Текст книги "100 великих рекордов транспорта"
Автор книги: Станислав Зигуненко
Жанр:
Публицистика
сообщить о нарушении
Текущая страница: 15 (всего у книги 32 страниц)
Новшества нашего метро
Попытки создания метрополитена в Москве относятся к началу XX века. В 1902 году Московская городская дума заслушала сообщение инженера Балинского о «Постройке внеуличной железной дороги в Москве». И хотя автор проекта насколько мог красочно изложил преимущества нового вида транспорта и доходность мероприятия, решение думы было кратким: «Господину Балинскому в его домогательствах отказать».
Таким образом, начало отечественного метростроительства было отложено на три с лишним десятилетия. И Московский метрополитен начал действовать лишь при советской власти, в 1935 году. Первые линии Кировско-Фрунзенская от станции «Сокольники» до станции «ЦПКиО имени Горького» и Арбатская от «Охотного ряда» до «Смоленской» имели общую протяженность только 11,4 километра и 13 станций.
С самого начала наши метростроители строили как тоннели глубокого и мелкого заложения, так и прокладывали трассы на поверхности земли. Примером открытой трассы может послужить хотя бы Филевская линия в Москве.
Стоимость строительства метрополитена открытым способом значительно ниже, чем закрытым, что во многом объясняется различной технопогией работ. При открытом способе котлованы для тоннелей роют непосредственно с поверхности земли. При закрытом – первоначально необходимо пройти вертикальную выработку грунта на глубину заложения будущего тоннеля, то есть соорудить шахтный ствол.
Для проходки стволов применяются специальные бурильные установки. Первые полностью автоматизированные шахтные бурильные установки стала выпускать японская фирма «Тоё когё» в 70-е годы ХХ века. Система автоматического управления таких установок позволяет проводить весь цикл обуривания забоя без участия человека по программе, подготовленной заранее и введенной в ее компьютер в виде перфоленты. Это напоминает операцию на станках с числовым программным управлением.

Метропоезд «Русич»
Для проходки тоннелей метрополитена используется чаще всего щитовой метод. Применение проходческого щита, представляющего собой горизонтальный стальной цилиндр, по контуру которого укреплены домкраты, позволяет избежать осадки расположенных на поверхности строений при выемки грунта из тоннеля. Внутри такого щита строится обделка тоннеля, то есть его покрытие, постоянная крепь. Она выполняется либо из сборных чугунных элементов (тюбингов), применяемых в водоносных грунтах, либо из железобетонных колец – для сухих грунтов. Элементы обделки имеют вид колец различного диаметра: для станций метро – 8,5 метра, для перегонных тоннелей между станциями – 5,5 метра.
Иногда обделку тоннелей устраивают из монолитного бетона, используя для этого специальные бетононасосы.
Московским метростроителям впервые при отделке тоннелей были применены полимерные материалы; из них выполнен потолок станции «Чеховская».
Скорость движения поездов регулирует автоматическая система, которая контролирует и действия машиниста. Так, при подъезде к станции автоматически включается торможение. Машинист обязан нажатием кнопки его выключить и вести поезд вручную. Если же не нажать кнопку, состав остановится сам.
«Мозговой центр» метро – центральная диспетчерская. Ее компьютеры следят за тем, чтобы вся система работала слаженно, соблюдались интервалы в движении поездов, не возникало чрезвычайных ситуаций.
За годы, минувшие после пуска московского метро, сменилось четыре основных типа и несколько модификаций вагонов. Сейчас появилась новая модель – высокоскоростная, комфортабельная и ультрасовременная «Яуза». Эта модель мирового класса с великолепным современным дизайном создана Мытищинским машиностроительным заводом. «Яуза» – первый в истории российского метростроения вагон из модульных конструкций. Ведущие дизайнеры проекта – Ю.Г. Бусыгин, Н.И. Кузнецов, В.М. Обухов и И.В. Усольцев.
