355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Стаффорд Бир » Мозг Фирмы » Текст книги (страница 6)
Мозг Фирмы
  • Текст добавлен: 8 октября 2016, 09:43

Текст книги "Мозг Фирмы"


Автор книги: Стаффорд Бир



сообщить о нарушении

Текущая страница: 6 (всего у книги 33 страниц)

Дрессировщик и его собака в том же положении, что и оператор, говорящий с прибором на языке Мета-1. Дрессировщик собаки не понимает, "как работает собака", а собака не понимает человеческой речи. Дрессировщик, следовательно, как-то стимулирует собаку и наблюдает за ее реакцией. Реакцию собаки можно менять наказанием или наградой. Это влечет за собой изменения порядка соединения в анастомотик ретикулум. Конечно, здесь речь не идет о внесении переключателей нервных окончаний в мозг собаки. Это означает только, что новый порядок выходной реакции как-то ассоциируется с заданным порядком на входе.

Поначалу собака произвольно реагирует на стимулы. Но дрессировщик тогда пытается исключить ненужную ему реакцию резким выражением ее нежелательности (????? – algos означает «страдание») или подкрепить реакцию, которую он одобряет, путем награды (???? – hedos означает «радость»). Такая деятельность создает алгедонический режим связи между двумя системами, которые не говорят на языке друг друга. Дрессировщик использует алгедоническую цепь, которая переводит Мета-1 в язык прибора. В дело включается новый рецептор прибора, алгедонический рецептор, который изменяет все внутреннее состояние прибора.

Следовательно, в предлагаемой нами модели прибора необходимо предусмотреть алгедонический рецептор, с помощью которого оператор, говорящий на языке Мета—1, может общаться с прибором. Он состоит из двух переключателей, которые могут двигать деревянный брус вверх или вниз вертикально, как показано на рис. 10. Пусть теперь он двигается вместе с пластинами А и В, но контакты, идущие от рулетки, остаются на месте. Красный свет, который нравится нашему оператору, зажигается от пластины А. Чтобы заставить прибор светить красным светом, мы должны сказать оператору, чтобы он нажал переключатель с надписью "награда". При этом брус с пластинами передвинется на 1 шаг, а контакт, помеченный буквой х, переместится на пластину А. (Напомним, что контакты остаются неподвижными). Тогда 50%-ная вероятность нарушится и изменится, скажем, в соотношении 60: 40 в пользу красного света. Если тем не менее зажжется зеленый свет, прибор должен быть наказан. Оператору в этом случае говорят, чтобы он нажал на переключатель "Наказание". (Оба переключателя сдвигают брус на 1 шаг вниз, но никто, кроме нас, этого не знает.) Теперь контакт у тоже попадет на пластину А, а вероятность загорания красной лампочки составит 70%. Очевидно, что алгедоническая цепь заставляет прибор адаптировать его поведение в пользу красного света, поскольку таково было решение на языке Мета-1. Прибор не знает, чем обусловлено такое его поведение, а оператор также не знает, каким способом это достигается. А мы знаем, поскольку нам известно все о складывающейся ситуации. Если бы мы этого не знали, то тоже бы удивились, как и большинство людей, фактически наблюдавших работу прибора.

Однако прервемся на время. Почему оператор, говорящий на языке Мета-1, предпочитает красное зеленому? Это, конечно, его психологическая особенность. Теперь предположим, что появляется другой человек, который оказывается начальником оператора. Этот человек смотрит на получаемый эффект зажигания ламп двух цветов по-другому. Он считает, что когда загорается зеленый свет, то некто выдает ему 10 фунтов; а когда загорается красный, он должен заплатить 10 фунтов штрафа. Поначалу он пытается объяснить это оператору, говорившему на языке Мета-1: "Изменяйте Ваше предпочтение на зеленый. Я знаю, как заработать на этом, и я поделюсь с Вами". Но оператор этого не понимает. Он говорит на Мета-1, эстетическом языке, он ничего не слышал и не хочет знать о деньгах. Но его начальник говорит на языке Мета-2. Какему донести свое пожелание, выраженное на Мета-2, оператору, говорящему на Мета-1? Ему также понадобится алгедоническая цепь, соединяющая его с оператором, если он не располагает временем работать за оператора.

