412 000 произведений, 108 200 авторов.

Электронная библиотека книг » Уильям Уоллер » Гайд по астрономии. Путешествие к границам безграничного космоса » Текст книги (страница 11)
Гайд по астрономии. Путешествие к границам безграничного космоса
  • Текст добавлен: 1 июля 2025, 14:44

Текст книги "Гайд по астрономии. Путешествие к границам безграничного космоса"


Автор книги: Уильям Уоллер



сообщить о нарушении

Текущая страница: 11 (всего у книги 13 страниц)

11. Рождение звезд и планет


Бывало, все небо над головой усеяно звездами, и мы лежим на спине, глядим на них и спорим: что они – сотворены или сами собой народились? Джим думал, что сотворены; а я – что сами народились: уж очень много понадобилось бы времени, чтобы наделать столько звезд. Джим сказал, может, их луна мечет, как лягушка икру; что ж, это было похоже на правду, я и спорить с ним не стал; я видал, сколько у лягушки бывает икры, так что, разумеется, это вещь возможная [7].

Марк Твен. Приключения Гекльберри Финна

Будьте смиренны, ибо вы сделаны из земли.

Будьте благородны, ибо вы сделаны из звезд.

Сербская пословица

Хотя галактики и родились почти в один день, этого нельзя сказать о звездах. Примерно в течение миллиарда лет после Большого взрыва субгалактические сгустки сливались и объединялись, образуя тот «бродячий цирк» галактик, который мы наблюдаем сегодня; звезды, напротив, возникали задолго до этого времени и продолжают появляться и сейчас. Что же требуется для создания одной из этих термоядерных «электростанций» и ассоциируемой с ней системы планет, комет, астероидов и всего-всего-всего? В поисках ответа мы можем исследовать нашу Солнечную систему, изучать темные пылевые туманности, где сейчас рождаются протозвезды и протопланетные системы, и строить физические модели процесса их формирования.

Откровение от Солнечной системы

На то, как именно она формировалась, Солнечная система намекает нам на каждом шагу. Начнем со дня ее рождения. Радиометрическое датирование урана, тория и других радиоактивных изотопов в метеоритах ясно показало, что их максимальный возраст составляет 4,6 млрд лет. Такой же возраст у древнейших лунных пород, собранных и доставленных на Землю астронавтами «Аполлона». Теоретические модели Солнца и системы его «энергетической подпитки» также подтверждают эту дату. А вот каменная поверхность Земли кажется значительно моложе. Самые древние земные минералы из тех, что известны нам, – это цирконы, найденные в Джек-Хиллз в Австралии. Их первые кристаллизации произошли 4,4 млрд лет назад. Возраст старейших земных цельных горных пород, в том числе и пород Канадского щита, близок к 4 млрд лет. Эти различия дают нам сделать вывод, что для остывания, в ходе которого внешняя земная кора могла затвердеть, новорожденной Земле потребовались сотни миллионов лет.

Изначальный возраст в 4,6 млрд лет говорит нам и о том, что Солнце и Солнечная система стали далеко не первыми звездными системами в Млечном Пути. С учетом того, что предполагаемый возраст нашей Галактики составляет 12 млрд лет, мы видим, что звезды активно в ней формировались на протяжении семи с лишним миллиардов лет до появления Солнечной системы. Это важное открытие, поскольку оно свидетельствует о том, что наша планетная система получила свое наследство от тысяч поколений массивных звезд, некогда возникших, проживших яркую жизнь и погибших в яростной вспышке сверхновых. Тяжелые элементы, выброшенные ими, смешались с межзвездной средой, из которой под влиянием тяготения сгустилось наше родительское облако. Вот почему мы живем на поверхности каменистой планеты, полной воды, а не там, где атмосфера целиком состоит из водорода и гелия. Об этом прекрасно сказал Карл Саган: «Мы сделаны из звездного вещества».