У кузова «Яузы» нетрадиционное сечение. Оно не прямоугольное – есть радиусная часть, позволившая более рационально вписать вагон в туннель круглого сечения и увеличить вместимость на 30 человек. Аэродинамические испытания показали снижение лобового сопротивления на 20 процентов. В «Яузе» также применили систему рекуперативного торможения – с высвобождением «лишней» энергии в генераторном режиме тяговых двигателей.
Практическая скорость поезда – 48 км/ч. Ходовая часть вагона – с пневматической подвеской, подстраивающаяся к мгновенным значениям нагрузки.
Вышел на линии и поезд «Русич», вагоны которого экономичнее и комфортабельнее старых.
Подземные и надземные вестибюли метрополитена обогатили архитектуру многих городов мира. Но московский метрополитен имеет уникальные по архитектурно-художественному облику станции. Не случайно взяты под охрану государства как памятники архитектуры три лучшие станции первых линий: «Красные Ворота», «Маяковская», «Кропоткинская». В отделке колонн, пилонов, лестниц широко применены мрамор, гранит, металлы, керамика, стекло.
Метро под… водой
В заголовке ошибки нет – речь ниже пойдет не о подземном, а именно о подводном метрополитене. Этот всепогодный, скоростной, относительно дешевый вид транспорта для перемещения всех видов грузов и пассажиров может в ближайшем будущем оказаться весьма перспективным. Так, во всяком случае, полагает один из разработчиков оригинального трубопровода А.Л. Яковенко.
Как известно, ныне водный транспорт – самый дешевый и самый крупнотоннажный. Но он же и самый медленный. А потому почти все пассажирские суда превратились сегодня в плавучие отели для туристов. Да и те используются преимущественно в курортный сезон.
Между тем существует настоятельная необходимость переброски людей и грузов через водные пространства в любое время года и суток и при всякой погоде, когда уж и самолеты не летают.
Кстати, пассажирам, следующим на сравнительно небольшие расстояния, например, из Италии на Корсику или из Франции в Англию, нет смысла пользоваться самолетом – поездка в аэропорт, стояние в очередях на досмотр отнимают времени намного больше, чем сам полет.
Поэтому многие в таких случаях предпочитают морские паромы – на них можно пересечь водное пространство даже вместе со своим автомобилем. Так ныне многие ездят, например, из Дании в Швецию или из Франции в Англию. Но паром ходит по расписанию, и его иной раз приходится довольно долго ждать. Кроме того, и здесь погода может внести свои коррективы. Например, паромная переправа на Балтике или между Сахалином и материком не работает в шторм и зимой, когда море замерзает.
В таких случаях, конечно, гораздо удобнее мост или тоннель, такой, например, как проложили в свое время под Ла-Маншем. Однако вспомним: первые попытки построить это весьма дорогое сооружение относятся еще к наполеоновским временам. А когда наконец в XX веке тоннель построили, оказалось, что прибыли от него придется ждать еще долгие годы.
«Поэтому в наши дни есть проект прокладки тоннеля между Италией и Сицилией, – говорит Александр Леонидович Яковенко. – Причем прокладывать его собираются не под морским дном, как на Ла-Манше, а над ним».
Металлическую трубу соответствующего диаметра закрепят на якорях на такой глубине, чтобы не мешала судоходству, и пустят по ней железнодорожные составы. Как показывают расчеты, такое сооружение обойдется примерно на порядок дешевле, чем если бы туннель прокладывать под морским дном.
Трасса будет составлена из автономных секций диаметром до 8 м и длиной до 200 м, почти полностью укомплектованных внутренними деталями и конструкциями. Секции по окончании сборки закроют с обеих сторон герметичными заглушками, превращающими каждую секцию в своеобразную подлодку, и в таком виде отбуксируют по воде к месту монтажа. Затем с помощью плавучих кранов и собственной балластной системы все секции притопят на заданную глубину и состыкуют друг с другом.