Соответственно человек N 2 говорит человеку N 1: "Вы отвечаете за прибор. Я уезжаю за границу; но я фиксирую все загорания ламп красного и зеленого цветов. Если по возвращении я обнаружу, что красный цвет преобладает, то будете заменены другим человеком и потеряете хлеб и кров". Заметьте бесполезность попытки говорить о деньгах с оператором на Мета-1, на эстетическом языке, как и о прибыли, поскольку смысл этого понятия известен только среди говорящих на языке Мета-2. Эта вторая алгедоническая цепь переводит язык Мета-2 в Мета-1, а Мета-1 может быть переведен на язык прибора с помощью первой алгедонической цепи.

Если все это так и произойдет и оператор подчинится, то процедура операции станет обратной. Оператор по-прежнему не знает, как работает прибор, и еще меньше теперь. Он также не знает, в чем преимущество зеленого света, поскольку это противоречит его "вкусу". Все, что он знает, выражено на одном языке, который он понимает, на Мета-1, а именно: что будет лучше, если в конце концов для его цветовосприятия начать тренировать прибор зажигать зеленую лампочку. Чтобы этого добиться, он должен нажимать кнопку "награда" всякий раз, когда загорается зеленая лампочка, а алгедонический рецептор организован так (как и переключатель "Наказание" в случае зажигания красной лампочки), чтобы при зеленом свете деревянный брус двигался вверх.

Здесь вспоминается старая история. Давным давно два философа обсуждали человеческую жадность. Они посчитали, что человека можно убедить заниматься совершенно бесполезным делом за подходящую награду. Для проверки они позвали одного из своих учеников и сказали ему, что в соседней комнате находится ящичек с управляющим устройством и что назначение этого ящичка в том, чтобы зажигать красную или зеленую лампочку. "Мы будем давать тебе 10 фунтов, – сказали они, – всякий раз, как загорится зеленый свет, но ты нам вернешь столько же, если загорится красная лампочка". Они говорили с ним, конечно, на языке Мета-2, поскольку это был его язык, но в действительности они использовали алгедоническую цепь. Ученик, конечно, не знал, что испытывается его собственная жадность, он не говорил языком, на котором жадность обсуждалась философами, назовем его Мета-3.

Подобные примеры можно приводить до бесконечности. Дело тут в том, что эвристические методы определены в рамках определенного режима, устанавливающего пределы и критерии поиска. А если эти рамки сами эвристические, то и они требуют рамок и т. д. до бесконечности. В некоторой точке будут достигнуты n-е рамки, которые с точки зрения самой системы должны быть объявлены абсолютными. Это нельзя доказать строго логично, но во всех практических случаях так оно и делается. Следовательно, все конечные системы ограничены и некомплектны. Мы сами, наша фирма, наша экономика – все страдают от такого ограничения. Согласно этому мы должны и обязаны понимать, что лучшая возможность перемены, направленной на достижение более успешной адаптации, лежит в реорганизации иерархии команд. Мы не можем побороть подобное ограничение, но можем менять его форму, о чем подробнее будет сказано в следующей главе.

Тем временем давайте вернемся к нашему адаптивному прибору. Мы уже знаем, как должна меняться вероятность функции преобразования за счет алгедонической цепи обратной связи, чтобы одна из цветных лампочек зажигалась чаще другой. Если внешняя среда системы, находящаяся на более высоком уровне, меняет свое намерение относительно полезности красного или зеленого результата, то и прибор будет следовать такому изменению. Но если рассматривать предельный случай, когда окружающая среда требует только красного цвета, то и прибор неизбежно к этому адаптируется, как только все десять его контактов переместятся на одну пластину. Это аналогично сверхспециализации в ситуациях биологической эволюции. Система настолько хороша, насколько полно приспособилась к окружению, но в случае его внезапного и грубого изменения система теряет свою гибкость, необходимую для адаптации. Мы можем, конечно, перестать поощрять ее и попытаться "наказывать", но контакты уже "прикипели".