Кроме того, форма и движение нашей Солнечной системы раскрывают многие тайны возникновения планетных систем. Примите во внимание, что все известные планеты Солнечной системы – в том числе восемь главных, а также с полдесятка «карликов» во внешних областях и мириады астероидов во внутренних – обращаются вокруг Солнца в одном направлении и почти в одной плоскости. Кроме того, большая часть планет, за исключением Венеры и Урана, вращаются вокруг своей оси в направлении своих орбит. Эти общие черты позволили астрофизикам представить, что Солнечная система – как и любая другая планетная система – возникла в результате монолитного коллапса медленно вращающегося родительского облака. Позже мы гораздо подробнее рассмотрим эту основную картину происхождения звезд и планет.

Откровение от темных туманностей

До XX века астрономы приходили в замешательство, глядя на небольшие темные участки на светлом газовом шлейфе Млечного Пути. Даже знаменитый астрофотограф Эдвард Эмерсон Барнард задумывался о природе этих лоскутов: облака ли это, закрывающие свет, или настоящие дыры в звездном небосводе? Только в 1919 году он наконец решил, что на его сверхчетких снимках запечатлены облака, содержимое которых ослабляло фоновый свет звезд. Однако лишь в 1930-х годах астрономы получили убедительные доказательства существования этой промежуточной среды, состоящей из газа и пыли, – мы сейчас называем ее межзвездной средой. Наблюдая за звездами с помощью спектроскопа, они увидели особые линии поглощения, которые нельзя было приписать самим небесным светилам. По всей видимости, эти узкие линии, соответствующие кальцию и другим элементам, происходили из некоей разреженной среды, находящейся на переднем плане по отношению к звездам. Более того, астрономы обнаружили, что чем дальше находилась звезда, тем сильнее в ее спектре проявлялись линии поглощения. Так же вел себя и свет звезды, если говорить о яркости и цвете, – нечто, бывшее снаружи, одновременно ослабляло его и окрашивало в красные тона.

Важные подсказки для понимания природы этой межзвездной среды мы смогли получить благодаря снимкам темных и ярких туманностей, в число которых входили и объекты Барнарда, получившие свое имя в честь упомянутого астрофотографа. Например, на изображениях туманности Конская Голова (Барнард 33), названной очень верно, на ярком облакоподобном фоне видна расплывчатая темная дымка, имеющая форму лошадиной головы. Это позволило астрономам предположить, что в этой туманности присутствовали области как светящихся газов, так и темных пылевых частиц.

К 1970-м годам радиоастрономы создали достаточно гладкие зеркальные антенны и чувствительные детекторы, способные работать на миллиметровых длинах волн. Решив воспользоваться этой новой возможностью на все сто, ученые направили телескопы на свои любимые туманности в ожидании излучения от любых молекул, которые могли бы там находиться. И они не разочаровались: спектральных линий монооксида углерода, циана, формальдегида и других простых органических молекул хватало с избытком.

Как показывают самые последние карты, размеры этих молекулярных облаков варьируются от нескольких световых лет до сотен световых лет, а их масса – от нескольких тысяч до миллионов масс Солнца. Более того, облака располагаются в виде запутанных нитей, – возможно, это происходит под влиянием слабых магнитных полей, пронизывающих межзвездную среду. По всей видимости, эти нити играют роль важного связующего звена в формировании ядер в облаках, а также протозвездных систем, которые развиваются в этих ядрах.