Поскольку глубина размещения трассы невелика, то монтажники могут работать в легководолазном снаряжении, а сама их база сможет располагаться в одной из уже готовых секций. Выход и вход обеспечат специальные шлюзы, к которым затем будут пристыкованы аварийно-спасательные батискафы. Они обеспечат выход пассажиров из туннеля на поверхность в случае непредвиденных, аварийных ситуаций.
Если первый опыт эксплуатации такого тоннеля окажется успешным, то подобные переправы распространятся по всему миру.
Есть, например, даже идея в будущем расширить столичное метро за счет новых линий, проложенных по фарватеру Москвы-реки. Ведь, кроме всего прочего, московская земля уже напичкана всевозможными коммуникациями, частью совсем забытыми, и это сильно затрудняет и удорожает строительство обычного метро.
Еще более выгодным может оказаться проект аква-метро для Санкт-Петербурга, где кроме Невы есть еще множество каналов, а грунты под городом такие, что подземные туннели приходится опускать на большую глубину. А это, как сами понимаете, стоит дополнительных денег и трудов.
В дальнейшем можно также подумать о прокладке подобных линий, скажем, между Азией и Америкой и в районе Аляски. А там дело может дойти до устройства подводных переправ через Балтику и Атлантику.
Методику же строительства можно отработать при прокладке подводных трубопроводов для транспортировки нефти, газа, пресной воды. Их, оказывается, тоже выгоднее подвешивать в воде, а не укладывать на дно.
Кстати, подобные водоводы можно использовать и для доставки кратчайшим путем питьевой воды, например, из Антарктиды в Африку или из Гренландии в Европу.
Грузы движутся по трубам
Нехитрая труба, если сделать ее достаточно длинной, превращается в самый удивительный вид транспорта – в трубопровод. Здесь поток грузов непрерывно движется днем и ночью без всяких вагонов и цистерн. А ведь на всех других видах транспорта тара – это половина веса груза.
Трубопроводы также не знают простоев и порожних – «обратных» – прогонов вагонов или автомашин. Здесь не нужны многочисленные перегрузки-перевалки, почти нет потерь на сушку-утряску-усыпку, а затраты на постройку трубопровода окупаются уже в первые 3—4 года его работы. Недаром общая длина магистральных нефте– и газопроводов во всем мире уже перевалила за 1,5 млн км!
По трубопроводам ныне перекачивают на сотни и тысячи километров спирт, патоку, расплавленную серу, жидкие удобрения и даже… живую рыбу. А высоко в горах, в зоне альпийских лугов Карачаево-Черкесии, работает первый в нашей стране молокопровод. За сезон он подает к месту переработки миллион литров молока.

Подводный газопровод норвежской компаний HYDRO для разработки гигантского подводного газового месторождения Ormen Lange
Если окружить трубы электрическими подогревателями, по ним легко потечет жидкий металл или горячий мазут. Можно вложить одну трубу в другую, выкачать воздух из промежутка между ними и мы получим как бы гигантский дьюаров сосуд с теплоизолированными стенками – идеальную транспортную магистраль для сжиженных газов. Таким способом уже транспортируют жидкий кислород и азот.
А вот обширное семейство пульпопроводов. Пульпа – это смесь воды и какого-нибудь сухого вещества. В пульпу можно превратить грунт, уголь, руду, серу, поташ, рудные концентраты, кормовую пасту для поросят и коров… В общем, всевозможные гранулы, смешанные с водой, текут по трубам сплошным потоком.
Воздушные струи гонят по стальным артериям пневмопровода цемент, хлопок, муку, опилки и жестяные цилиндры с почтой.
И, наконец, поток воды, нефти, газа или пара может нести капсулы из синтетической пленки или алюминия. Внутри пулеобразной или цилиндрической капсулы – все что угодно: от пшеницы до гвоздей. Ухитрялись транспортировать таким образом даже металлические ящики весом больше 20 кг. В потоке воды, не получая ударов, без повреждений путешествуют и естественные «капсулы» – помидоры, картофель, фрукты.