Такое состояние дел высвечивает необходимость в постоянной заботе о наличии ошибки (как мы ее обычно называем) в любой обучающейся, адаптивной, эволюционной системе. В экспериментальном варианте прибора, который я сам построил, два из десяти контактов не исполняли команд – один всегда зажигал красный, а другой – всегда зеленый свет. Тогда, в случае полной адаптации к красному, прибор ошибался в 10% случаев, зажигая зеленый свет. Ошибка, конечно, велика, но если мы располагали бы 100 контактами, то ошибка свелась бы к 1%. Важный вывод заключается в том, что мутации в получаемом результате всегда должны позволяться. Ошибка, контролируемая на разумном уровне, не есть абсолютный порок, как нам внушают. Наоборот, она является предварительным условием выживаемости. Немедленно вслед за сменой окружающей обстановки в сторону предпочтения зеленого света вступает в действие шанс, обусловливающий появление зеленого результата, и начинается движение в сторону адаптации к новому требованию. Импульс, вызванный ошибкой, заставляет цепь алгедонической обратной связи подстроиться и быть готовой признать необходимость перемены.

Хотя это наше утверждение возникло явно из рассмотрения биологических фактов для живых систем и хорошо иллюстрируется нашим прибором, его не понимают многие управляющие. В фирме любая ошибка предается анафеме. Этим не утверждается, что ошибку нельзя допускать. Но она встречается враждебно, без учета того, что и она имеет цену сама по себе. Проницательный управляющий должен рассматривать любую ошибку, сделанную его подчиненными, как мутацию и поставить себя в положение восприимчивого к алгедоническому сигналу обратной связи, который порожден ошибкой. Однако в поведении управляющих наблюдается тенденция полностью сконцентрироваться на исправлении недостатка. Тогда ошибка системы потеряна как стимул к перемене, а сама перемена редко признается в этом духе. Прославляются всякие усилия управляющего, направленные на исправление ошибки, а не на извлечение из нее урока. В свою очередь, сами ошибки рассматриваются в основном как недостаток. Соответственно этому к моменту, когда необходимость в перемене действительно понята (по тем или иным причинам), люди ей сопротивляются, поскольку попытки ввести изменения автоматически увеличивают число ошибок на время, пока эта "мутация" проходит испытание.

Глава 5
Иерархия управления

Дискуссия, начатая в предыдущей главе, нуждается в продолжении. Она касалась эвристических методов, которые, как представляется, единственно способны организовать системы, названные нами немыслимыми. Был показан принцип работы устройства управления ими. Это алгедоническая цепь, содержащая алгоритм, порождающий эвристику. Вместе с тем было показано, что необходимый для этого алгоритм можно составить только на метаязыке. Это означает, что необходимо наличие системы второго порядка, связанной и соединенной с первой своей алгедонической цепью. Процесс продолжается до тех пор, пока не образуется командная иерархия, а он может продолжаться бесконечно. Логически можно строго доказать, что вся система в целом требует бесконечного числа метаязыков; и нельзя завершитьих создание. Тогда, следовательно, нам рано или поздно придется остановиться – без всякого логического основания – на наивысшей метасистеме как ее вершине.

Такой неутешительный вывод не представляет, однако, ничего большего, чем параллель с обычными фактами существования любой организации. В деловом мире отделы координируются подразделениями, подразделения координируются отделениями, а отделения – гигантскими корпорациями. Различные уровни такого управления в значительной степени автономны, а управление ими в основном осуществляется алгедонически. (Об этом подробнее будет сказано в ч. II.) Глава корпорации сам смотрит наверх, на метасистему, называемую отраслью промышленности, и выше, на метасистему, называемую правительством. Обе они связаны с его корпорацией алгедонической цепью. И хотя довольно просто предвидеть остальную иерархию вплоть до системы космического масштаба, на практике мы удовлетворяемся вышестоящим уровнем управления как конечным судьей наших дел. Никто из нас не в состоянии влиять более чем на одну или две системы выше нашей, и поэтому обычно мы принимаем алгедонический результат деятельности вышестоящего уровня как говорящий на языке "приказа".

Интересно начать анализ структур иерархического управления, задавшись вопросом о базисных решающих элементах, которые в общем случае формируют и отдают команды. Если рассматривать самую совершенную систему управления в природе – головной мозг человека, то элементарную ячейку управления можно представить в виде отдельной нервной клетки – нейрона. В промышленности или в правительстве, фактически в любой тесно связанной социальной группе, таким элементом является любой начальник, любой руководитель.