Тщательные спектроскопические наблюдения, проведенные в радиоволновом диапазоне, показали, что молекулярные облака невероятно холодны и их температура не более чем на несколько десятков градусов Цельсия выше абсолютного нуля. Такое состояние, называемое криогенным, дает нам еще один важный ключ к пониманию того, как происходит формирование звезд и планет. В этих очень холодных мирах гравитация способна оказаться сильнее, чем случайные движения разных молекул. И как только она берет верх, может начаться сгущение вещества, отчего образуются молекулярные ядра, плотность которых в тысячу раз больше, чем у окружающих облаков. И более того, астрономы все никак не могли понять, что удерживает молекулярные ядра от гравитационного коллапса и не позволяет им устроить грандиозную вакханалию с рождением новых звезд. Здесь нам на помощь придет «тонкая настройка». Во-первых, следует учесть и другие движения, в том числе вращение ядра и внутреннюю турбулентность; кроме того, свою роль могут играть и магнитные поля, поскольку они будут усиливаться, если окажутся в тесной связи с уплотняющимися облаками. Наконец, любые новорожденные звезды будут вливать в остатки облаков, из которых они появились, лучистую и механическую энергию – и тем самым предотвратят дальнейшее сгущение. В молекулярных облаках мы наблюдали проявления всех этих опосредующих факторов, но пока еще не ясно, насколько важен каждый их них.

Наблюдениям за плотными молекулярными ядрами способствовали недавние кампании по визуализации и спектроскопии в среднем ИК-диапазоне. На этих длинах волн активно светятся как сложные органические молекулы, так и микроскопические пылинки. Космический телескоп «Спитцер» особенно искусно картировал и описывал звездообразующие ядра молекулярных облаков, расположенных в созвездиях Тельца, Ориона и Цефея, а также многих других, населяющих Млечный Путь. Кроме того, «Спитцер» получил четкие снимки нескольких гигантских молекулярных облаков, в которых находятся самые массивные, горячие и мощные новорожденные звезды. У этих туманных великанов видны обширные полости со странными пальцевидными выпуклостями, указывающими назад, на активные звезды. Такие полости – это итог интенсивной чистки и ударов, которые окружающему пространству туманностей наносят ультрафиолетовое излучение и ветры горячих звезд. Известные Столпы Творения, характерная черта туманности Орел (М16), а также туманность Душа (W5) свидетельствуют о преобразующем воздействии массивных горячих звезд на мир, в котором они родились. Мы собрали уже много фактов, свидетельствующих о том, что Солнце и Солнечная система сформировались внутри одной из таких «звездных колыбелей». Так что тяжелые элементы, по всей вероятности, достались нам в наследство не только из ближайших сверхновых, но и из самой межзвездной среды.

Рис. 11.1. Галерея из двадцати протопланетных дисков, снятых комплексом радиотелескопов ALMA на миллиметровых длинах волн. Здесь свет исходит от микроскопических пылинок при криогенных температурах около 20–40 К. (Материалы любезно предоставлены ALMA [ESO/NAOJ/NRAO], S. Andrews et al.; [NRAO/AUI/NSF], S. Dagnello.)

Направив окуляры своих телескопов на молекулярные ядра, астрономы постигали проявления звездного генезиса – они искали протозвезды и любые протопланетные диски, которые могли бы их окружать. Космический телескоп «Хаббл» первым получил четкое изображение таких дисков – в туманности Ориона, где они предстали в виде силуэтов на фоне розового свечения.

А совсем недавно комплекс радиотелескопов ALMA, расположенный в Чили, запечатлел удивительный «паноптикум» протопланетных дисков. Одни из них гладкие, по другим идут спиральные волны плотности, а у некоторых есть темные кольца – знак того, что вещество из областей, определенных этими радиусами, пошло на формирование планет (рис. 11.1). И, наконец, многочисленные наземные и космические обсерватории проследили непосредственные отклики возникающих звезд. Можно даже увидеть, как с противоположных концов некоторых протозвезд вырываются струи светящегося газа, официально названные объектами Хербига – Аро в честь Джорджа Хербига и Гильермо Аро, астрономов из Америки и Мексики, которые первыми заговорили о таких потоках еще в 1940-х годах.

