Текст книги "Открытия и изобретения, о которых должен знать современный человек"
Автор книги: Сергей Бердышев
сообщить о нарушении
Текущая страница: 3 (всего у книги 25 страниц)
Неизвестно, с какими бы трудностями столкнулись физики в своих попытках утвердить «золотое правило» механики в его современном виде, если бы задолго до того это правило не было сформулировано в применении к частному случаю. Свыше 2200 лет назад наука открыла закон рычага – простой машины, наглядно иллюстрирующей справедливость «золотого правила». Парадоксально, но рычаг изобрели задолго до того, как был открыт физический закон, объясняющий принцип действия этого устройства.
Принцип работы рычага настолько прост, что это нехитрое устройство впервые стали применять, видимо, еще доисторические люди. Они использовали палки для перемещения больших камней, особенно при воздвижении своих культовых мегалитических сооружений – менгиров, дольменов, кромлехов. В дальнейшем рычажные устройства, сконструированные по гораздо более сложной схеме, стали применяться строителями древнейших городов.
Поскольку самый первый город Иерихон был заложен свыше 10 тыс. лет назад, то можно утверждать, что начиная с этой даты применение рычагов становится все более частым. Регулярно рычажные механизмы применялись в Древнем Египте, где имело место широкомасштабное планомерное строительство разнообразных архитектурных комплексов, объектов хозяйственного назначения и т. п. Каждый в первую очередь представляет себе царские гробницы – пирамиды. Если соблюдать точность, то знаменитые египетские пирамиды представляют собой колоссальные надгробия из каменных блоков.
Сама гробница является крупным помещением, уходящим глубоко под землю и заканчивающимся комнатой-усыпальницей, в которой помещался саркофаг с мумией усопшего владыки. Первоначально надгробиями для подземных гробниц фараонов служили огромные плоские мастабы. Лишь фараон Джосер около 4700 лет назад ввел традицию увеличивать мастабы ввысь и превращать их в пирамидальные сооружения. Во время воздвижения пирамид широко применялись рычаги, которые являлись самым необходимым строительным приспособлением, поскольку лишь с помощью подобных устройств было возможно поднимать массивные каменные глыбы на большую высоту.
Затем машины, действие которых основано на принципе рычага, стали использоваться в строительстве повсеместно. Естественно, особое значение они получили в Древней Элладе, т. к. греки уважали архитектуру. Эта наука в их представлении была связана с одной из «идеальных» наук – геометрией. Конструирование механических устройств не было, однако, столь почетным делом. По этой причине рычагом пользовались, не пытаясь объяснить его свойств.
Некоторые древнегреческие мыслители предпринимали попытки разгадать тайны рычага, но все эти начинания оказались тщетны по той причине, что древние подходили к проблеме с предвзятым суждением о свойствах этого простого устройства. Вскоре рычаг был объявлен магическим инструментом, потому что его работа основывалась на полумистических свойствах круга. Дело в том, что концы плеч рычага описывают в пространстве во время своего движения дуги окружностей. А круг и окружность почитались в Древнем мире как священные и волшебные фигуры, ведь по кругу двигались небесные светила.
Круг был «идеален» во всех отношениях, а потому ссылкой на него легко можно было объяснить все самое непонятное в природе и жизни людей. Закон рычага предстояло открыть великому древнегреческому геометру III в. до н. э. Архимеду, жившему в городе Сиракузы на Сицилии. Архимед первым приподнял завесу тайны над магическим кругом, обнаружив число «пи», и поэтому относился к геометрии без излишней предвзятости и идеализации.
Кроме того, Архимед обладал чрезвычайно широким кругозором и занимался практически всеми вопросами существовавших в ту эпоху направлений геометрической науки. Архимед работал над правилами построения фигур, развивал теорию геометрии, конструировал осадные и строительные машины, изучал центры равновесия (центры тяжести), рассчитывал планетарии, т. е. глобусы звездного неба. Единственной отраслью современной ему геометрии и механики, в которой ученый себя никак не проявил, было изобретение механических игрушек.