Так что трубопроводы годятся для перекачки любых грузов – твердых, жидких и газообразных.
Среди множества трубопроводов есть и особенные, рекордные. Так, скажем, норвежская компания HYDRO разрабатывает гигантское подводное газовое месторождение Ormen Lange. Подводный газопровод стоимостью 3,3 млрд долларов и длиной в 1194 км соединил место добычи с перерабатывающими заводами в Великобритании.
Технические сложности – это не только необходимость работать на 900-метровых глубинах, где давление достигает почти сотни атмосфер, но и проблемы с самим дном. Рельеф дна в некоторых местах оказался настолько неровным, что потребовал тщательной предварительной подготовки с помощью двух дистанционно управляемых подводных экскаваторов.
Отдельные секции трубопровода стыковались и сваривались на борту двух самых больших в мире морских трубоукладчиков, после чего постепенно, с минимальными перегибами опускались на дно.
Недавно германское предприятие Europipe получило совершенно особенный заказ: оно должно будет изготовить большую часть труб для строительства газопровода «Nord Stream». До 2010 года необходимо поставить 75 000 стальных труб большого диаметра для строительства германо-российского газопровода «Nord Stream» («Северный поток»), который пройдет по дну Балтийского моря.
Каждая из труб имеет 12 м в длину и весит почти столько же тонн. Стоимость заказа, полученного предприятием из Мюльхайма-на-Руре, составляет около 1 млрд евро.
Выборг и северогерманский город Грайфсвальд соединит трубопровод длиной 1200 км, проходящий по дну моря. Для его строительства используются особенно крупные стальные трубы диаметром 1,22 м с толщиной стен от 27 до 41 мм. «Оффшорный трубопровод с таким внешним диаметром еще никто никогда не создавал», – говорит председатель правления Europipe Михаэль Греф.
Первый участок будет готов в 2010 году, а в 2011 году намечено сдать в эксплуатацию весь газопровод. Его пропускная способность – около 27,5 млрд куб. м газа в год.
Кстати, трубопроводы – это не только транспорт. Это еще и химический завод длиной в сотни километров!
Сейчас на бумажные комбинаты древесина прибывает по рекам, или на баржах, или в виде гигантских плотов. Но бумагоделательные машины не могут питаться бревнами, поэтому бревна очищают от коры и превращают в щепки. Так не проще ли перерабатывать древесину непосредственно на лесосеках и отправлять пульпу – «щепки плюс вода» – по «щепкопроводу»? Экономически это выгодно: на лесосеках перестанут гнить мелкие древесные отходы, в реках не будет «топляков» – затонувших бревен.
Но самое любопытное, что от взаимодействия щепок с водой в трубе начинается первичная переработка целлюлозы. На комбинат приходит уже до некоторой степени полуфабрикат!
А если вместе с водой перекачивать по трубам прямо с плантаций сахарный тростник, то первая стадия его обработки пройдет в трубе и тем самым облегчится работа рафинадных заводов.
Еще любопытнее – проект использования трубопроводов для переработки морской воды с целью получения из нее всевозможных солей и минералов. Удобно и выгодно совместить процесс доставки воды к потребителям с процессом ее опреснения. Поэтому предлагают осаждать минералы в системе трубопроводов общей длиной 800 км. Осадок будут периодически удалять скребками, толкаемыми вперед той же водой. За год «трубозавод» наскребет (в буквальном смысле этого слова) миллионы тонн минеральных солей.
Просто использовать транспортирующие трубы и в качестве гигантского смесителя. Автоматические дозаторы подают в трубопровод одну за другой десятки различных жидкостей. В пути они отлично перемешиваются, поэтому отпадает надобность в строительстве смесителей, резервуаров, хранилищ.
Даже ржавчина, покрывающая изнутри стенки трубопровода, может иногда оказаться полезной и послужить катализатором для некоторых окислительных реакций, протекающих в трубе-химзаводе.