Откровение от физических моделей

Сумев пронаблюдать присутствие молекулярных ядер, протопла– нетных дисков и зрелых планетных систем, к которым относится и наша, астрофизики добились значительных успехов в описании процесса образования звезд. Многим мы обязаны Пьеру-Симону Лапласу, который еще в конце XVIII столетия первым выдвинул небулярную гипотезу, призванную объяснить, как возникла Солнечная система. Он учел, что на облако (или на туманность) воздействует его собственное тяготение, сделал поправку на некоторое общее вращение и понял, что сплющивание облака будет проходить преимущественно вдоль его оси вращения. Вдоль экватора вещество сжалось бы не так сильно, поскольку сила тяжести, направленная внутрь, по большей части пошла бы на то, чтобы ограничить его вращательное движение. Этот гравитационный коллапс, имевший предпочтительное направление, сам собой привел бы к появлению центральной области, в которой концентрация вещества была бы максимальной, и плоского диска с его остатками, из которых в конечном итоге возникли бы звезда-хозяйка и группа планет, идущих вокруг нее по орбитам в одном и том же направлении (рис. 11.2).

Рис. 11.2. Упрощенное изображение вращающегося облака, которое под действием собственной гравитации коллапсирует в центральную массу и окружающий ее диск, в том виде, в котором его впервые в конце XVIII века описал Пьер-Симон Лаплас. Вращение облака уменьшает ускорение свободного падения на его экваторе, в результате чего образуется сплюснутый диск. Центральная масса со временем станет самосветящейся звездой, а диск распадется на планеты.

Со времен Лапласа астрономы пытались решить множество проблем, связанных с этой гипотезой. Одна из главных загадок заключается в том, как именно молекулярное ядро, которому приходится претерпевать сгущение, вращение и сжатие, справляется со своим начальным угловым моментом (вращающейся массой). Поскольку большая часть вещества под действием гравитации направляется к центральной протозвезде, последняя должна обладать наибольшим угловым моментом в системе. И поскольку она коллапсирует на много порядков величины, то должна раскручиваться до невероятных скоростей, чтобы сохранить свой изначальный угловой момент. Мы уже упоминали, что именно для этого фигуристка во время вращения прижимает руки к груди; можно еще привести пример с ныряльщицей, которая группируется во время прыжка в воду. Впрочем, в коллапсирующих ядрах такой вращательной динамики мы не увидим. Взгляните на Солнце. Оно содержит более 99 % массы Солнечной системы и все же вращается довольно спокойно, делая один оборот вокруг своей оси за двадцать семь дней. Следовательно, бол́ьшая часть оставшегося углового момента Солнечной системы сосредоточена на орбитах планет-гигантов, особенно Юпитера. Куда же исчез остальной угловой момент изначальной Солнечной системы?

Одно из возможных решений этой проблемы – избавиться от значительной доли массы исходного диска, вращающейся и движущейся под действием гравитации. Иными словами, в формирующейся Солнечной системе должен был появиться сильный отток от диска. Это помогло бы объяснить и биполярные истечения, которые наблюдались у многих протозвезд.

Рис. 11.3. Этапы рождения звезды (слева направо). Сперва возникает ядро молекулярного облака, затем под действием гравитации к нему поступает газ, из которого образуются протозвезда и аккреционный диск. В дальнейшем от протозвезды отходит биполярное истечение, вследствие чего из протопланетного диска удаляется вещество и остается звезда с обращающимися вокруг нее планетами – такой вид характерен для «зрелых» планетных систем, в том числе и для нашей. (Материалы любезно предоставлены: Charles Lada [Гарвард-Смитсоновский центр астрофизики], Rob Wood [иллюстратор].)

С учетом противоречивой динамики, участие в которой принимают и гравитация, и вращение, и магнитные поля, и излучения, и другие воздействия, рассказ о формировании звездных и планетных систем из туманного вещества может оказаться немного сложным. На рис. 11.3 изображены ключевые этапы рождения, которые, как полагают, сменяют друг друга в ходе метаморфоз.

Считается, что полное превращение из протозвезды, которую можно распознать, в звезду, подобную Солнцу, занимает всего 30 млн лет. Звезда массой в 40 M (такая дает энергию туманности Ориона) сформировалась бы всего за 100 000 лет, что приблизительно эквивалентно возрасту человечества, в то время как образование звезды с массой 0,1 M (скажем, такой, как Проксима Центавра, карлик класса М – вторая из ближайших к нам) заняло бы до миллиарда лет. Как мы еще увидим, и жизнь, и гибель звезд в решающей степени зависят от их первоначальной массы.