Как нейрон, так и руководитель призваны выполнять одну единственную фундаментальную роль – решать. В случае нейрона импульс может либо задействовать выходящий из него нерв (аксон), либо нет. Для управляющего фундаментальная задача тоже сводится к тому, чтобы сказать да или нет. Верно, что руководители не тратят всю свою жизнь на произнесение только этих двух слов; они могут вообще никогдаих не произносить. Тем не менее в этом их роль, а замены, нюансы типа "могу посоветовать", "вероятно, Вам бы лучше ..." – принятые в обществе формы вежливо сказать да или нет.

Чтобы выбрать между да и нет, между 0 и 1, решающий элемент вынужден установить порог принятия решения. Можно представить, что он выдает сообщение 0 до тех пор, пока обстоятельства не заставят его сообщить о скачке в 1. Это будет разрешающий тип управления, при котором решающий элемент ничего не делает, пока обстоятельства не заставят его действовать. Он и не должен реагировать на всякий случайный импульс или шум, и это обстоятельство предопределяет необходимость в таком пороге. Сверхчувствительный нейрон быстро сведет с ума как человека, так и фирму. Когда что-то реально начинает происходить, решающий элемент накапливает тому свидетельства. Когда он убедится, что действительно произошло событие, требующее его действия, т. е. иными словами, когда сумма внешних импульсов достигла порога, он срабатывает.

Сказанное здесь может показаться мелочью. Но я искал описание, которое было бы общим и для руководителя, и для нейрона. И если все ранее сказанное имеет смысл, то можно перейти к общей теории систем, с тем чтобы описать порог чувствительности как функцию преобразования. Дан набор импульсов, которые, подчиняясь определенному критерию, преобразуются в 0 или 1 на выходе. Поскольку, как было показано в двух предыдущих главах, организации не могут надеяться на детализированное управление событиями сверху, лучше всего рассматривать функцию преобразования как обеспечивающую скромную степень алгедонического одобрения при нормальном состоянии системы. Так, если мы располагаем 20 алгедоническими каналами ввода, то, возможно, в 15 из них установлен уровень 1, когда дела идут нормально. Пять, уровень которых установлен на 0, представляют меру, с которой вся алгедоническая система обратной связи подвержена возможному административному вмешательству. Если события выйдут из-под контроля в системе более низкого уровня, то уровень всех 20 алгедонических каналов может оказаться нулевым, но если дела пойдут весьма успешно, то некоторые из первоначальных нулей могут перейти в единицы.

Предположим, однако, что сама функция преобразования оказалась неверной, т.е. неверно учитывающей условия окружающей среды, в которой срабатывает или не срабатывает нейрон или руководитель. Конечно, такое суждение будет сделано метасистемой. Тогда, предположим, функция преобразования должна изменить свой знак, что никуда не годится; мы неможем позволить функции преобразования такого сальто-мортале на выходе, смены результата с 0 на 1 и обратно таким скачком просто потому, что окружающая среда несколько неустойчива. Было бы лучше постепенно изменять порог чувствительности так, чтобы решающий элемент соответственно изменял свою реакцию. Лучше всего понять это, если рассматривать серию суждений, при которых очевидно значимый результат на выходе получается более или менее резко и наблюдаются его последствия. Иначе говоря, сформировать обратную связь, которая приведет к адаптации самой функции преобразования. Заметим, что некоторые условия окружающей среды могут потребовать большей чувствительности нейронов или руководителей, а другие ее условия – ее уменьшения.

Последнее относится к особому случаю теории управления, рассматриваемому в гл. 2. При этом на сенсорном входе и моторном выходе сохраняются афферентные и эфферентные импульсы соответственно. Сохраняется также анастомотик ретикулум, который мы не собираемся детально анализировать или подвергать управлению соответствующими для этого случая командами. Более того, его действия ясно продемонстрированы (пока что) на примере машины из дерева и меди в предыдущей главе.