Таковы предпосылки, благодаря которым Архимед первым описал сущность работы рычажного устройства и на этом основании сформулировал закон рычага. Рычагом называется любой жесткий стержень для приподнимания и перемещения тяжестей. Он имеет точку опоры или ось скольжения, позволяющую ему осуществлять передвижку предметов. Участки стержня, к которым приложены противодействующие силы, называются плечами рычага. Длина каждого плеча равна протяженности отрезка стержня между точкой опоры и точкой приложения силы.
Одной из сил является вес тяжелого тела, которое необходимо переместить. Вторая сила, приложенная к другому плечу, – мускульная. Эту силу развивает человек, работающий с рычагом. Естественно, такая схема сильно упрощена, поскольку рычаги бывают самыми разными, и силы на них действуют также различные. Работа равняется, как и в предыдущих случаях, произведению расстояния на силу. Тело смещается благодаря рычагу в вертикальном направлении.
Однако это расстояние, как несложно убедиться, зависит от длины плеча рычага. Это следует из равенства треугольников, а треугольниками в данном случае являются воображаемые фигуры, отражающие перемещение точек приложения сил и точки опоры. Следовательно, чем ближе к точке опоры вес тяжелого тела и чем дальше приложение мускульной силы, тем больший выигрыш получает человек. Впрочем, понятие выигрыша относительно, т. к. выигрыша в работе рычаг не дает. В этом он схож с любым простым механизмом.
В рассмотренном случае, когда к длинному плечу приложена мускульная сила, происходит выигрыш в силе: малой силой можно уравновесить большую. Но есть рычаг другого рода, который дает выигрыш в расстоянии. В этом случае мускульная сила приложена к короткому плечу. Перемещать слишком тяжелые предметы нельзя, зато свободно передвигаемые таким рычагом тела могут смещаться на большие расстояния. «Золотое правило» механики действует и здесь. Если есть выигрыш в силе, то будет проигрыш в расстоянии, и наоборот.
Многие люди ошибочно полагают, что тела одинакового веса всегда уравновешиваются рычагом. Отнюдь, равновесие между одинаковыми телами наступает лишь в одном случае – когда плечи рычага равны по длине. В остальных случаях равенства не наступает. Это неудивительно. Соотношение сил равняется соотношению длины плеч рычага. То есть при равных силах, когда соотношение равно 1, для установления баланса необходимо, чтобы соотношение длин плеч количественно равнялось той же величине. Единицу в пропорции можно получить при единственном условии: когда длины плеч одинаковы.
В связи с этим любопытна задача о «пустом» рычаге. К нему не приложены никакие внешние силы, кроме тяготения, которое действует на сами плечи простой машины. Плечи равны по длине и изготовлены из одного материала, следовательно, рычаг находится в равновесном состоянии. Если согнуть одно из плеч, нарушится ли равновесие? Оказывается, да! Поразительно, но перетянет длинное плечо.
Это произойдет по следующей причине. В согнутом плече сместится центр тяжести, он приблизится к точке опоры. В результате само плечо окажется короче, потому что длина плеча представляет собой расстояние между точкой опоры и точкой приложения силы (последняя в нашем случае есть центр тяжести, к которому приложен вес плеча). В другом плече центр тяжести находится по-прежнему далеко от точки опоры. Вес обоих плеч не изменился, значит, смещение центра тяжести приведет к нарушению баланса.
Итак, Архимед, обрадованный своим открытием, горделиво утверждал: «Дайте мне точку опоры, и я переверну мир». Если верить римскому литератору и хроникеру Плутарху, сиракузский изобретатель высказался столь категорично в беседе со своим родственником, царем города Сиракузы Гиероном. Отчетливо понимая, что не существует в природе веса, который невозможно сместить посредством подходящего рычага, Архимед заверял царя, что будь у него (Архимеда) в распоряжении другая земля, он бы поднял нашу.
Впоследствии эту крылатую фразу не раз обыгрывали, но, как правило, всегда неудачно, любители ярких выражений. Однако нас сейчас интересует, был ли прав Архимед. Беспредельны ли возможности рычага? Конечно, его возможности напрямую связаны с материалом стержня, прочностью точки опоры и протяженностью длинного плеча.