12. Циклы жизни и гибели звезд


Все-таки они не просто красивы – звезды подобны деревьям в лесу, они живут и дышат.

И они наблюдают за мной.

Харуки Мураками. Кафка на пляже

Ничто не вечно, даже звезды. Их рождение в космическом холоде, их бурная молодость и стабильная зрелость, их «старческое оплывание» и окончательное угасание – все это предполагает множество превращений. Астрономы смогли составить единую картину циклов жизни и гибели звезд, рассмотрев каждую наблюдаемую звезду как «моментальный снимок» в соответствующей истории ее существования. Оказывается, участь звезды в плане времени жизни и эволюционных изменений, которые с ней произойдут, во многом определяет ее масса.

Маломассивные звезды

Звезды с наименьшей массой (от 0,08 до 0,8 M, спектральный класс М) меняются меньше всего, поскольку они полностью конвективны (рис. 12.1). Со временем каждый атом такой звезды циклически проходит через ядро, в котором происходят термоядерные реакции, и питает звездную «электростанцию», пока все водородное топливо не переплавится в гелий. Что ждет их в конце, неизвестно: эти звезды живут очень долго. И более того, каждая маломассивная звезда, возникшая в Млечном Пути за 12 млрд лет его существования, все еще полна жизни.

Рис. 12.1. Внутреннее строение звезд с различной массой. Маломассивные звезды (слева) полностью конвективны. У звезд средней массы (в середине) конвективные зоны располагаются над зонами излучения, у массивных (справа) – наоборот. (По источнику: Astronomy, C. J. Peterson.)

Солнцеподобные звезды

Солнцеподобные звезды (от 0,8 до 1,4 M⊙, спектральные классы K, F и G) 90 % своей жизни проводят на относительно стабильной главной последовательности (рис. 12.2). Все это время в ядре прежде всего «сгорает» водород и образуется гелий. Этот процесс высвобождает энергию, которая передается наружу через остальные области звезды. Сразу за пределами ядра высокоэнергетические фотоны нагревают частицы газа, которые в дальнейшем, в соответствии со своими температурами, излучают энергию повторно. По мере того как излучение распространяется вовне, нагревается все больше частиц газа, но их температуры по сравнению с той, что царит в ядре, становятся все ниже. В зоне лучистого переноса то, что некогда представляло собой горстку гамма-квантов, преобразуется в поток ультрафиолетового излучения и видимого света, энергия фотонов в котором относительно низка. В двух третях пути от ядра к внешним оболочкам в дело вступают гигантские конвекционные потоки, поднимающие нагретые частицы к поверхности, где те излучают энергию (в основном в видимом диапазоне длин волн), охлаждаются, уплотняются, а затем опускаются обратно, вниз, чтобы повторить конвекционный цикл.

Рис. 12.2. Диаграмма Герцшпрунга – Рессела, показывающая светимость звезды в зависимости от ее цвета, спектрального класса и температуры ее поверхности. Голубоватые горячие звезды – слева, красноватые холодные – справа. Обозначены звезды главной последовательности, гиганты, сверхгиганты и белые карлики, а также ветвь красных гигантов (RGB), горизонтальная ветвь (HB), асимптотическая ветвь гигантов (AGB) и часть эволюционных путей для звезд различной массы. (По источнику: сайт Australia Telescope Outreach and Education, владелец – Государственное объединение научных и прикладных исследований [CSIRO] Австралии.)