Есть, впрочем, у трубопроводов и свои «болячки». К трубам, лежащим в земле, снаружи подбирается «рыжая чума» – ржавчина: изнутри бомбардируют трубу скачки давления; появляются усталостные трещины; могут сказаться дефекты сварки. Случись авария – газ, нефть или какой-нибудь другой продукт начинают просачиваться на поверхность земли. Как быстро и точно найти место утечки, если длина трубопровода – тысячи и тысячи километров?
«Радиоактивная собака» – так прозвали прибор, способный найти место утечки, даже если газ или жидкость ничем не пахнут. Перед тем как пустить в ход этот прибор, по трубопроводу прокачивают порцию радиоактивной жидкости с ничтожной примесью радиоактивных соединений йода-131 или брома-82. Часть этой жидкости уходит в зону утечки и «застревает» там. Затем вместе с потоком газа или жидкости пускают по трубе легкий цилиндр, внутри которого прибор-самописец улавливает и регистрирует изменения радиоактивности. Это и есть «собака-ищейка». В зоне утечки радиоактивность будет больше, прибор это отметит. Расшифровав запись, легко найти и координаты аварии.
Подозрительный шорох, шелест или свист тоже выдают место утечки. А иногда поступают и так. В начале трубопровода помещают мощный свисток или сирену. Труба служит прекрасным звукопроводом. А через изъян в трубе звуковые волны проникают в грунт. Место утечки звука можно обнаружить, даже если трубопровод проходит под шумными городскими улицами.
Обычно при авариях вода или другая жидкость уходит в глубь земли и не поднимается на поверхность. Обнаружить «подземную лужу» почти невозможно. Поэтому изобретатели предлагают еще один способ обнаружения места утечек. Надо к воде подмешать пенообразующее вещество и небольшое количество газа, способного раствориться в воде под давлением. В месте утечки давление падает, газ из воды выделяется, как при откупоривании бутылки с шампанским. Пенообразующее вещество дает при этом обильную пену, которая всегда стремится подняться на поверхность и которую найти довольно легко.
Вот таким образом звукоулавливатели, радиоактивные «собаки», десятки других хитроумных приборов и помогают вовремя исправлять все неполадки «неподвижного транспорта».
Когда двигатель – гравитация
Всем известные поезда метро – это лишь первый этап создания сети подземного транспорта для транспортировки людей. Почему бы трубопроводам не стать новым видом пассажирского транспорта? Здесь пассажирам не угрожали бы снежные заносы, гололед, ливни и прочие неурядицы стихий. Да и вероятность столкновения с другими видами транспорта полностью исключена, предел для скорости можно не устанавливать. Подобные идеи высказывались давно. Но лишь в наши дни «человекопроводами» занялись вплотную.
Ведь ныне за высокую скорость движения подземного транспорта приходится расплачиваться многократно возрастающей мощностью двигателей. Эта тенденция, общая для всех видов транспорта – от детской коляски до космической ракеты, представляется нам настолько очевидной, что проекты, в которых она нарушается, поначалу кажутся уловкой изощренного ума, пытающегося обойти неумолимые требования закона сохранения энергии.
Однако внимательное изучение таких проектов приводит к удивительному выводу: на рекордно быструю перевозку груза и пассажиров из одной точки земного шара в любую другую в принципе не требуется никакой энергии. Не менее удивительно и то, что многие из этих проектов – отнюдь не новинка. Некоторые из них были даже осуществлены и показали неплохие результаты на практике.
В одном из изданий «Занимательной физики» Я. Перельмана упоминается о вышедшей в начале ХХ века брошюре «Самокатная подземная железная дорога между Санкт-Петербургом и Москвой». А. Родных – автор этого «фантастического романа в трех главах, да и то неоконченных» – предлагает парадоксальную и тем не менее вполне логичную с точки зрения физики идею.