Рассмотрим сенсорное устройство такой машины. У нее 10 контактов, которые собирают данные, передаваемыеим из внешнего мира, представленного колесом рулетки. В свое время мы говорили, что таких контактов может быть хоть сотня. Конечно, может быть и любое произвольное число контактов, как угодно разбросанных по сенсориуму. Машина будет по-прежнему работать. Более того, предположим, что функция преобразования, представленная отношением числа контактов, находящихся на двух медных полосах А: В в любое данное время не является очень грубой. Можно представить себе в качестве примера химическую клетку, порог срабатывания которой представлен значением рН или какой-то электрической величиной, прочитанной от преобразователя на языке Мета-1 и усиленной или подавленной цепью связи.

В таком случае связь между входом и выходом проследить невозможно. Часть ее (периферийная) по характеру дискретная – поток двоичных импульсов поступает (и распространяется) в высшей степени запутанную сеть линий. Проследить все это достаточно трудно и фактически невозможно, если сеть будет непрерывно изменяться – линии могут атрофироваться или непостижимым образом включаться в работу или выключаться. Однако если их достаточно много, машина продолжит работу. Хуже того, внутриклеточная связь будет прослеживаться только на молекулярном уровне. Практически мы будем иметь дело со статистическим эффектом массы. Наиболее близкое описательное название, которое обозреватель может присвоить этой внутренней части нейрона, могло бы быть "аналоговое устройство", поскольку основной двоичный характер системы потерян. Как бы там ни было, в конечном счете вся система связи и взаимодействие в ней могли бы служить отличным примером анастомотик ретикулум.

Как представляется, реальный живой нейрон выглядит весьма на это похожим. Более того, наше его описание достаточно хорошо соответствует и управляющему. При рассмотрении сути этого замечания опасайтесь путаницы в оценке различий в их разрешающей способности (в оптическом смысле). Мы рассматриваем нейрон (как естественный, так и искусственный) и управляющего как простой элемент решения в сети нейронов (мозг) или как человека (в обществе управляющих). Тот факт, что в мозгу управляющего содержится 10 млд. нейронов, не имеет значения для нашего сравнения. Тем не менее это интересное замечание, когда мы приступаем также к рассмотрению иерархии команд. Во всем этом наблюдается удивительная гомогенность, а собственный язык управляющего, очевидно, является метаязыком n-го порядка по отношению к машинному языку его собственных нейронов.

Кстати, если сенсориум изобретенной нами машины может быть представлен большим, возможно неизвестным, числом входов вместо первичных десяти, алгедоническая цепь сможет успешно работать и на менее точной основе. Мы говорили, что срабатывание цепи алгедонической обратной связи вызовет движение деревянного бруса, при котором контакт, один из десяти, переместится с пластины A на  пластину В. Однако если число произвольно разбросанных контактов весьма велико, то это правило становится бессмысленным. Во всяком случае, нет никаких оснований, в силу которых алгедоническое движение должно быть дискретным, осуществляемым небольшими скачками. Давайте представим этот обусловленный процесс как своеобразное давление, под действием которого очень незначительно перемещается деревянный брус, при этом плавно исправляя ошибки. Теперь мы знаем, что алгедоническая функция сама определена метаязыковым решением, чем-то таким, что ценится высшим руководством. Какой бы ни была система, определяющая сигнал, алгедоническая цепь различает не только верен ли выданный зажегшейся лампочкой сигнал, но и насколько он верен или неверен. Давайте зафиксируем этот результат и используем его применительно к силе, двигающей деревянный брус. Обычно его перемещение невелико: вероятность А:В может измениться с 50:50 на 51:49. Если "неверный" ответ внезапно (металингвистически) становится опасным, давление будет продолжаться; отношение 50:50 может сразу же измениться на 99:1 (однако не на 100:0, поскольку это исключает возможность изменения соотношений). И вновь совершенно ясной становится аналогия действий управляющего и движения, с которым связано решение о поощрении или наказании.