А как же все обстоит с самим Солнцем? Оно сформировалось из туманного вещества 4,6 млрд лет назад и находится в середине своего жизненного пути в качестве обычной звезды главной последовательности. За это время атомные ядра водорода в ядре Солнца активно переплавлялись в атомные ядра гелия с выделением нейтрино и гамма-лучей – последние дают Солнцу световую энергию. Этот термоядерный синтез привел к тому, что в солнечном ядре теперь преобладают атомные ядра гелия, каждое из которых состоит из двух протонов и двух нейтронов, а не изначальная когорта атомных ядер водорода, состоящих из одиночных протонов. И это значит, что общее количество автономных частиц в ядре неуклонно сокращается.

Согласно закону идеального газа, внутреннее давление зависит как от количества частиц, так и от их общей температуры. И если частиц становится меньше, температура должна повышаться, чтобы поддерживать давление, необходимое для предотвращения гравитационного коллапса. Так возникает звезда, у которой непрестанно возрастают и температура ядра, и соответствующая ей светимость. Возможно, Солнце, светившее над ранней Землей, было намного более тусклым. Еще через несколько миллиардов лет наша звезда будет намного ярче, чем сейчас, и жизнь на Земле станет невыносимой – причем еще до того, как Солнце перейдет в стадию красного гиганта.

Теперь стоит сказать, что в звездах, подобных Солнцу, внутренний излучающий слой отделен от внешнего конвективного слоя, и из-за этого ядро, в котором совершаются термоядерные реакции, не имеет доступа ко всему водороду звезды. В конце концов в нем закончится топливо, оно перейдет в бездействующее состояние, и произойдет его гравитационный коллапс, отчего водород начнет сгорать в оболочке, расположенной непосредственно за пределами сжатого ядра. Такое горение характерно для стадии красного гиганта, во время которой звезда расширяет внешние слои до тех пор, пока не увеличится в 100 раз. Менее чем через 1,2 млрд лет после того, как звезда уйдет с главной последовательности, плотность и температура в ее сжимающемся ядре станут достаточно высокими для того, чтобы содержащийся в нем гелий переплавился в углерод и кислород. В ходе этих термоядерных реакций энергия высвобождается значительно слабее, и скорость их протекания должна увеличиться, иначе случится коллапс. В это время звезда находится на стадии горизонтальной ветви (рис. 12.2), которая продлится всего около 100 млн лет.

Исчерпав запасы гелиевого «топлива», ядро снова станет сжиматься до тех пор, пока гелий не начнет синтезироваться в оболочке, окружающей ядро. Эту оболочку, в свою очередь, окружит другая, в которой будет происходить ядерное горение водорода. Светимость звезды будет постоянно возрастать, и она вступит в стадию асимптотической ветви гигантов (рис. 12.2). В этот момент размер звезды, возможно, сравняется с протяженностью орбиты Марса, а внешние слои звездной атмосферы станут достаточно прохладными, благодаря чему некоторые газы, присутствующие в них, смогут кристаллизоваться в микроскопические пылинки, а атомы углерода, кремния и кислорода, некогда свободные, осядут в виде крупиц силиката и графита величиной с частички сажи. В дальнейшем наличие двух оболочек, в которых проходит термоядерный синтез, приведет к нестабильности, нестабильность вызовет пульсации, эти пульсации породят сильные ветры, а ветры вытолкнут пылинки прочь и наполнят межзвездную среду достаточным количеством пыли, чтобы из нее образовались планетезимали и, в конечном итоге, планеты. Так что и наша родная Земля, и другие каменистые планеты обязаны своим происхождением могучим ветрам некогда гигантских звезд!

У звезды, подобной Солнцу, стадия асимптотической ветви гигантов длится всего 20 млн лет. В течение этого краткого периода мощные звездные ветры будут удалять все больше и больше массы, обнажая остатки углеродно-кислородного ядра. А само ядро будет сжиматься до тех пор, пока не превратится в белого карлика, способного противостоять своей сокрушительной самогравитации за счет сил отталкивания между его электронами (подробнее об этом в гл. 13). Поскольку поверхность углеродно-кислородного белого карлика необычайно горяча – от 30 000 до 100 000 К, – она обильно излучает в ультрафиолетовом диапазоне, а излучение ионизирует газы, переносимые ветрами, и заставляет их флуоресцировать. Так возникает планетарная туманность, чья изящная форма и цветовая палитра продержатся всего мгновение – 10 000 лет, – прежде чем рассеяться в космосе. И теперь, когда уже ничто не повлияет на статическое равновесие плотного остатка звезды, белый карлик будет медленно охлаждаться за счет теплопроводности и излучения на протяжении миллиардов лет (рис. 12.3).

