солнечное ядро, в котором протекают термоядерные реакции, обладает достаточной массой, чтобы подпитывать себя энергией в течение 10 млрд лет. Поскольку Солнечной системе не более 5 млрд лет, Солнце, по всей видимости, будет ярко светить еще в течение такого же срока.

Рис. 5.3. Цепочка протон-протонных термоядерных реакций, которая, как полагают, питает Солнце. Четыре протона (атомные ядра водорода) в конечном счете сливаются в одно атомное ядро гелия, содержащее два протона и два нейтрона. Избыточная энергия высвобождается в виде гамма-квантов и нейтрино. (Материалы любезно предоставлены Wikimedia Commons.)

Этот чудесный источник энергии, питающий Солнце, не появился бы, если бы на субатомном уровне не произошли некоторые поистине таинственные явления. Вы можете подумать, что температура в ядре Солнца, доходящая до 15 млн °C, крайне высока – но даже этого пекла недостаточно, чтобы протоны соединились и преодолели взаимное отталкивание, которое их электрические поля оказывают друг на друга. Впрочем, еще не все потеряно, поскольку протоны иногда могут обойти электростатическое отталкивание при помощи процесса, называемого квантовым туннелированием. Проще говоря, если протон сталкивается с другим протоном достаточное количество раз (скажем, 1010 раз), вероятность того, что один из них преодолеет электростатический барьер другого, становится значительной. Вероятности квантового туннелирования как раз хватает для того, чтобы в плотном ядре Солнца, с его «мизерной» температурой в 15 млн °C, протекал термоядерный синтез.


    Ваша оценка произведения:

Популярные книги за неделю