Между двумя городами прорывается тоннель, пересекающий земную сферу по хорде. Поскольку середина тоннеля ближе к центру Земли, чем вход и выход из него, вагон силой земного тяготения сначала втягивается в тоннель на окраине Москвы, непрерывно ускоряясь. Докатившись до середины, вагон достигнет скорости, достаточной для того, чтобы с разбегу домчаться до Санкт-Петербурга, постепенно замедляясь. После остановки и nepегрузки он готов совершить обратный рейс в Москву. Время, затрачиваемое на один перегон, – 42 мин. 11 сек.
Причем оно, как ни удивительно, не зависит от длины тоннеля. Путешествие из Москвы во Владивосток, в Нью-Йорк или в Мельбурн продолжаются одно и то же время – 42 мин. 11 сек.
И на эти рекордные по скорости путешествия не требуется в принципе ни грамма топлива, ибо для движения используется потенциальная энергия, которой обладает любое тело, лежащее на поверхности Земли и удаленное от ее центра на 6300 км.
Но, конечно, сопротивление воздуха и трение колес сводят на нет все теоретические преимущества гравитационного транспорта. И до тех пор, пока не удастся устранить эти досадные помехи, самокатные дороги будут оставаться не более чем забавными мысленными экспериментами…
Космические полеты подсказывают идеальный метод снижения аэродинамического сопротивления: тоннель, в котором движется поезд, следует сделать герметичным и откачать из него воздух. Потери же на трение стального колеса на шарикоподшипниках, катящегося по стальному рельсу, столь невелики, что с ним не может сравниться никакой другой вид транспорта. На перевозку тонны груза в этом случае требуется сила в 900 г, почти независимо от скорости. В 30 раз меньше, чем у лучших самолетов. Кроме того, колесо исключительно точно фиксирует положение поезде в трубе. А подключение генераторов для питания кондиционеров и осветительной сети поезда к осям колес не представляет никаких трудностей.
На первый взгляд гравитационные дороги особенно выгодны на больших расстояниях. Из Москвы в Нью-Йорк за 42 мин. 11 сек. – это неплохо. Но здесь ограничивающим фактором становится влияние чрезмерных ускорений на пассажиров. Ведь гравитационные поезда в отличие от знакомых нам видов транспорта не проходят ни одного метра с постоянной скоростью. На протяжении рейса они движутся с ускорением или замедлением, подвергая пассажиров действию перегрузок.
Расчеты, проведенные американским инженером Эдвардсом, показывают, что в ближайшем будущем гравитационные дороги выгодно будет использовать как раз на небольших расстояниях. Правда, тоннели в этом случае придется делать не прямолинейными, а выгнутыми выпуклостью к центру Земли. Тогда поезд будет сначала скатываться вниз, а затем, достигнув высокой скорости, по инерции подниматься вверх. Чем глубже тоннель, тем больше скорость. При глубине 1070 м расстояние в 135 км поезд преодолевает за 13 мин., развивая среднюю скорость 620 км/ч, а максимальную, на середине пути, – 800 км/ч. В час можно отправлять по 3 поезда, вмещающих 1500 человек каждый.
На более коротких расстояниях по скорости перевозки с самокатной дорогой не может сравниться ни один вид наземного транспорта. Чтобы пассажиры не вылетали из кресел, ускорение и замедление вагона, движущегося на поверхности земли, не должно превышать 4,8 км/ч за секунду. Для преодоления 13-километрового маршрута за минимальное время такой поезд должен всю первую часть пути ускоряться, а вторую – тормозиться. Отсюда нетрудно вычислить, что на поверхности 13 км можно преодолеть за 3,2 мин. И это предел, достигаемый ценой огромной затраты мощности. А пассажирский маятниковый поезд преодолевает тот же путь, пройдя через тоннель, опускающийся на глубину 1300 м, всего за 2,1 мин. без подвода энергии и без всяких неприятных ощущений.