Рис. 12.3. Пути эволюции звезд и их зависимость от изначальной массы. Звезды средней массы становятся белыми карликами, а массивные звезды – либо нейтронными звездами, либо черными дырами. (Приводится с изменениями по источнику: Discovering the Universe, W. J. Kaufmann and N. F. Comins, 4th edition, W. H. Freeman [1996].)

Другие звезды средней массы

Звезды, которые значительно тяжелее Солнца (1,4–8 M), проходят через те же эволюционные фазы, что и солнцеподобные звезды, но с неожиданным поворотом. Находясь на главной последовательности, они точно так же синтезируют гелий из водорода, присутствующего в их ядрах. Однако у них в термоядерный синтез вовлекаются еще и доступные атомные ядра углерода, азота и кислорода, что ускоряет протекание реакций. Такие каталитические реакции требуют поддержания в ядре, где совершается термоядерный синтез, более высоких температур, и поэтому они могут протекать только в звездах с большей массой. Это так называемый CNO-цикл – он помогает более массивным звездам, находящимся на относительно стабильных стадиях главной последовательности, значительно увеличить их светимость.

Массивные звезды

Считается, что разделительная линия между звездами средней массы и массивными звездами пролегает на отметке примерно в 8 масс Солнца. Если этот порог превышен, то термоядерный синтез в ядре звезды, идущий на всем протяжении ее жизни, может выйти за рамки последовательности превращения водорода в гелий, гелия в углерод, а углерода – в кислород, свойственной звездам средней массы. У массивных звезд (8–120 M) температура ядра может настолько возрасти, что кислород начнет превращаться в кремний, а кремний – в железо, а попутно звезда раздуется и станет сверхгигантом, размер которого может превышать протяженность орбиты Сатурна. После синтеза гелия в углерод, кислород и неон звезда примерно за сутки преобразует эти элементы в кремний, затем в железо – и все заканчивается.

Атомное ядро железа обладает большей (отрицательной) энергией связи, чем все остальные элементы. Синтез таких атомных ядер в более тяжелые потребовал бы дополнительной (положительной) энергии для запуска реакции. Подобные эндотермические реакции хорошо протекают при наличии удобного источника энергии – в пример можно привести, скажем, солнечный свет, при участии которого идет фотосинтез. Однако в ядрах звезд нет запаса энергии для воспламенения железа – и под воздействием гравитации бездействующее ядро коллапсирует менее чем за секунду, а в результате высвобождения гравитационной энергии в остальной части звезды происходит колоссальный взрыв.

Когда массивная звезда превращается в сверхновую, она может затмить по блеску всю свою галактику. По прошествии от нескольких недель до нескольких лет сверхновая потускнеет и будет едва различима. Вещество, выброшенное ею в космос, образует остаток сверхновой, содержащий все тяжелые элементы, созданные в ней до взрыва и при его совершении. А мы, безусловно, должны быть благодарны таким звездным взрывам за бо́льшую часть периодической таблицы химических элементов.

О том, что происходит с остатками ядер массивных звезд после коллапса, мы поговорим в следующей главе.

13. Загадки материи и энергии


Есть многое на свете, друг Горацио, Что и не снилось нашим мудрецам.