Прежде чем переходить к рассмотрению действующих ступеней иерархий, уместно сделать общее замечание. Нас всегда учили представлять командные сети как специально созданные, располагающие узловыми пунктами, действующими в качестве переключателей, зависящими от обратной связи в инженерном смысле (см. гл. 2). Однако, во-первых, жизнеспособные системы фактически демонстрируют наличие в них скорее анастомотик ретикулум, чем надлежащим образом разработанной сети, элементы которой формируются и переформировываются самостоятельно в соответствующие структуры. Во-вторых, элементы, являющиеся узловыми пунктами, управляются меняющимися функциями преобразования; они лучше всего описываются как непрерывно модифицирующиеся условные вероятности, а не неизменные операторы, которые в представлении стандартной теории управления являются дифференциальными уравнениями. В-третьих, цепи обратной связи не просто устройства коррекции ошибок, которые приводят выходной результат в соответствие с "правильным" значением. Они являются алгедоническими цепями, идущими от систем высшего порядка, влияющими на первые два вида изменений. Но и в такой роли согласно стандартной теории управления главной функцией этих систем остается обратная связь.

Из того, что было досих пор изложено, вытекает, что нейрофизиологическую и управляющую системы (если взять две жизнеспособные системы, которые, как оказалось, имеют много общего) легче всего понять, представляя именно с учетом сказанного, аих основные элементы – нейрон и управляющего – как работающих в соответствии с моделью, представленной в ее самой простой форме деревянно-медной машины. Для облегчения дальнейших ссылок надо ее назвать, и я выбрал в качестве имени алгедонод. Я знаю, насколько утомительно продолжать вводить новые для читателя названия, в особенности (как в данном случае) если я вынужден самих изобретать. Однако словарь, представляемый управляющим, поразительно ограничен. А здесь вводится понятие, определенное с той степенью глубины, с которой мне удалось это сделать. Решающий элемент в системе управления состоит в принципе из входящей (или афферентной) и выходной (или эфферентной) подсистемы информации, соединенной с помощью анастомотик ретикулум. Все эти три части системы управления были достаточно подробно определены ранее. Этот решающий элемент является узлом в сети решающих элементов, образующих систему управления. Но этот узел как решающий элемент обусловлен (в смысле путей его изучения) метасистемой, использующей эвристический метод поощрения и наказания, который мы назвали алгедоническим. Все это вместе является алгедонодом. Наша деревянно-медная машина – грубый его пример, но и нейрон мозга, и отдельный руководитель в числе членов правления – тоже алгедоноды.

Нашим следующим шагом будет попытка распространить принцип машины, представленной на рис. 10, на всю командную иерархию и посмотреть, как подобная машина работает. Пусть следующий вариант деревянно-медной машины состоит из 32 элементов, каждый из которых сам является алгедонодом. Если наши ряды из восьми алгедонодов представить так, как показано на рис. 11, то получится устройство, способное принимать восемь двоичных решений вместо одного.

Рис.11

(Никакой мистики в этих числах нет – они выбраны просто для удобства.) Нижний ряд выглядит как восемь отдельных алгедонодов, наих выходе остается знакомая нам пара красного и зеленого света. Результат зажигания (выход) теперь кроется в первых трех рядах, а двоичный выходной результат каждого алгедонода служит для выбора следующей группы элементов, которые тогда будут задействованы. На правой стороне рисунка показаны четыре рулетки в произвольных положениях, каждое из которых представляет неизвестный входной сигнал из внешнего мира.

Вращение четырех, рулеток отражает "состояние внешнего мира". Легко видеть, что если каждое колесо рулетки располагает числами положений от 0 до 9, то общее число выходных состояний составит 10 000. (Представьте себе результат деятельности банка игральных костей, который фиксирует любую цифру между 0000 и 9999.) Имеется восемь контактов, связанных с входом А, на восьми колонках медных полос, и они поочередно находятся в состоянии 0 или 1 своего ряда. (Их соединения не показаны на рисунке, поскольку они слишком усложнили бы его, однако позднее они будут приведены на рис. 12.) Два контакта из десяти на колесе рулетки оставлены свободными в соответствии с законами мутации, исследованными нами ранее (как обходящие логику системы). Первый ряд алгедонодов тогда выбирает либо правую, либо левую группу из четырех алгедонодов второго ряда. Один из свободных контактов направлен прямо к каждой из этих групп. Таково начальное условие игры, при котором точно соблюдается вероятность 50: 50, что первый ряд задействует либо правую, либо левую группу из четырех алгедонодов во втором ряду.