Предположим, будто бы у нас имеется подходящий рычаг и точка опоры. Теоретически, если все условия соблюдены, нет ничего более простого, чем сдвинуть планету с земной массой. Земля весит 6 на 1021 т. Следовательно, рычаг должен иметь длинное плечо всего в 1023 раз больше короткого. Одна неприятность ожидает последователей Архимеда: неизбежный проигрыш в расстоянии. Чтобы переместить планету с орбиты на толщину атомного ядра, потребуется, очевидно, преодолеть свыше 100 000 км в мировом пространстве, что равно 0,26 расстояния между Землей и Луной.
Если же нам захочется сдвинуть нашу планету на расстояние, равное поперечнику мельчайшей песчинки (10-6 м), то длинное плечо рычага опишет во Вселенной еще большую дугу – порядка 1014 км, или 10,6 св. года. Это приближенно равняется расстоянию между Землей и карликовой звездой Росс 154 (10,3 св. года). Бедный Архимед, воспользуйся он современными ракетами, преодолел бы это чудовищное расстояние только много более чем за 1,1 млн лет! Поэтому правота дерзкого утверждения Архимеда относительна.
Воздух – загадочное «ничто»
На протяжении столетий люди ошибочно думали, будто бы воздух – это ничто. Лишь античные философы признали воздух веществом и нарекли его одним из четырех первоэлементов, слагающих природу. Но и такое признание дало немного для физики, поскольку не раскрывало истинной природы воздуха. Он по-прежнему считался легчайшим и невесомым, как бы несуществующим, хотя губившие корабли мореходов ураганы настойчиво доказывали обратное. Истинным переворотом в физике и человеческом сознании вообще стало открытие воздушного давления.
Открыто давление воздухаПервым ученым-физиком, всерьез обратившим внимание на материальность воздуха и его влияние на окружающие тела, был великий итальянский механик и астроном Г. Галилей. В 1638 г. он проводил свои исторические опыты с шарами, которые бросал вниз с наклонной Пизанской башни. При этом Галилей установил, что свободному падению тел препятствует воздух. В пустом пространстве тела разных масс и форм падали бы одновременно, с одинаковым ускорением.
Спустя некоторое время после этих опытов, в 1643 г., было открыто атмосферное давление. Его обнаружил другой итальянский физик – Э. Торричелли, устроивший специальный опыт. Он использовал открытый сосуд с ртутью и полую стеклянную трубку, запаянную с одного конца. Длина трубки равнялась 1 м. Ее также заливали ртутью. Торричелли закрыл отверстие трубки, перевернул ее и в таком виде вертикально опустил в сосуд с ртутью. Затем он открыл отверстие трубки, находящееся на ее конце, погруженном в сосуд. Однако ртуть из трубки не вылилась.
Уровень жидкого металла лишь немного понизился, опустившись до 760 мм. Высота столба ртути составляла, т. о., 760 мм, а выше находилось пустое пространство. Если следовать физике Аристотеля Стагирита, служившей в то время фундаментом науки, то получается, что именно пустота препятствует дальнейшему убыванию ртути. «Природа боится пустоты», – учил Аристотель. Однако добросовестного экспериментатора Торричелли эти устаревшие, ложные учения не устраивали. Если природа боится пустоты, то откуда вообще взялось пустое пространство в трубке? И почему оно столь странно себя ведет?
Пустота, названная впоследствии торричеллиевой, действительно вела себя в высшей степени странно. Торричелли проделал множество опытов, подтвердивших, что уровень ртути в трубке меняется, но при этом остается неизменным относительно поверхности ртути в открытом сосуде. В своих опытах физик наклонял трубку и наблюдал, как ртутный столбик ползет вверх. Чем острее был угол наклона, тем выше по трубке полз металл и тем меньше оставалось на ее конце пустого пространства. Но если замерить высоту уровня ртути не относительно стенок трубки, а относительно поверхности жидкого металла в сосуде, то высота ртутного столба останется неизменной и будет равна 760 мм. Ясно, что происходило это вовсе не под «особым влиянием» пустоты. К слову, никакой абсолютной пустоты в пространстве над ртутью в торричеллиевой трубке не было. Там находились пары ртути. Как бы то ни было, их давление столь ничтожно, что не будет ошибкой пренебречь им.