Уильям Шекспир. Гамлет

Среди бесчисленных чудес планетарного, звездного и галактического происхождения скрыты еще более таинственные и причудливые явления. Невероятно плотные крупицы вещества, едва колеблющиеся волны пространства-времени, призрачные проявления темной материи и темной энергии – космос все так же манит величайшие умы и ускользает от них. К загадкам материи и энергии относятся белые карлики, нейтронные звезды, пульсары – и, конечно же, как звездные, так и галактические черные дыры. Мы знаем, что нейтронные звезды существуют, поскольку наблюдали их в центрах остатков сверхновых – часто в облике пульсаров. Также мы достаточно уверены в существовании звездных черных дыр, поскольку нам удалось обнаружить обычные звезды в тесных двойных парах с невидимыми объектами соответствующей массы. И более того, в 2015 году мы впервые зафиксировали гравитационные волны, вызванные столкновением двух черных дыр звездной массы. Вслед за этими долгожданными «отпечатками» колеблющегося пространства-времени мы в 2017 году уловили гравитационные волны от двух столкнувшихся нейтронных звезд. Недавние успехи специалистов в гравитационно-волновой астрономии резко контрастируют с продолжающимися неудачами физиков, которые пытаются понять природу темной материи и темной энергии. Имеются веские доказательства того, что обе эти формы материи-энергии пронизывают космос. Мы просто пока не знаем, что заключает их в себе.

Белые карлики

В предыдущей главе мы говорили, что звезды средней массы (0,8–8 M) последовательно превращают водород в гелий, гелий – в углерод, а углерод – в кислород. Дальнейшие реакции термоядерного синтеза требуют наличия в центре звезды более высоких температур, чем те, что достижимы при этих звездных массах. Поэтому реакции термоядерного синтеза в конце концов прекращаются – и ядро, в котором некогда шел этот синтез, сжимается под собственной тяжестью, отчего возникает удивительно красивый углеродно– кислородный самородок с массой Солнца, но размером с Землю. Он «металличен» в том смысле, что кристаллизованные атомные ядра окружены электронами проводимости, и при плотности в миллион граммов на кубический сантиметр белый карлик плотнее всего, что мы можем изготовить в лаборатории. Более того, чайная ложка его вещества имела бы такую же массу, как автомобиль среднего размера.

Однако странности белого карлика не заканчиваются его металлическими свойствами и поразительно высокой плотностью. Когда атомы так тесно прижаты друг к другу, начинают проявляться причудливые квантовые эффекты. Согласно принципу запрета Паули, никакие две частицы не могут находиться в одном и том же квантовом состоянии. Это означает, что никакие два электрона в белом карлике не могут обладать одинаковой энергией, поэтому энергии электронов и соответствующие давления зависят только от плотности остатка звезды – температура больше не играет в поддержании повышенного давления никакой роли. Это необычное явление – вырождение электронов – удерживает белого карлика от дальнейшего коллапса.

Представьте себе обычную звезду. Если к ней добавится масса, то повысится центральное давление, соответственно возрастут температура и светимость, и звезда расширится. Так ведут себя звезды главной последовательности на диаграмме Герцшпрунга – Рессела. Такие звезды с большей массой и соответствующей светимостью (Спика, Вега, Сириус) значительно крупнее своих собратьев с меньшей массой (Солнце, звезда Барнарда) (рис. 7.6). Однако в белом карлике добавление вещества приводит к тому, что остаток становится меньше! Добавленное вещество не увеличивает ни внутреннее давление, ни соответствующую температуру – и он сжимается под собственной тяжестью. Конечно, такому поведению есть предел, когда накапливается достаточно массы, чтобы сформировать остаток с практически нулевым радиусом. В 1930 году великий индийский астрофизик Субраманьян Чандрасекар подсчитал, что предельная масса будет ровно в 1,4 раза превышать массу Солнца. Как показали наблюдения, расчетные массы белых карликов варьируются от 0,17 до 1,33 M, что, по всей видимости, подтверждает этот предел. Масса большинства белых карликов составляет 0,5–0,7 M. Если же масса звездного ядра превышает предел Чандрасекара, ему суждено образовать нечто совершенно иное, и мы поговорим об этом чуть позже.


    Ваша оценка произведения:

Популярные книги за неделю