Рис.12

Во втором ряду тоже восемь контактов, представляющих случайный вход В. Они организованы так, что состояния как 0, так и 1 отражены каждым алгедонодом в каждой группе из четырех алгедонодов. Это значит, что у нас всего 16 контактов и любой вход В задействует два из них – один в левой и один в правой группе. Однако решение 1-го ряда уже исключило одну из групп. Тогда ряд 2 задействует пару алгедонодов в ряду 3 либо через эту систему, либо (как и прежде) напрямую через два свободных входа. Для выбора остаются две пары либо из правой, либо из левой двойной группы в зависимости от решения ряда 2. Какая из этих пар будет задействована, зависит от положения рулетки С. В ряду 3 у нас четыре контакта к каждому из алгедонодов – два в положении 0 и два в положении 1, снова организованных в параллель. Таким образом, к ряду 3 сработают 32 контакта и только восемь из них (плюс два свободных для входа С) имеют отношение к третьему решению, поскольку три из четырех пар ряда 3 уже исключены. Ряд 3 теперь определит, какой из алгедонодов в ряду 4 будет задействован.

Ряд 4 принимает окончательное решение, основанное на положении рулетки D . На этот раз все восемь контактов организованы в параллель на каждом алгедоноде (к этому моменту, следовательно, состоится 64 соединения), четыре из которых в положении 0 и четыре в положении 1. Ряд 3 решает, какую колонку задействовать, а ряд 4 решает, будет ли зажжен зеленый или красный свет. Повторим, что два резервных импульса, на этот раз от рулетки D, будут проходить прямо к той или другой лампочке.

Поскольку согласно исходным условиям весь наш ретикулум основан на 32 алгедонодах, предлагающих равное число значений 0 и 1, так сказать, на медных полосах, то результат игры полностью непредсказуем. Запустим все четыре рулетки. Они случайно задействуют контакт в своем ряду и каждый из рядов наполовину тоже случайно сокращает разнообразие следующего ряда. Любой из восьми парных контактов может сработать при равных вероятностях загорания зеленой или красной лампочки. Таким образом, мы располагаем двумя возможными двоичными решениями в физическом смысле: у нас имеется четыре ряда алгедонодов, которые, следовательно, способны принимать решения, осуществляя выбор из 24 = 16 результатов на выходе, т. е. из 16 вариантов зажигания лампочек. Теория, описывающая такой процесс, была изложена в гл. 3.

Чтобы заставить такую машину работать как электромеханическое устройство, потребуются "принимающие решения" реле, а эти реле будут срабатывать при совпадении поступления входного импульса данного ряда с выходным импульсом, определенным в предыдущем ряду. Одно реле необходимо как выходное для ряда 1; оно будет осуществлять подключение к одной из двух групп алгедонодов в ряду 2. Выходной результат рядов 2 и 3, очевидно, требует двух и четырех реле соответственно. Ряду 4 не нужны никакие реле, поскольку он прямо зажигает лампочки. Из этого следует, что требуется 2n-1-1 фактически решающих элементов (реле). В нашем случае когда, п= 4, число состояний на выходе 24 =16 и число реле составляет 23-1 = 7. Если степень неопределенности увеличить на 1, то получим n=5, 25 =32 состояния на выходе, 24-1 = 15 реле и, следовательно, 16 колонок. Но такая машина будет дополнительно воспринимать выходной сигнал Е и может управлять 100 000 состояниями мира.

Хорошо сказать "может управлять", подразумевая, что ретикулум, связывающий вход и выход, не перегружен, что он может отличать один набор реакций от другого. Но выражение "может управлять" до сих пор означало "производить случайный результат", а для этого не стоило бы создавать такую машину. Следующим шагом будет соединение алгедонодов вместе по колонкам. Одна вертикальная колонка такой машины приведена на рис. 12, чтобы можно было показать, как она работает. Заметим, что уже можно показать иерархические соединения, которые мы только что обсуждали. В каждой колонке восемь медных полос – все они смонтированы на одном деревянном брусе. Они изолированы одна от другой и меняют состояние 0 и 1 вдоль колонки. Фактически, конечно, здесь остается (в силу электрических соединений) четыре набора алгедонодов. Как показано на рис. 12, они помечены, поскольку некоторое число "свободных" медных шин 0 или 1 необходимо, когда деревянный брус перемещается вверх или вниз.


    Ваша оценка произведения:

Популярные книги за неделю