Ученый совершенно верно связал странности поведения металла с атмосферным давлением. На поверхность ртути в открытом сосуде давит воздушный столб. Поскольку воздух не проникает в область торричеллиевой пустоты внутри трубки, то давление внутри жидкого металла в этой трубке зависит лишь от давления, приходящегося на поверхность ртути в сосуде. А это означает, что ртуть в трубке Торричелли находится под давлением, равным атмосферному. При определенной величине давления воздуха высота ртутного столба остается постоянной. Длина столба при наклоне увеличивается, а вот высота, отсчитываемая по вертикали, не меняется до тех пор, пока не изменится давление воздуха.
Торричелли высмеивал отсталое представление о легких и тяжелых телах, основанное на ложном учении Аристотеля. Давление атмосферы порождает, как и давление жидкостей, выталкивающую силу. Именно Торричелли первым обратил на это внимание. Ученый показал, каковы были бы рассуждения мифических персонажей, если бы они действительно существовали и развивали собственную физику. Морские нимфы сочли бы древесину, тяжелую в воздушном океане, легкой в своей родной среде. Жители ртутного моря почитали бы за легкие все тела, кроме золота. А вот живущие в огне саламандры каждое физическое тело, включая и воздух, нашли бы тяжелым.
В существовании выталкивающей силы может убедиться всякий, кто наблюдал полет воздушного шара или дирижабля. Эти тела поднимаются вверх именно потому, что их выталкивает архимедова сила, порожденная атмосферным давлением. Силу выталкивания следовало бы назвать торричеллиевой, но Архимед открыл ее раньше для жидкостей. Дирижабли заполняются водородом или более безопасным гелием. Воздушные шары наполняются горячим воздухом, который «легче» прохладного. Точнее, плотность горячего воздуха низка, оттого его вес меньше.
Приведенное объяснение полета воздушных шаров и аэростатов несколько упрощенно. В действительности на шар действуют многочисленные внешние и внутренние силы. Если влияющая на деревянную пробку и любое твердое тело выталкивающая сила порождена разностью давлений на нижнюю и верхнюю части такого тела, то в случае с давлением на оболочку шара (аэростата) сила выталкивания порождается разностью давлений газа внутри и снаружи оболочки.
Есть и более простой способ наблюдать, как воздух выталкивает тела. Для этого достаточно вооружиться стеклянным колпаком, из под которого можно откачать насосом воздух, а также рычажными весами, набором аптекарских гирь и елочным шаром. Шар, полый внутри, следует залить в месте отверстия воском, добившись герметичности.
Затем нужно положить шар на чашу весов и уравновесить его гирями. После этого весы помещаются под колпак, откуда начинает выкачиваться воздух. По мере того как давление воздуха под колпаком будет падать, шар перевесит гири. Его истинный вес оказался больше потому, что на заполненный воздухом шар действовала выталкивающая сила, уменьшающая вес. Как только сила Архимеда значительно уменьшилась, шар приобрел почти истинный вес.
Завершая разговор об открытиях Торричелли, нужно отметить, что благодаря этому ученому была найдена единица измерения давления под названием миллиметр ртутного столба (мм рт. ст.), которая долгое время с успехом использовалась в силу своей наглядности.
Ныне она не применяется в физике, где была вытеснена паскалем и баром. Если до конца соблюдать точность, то вместо бара используется его производная – миллибар (мбар), представляющий 1/1000 бара. Один миллибар приближенно равен нормальному атмосферному давлению, а именно 750 мм рт. ст.
Паскаль (Па) принят Международной системой единиц и равен 0,01 мбара. Сейчас миллиметры ртутного столба применяются только метеорологами.
Сегодня известны физические причины, вызывающие давление воздушного столба. Всякое давление газа есть результат ударов его частиц (молекул) об окружающие тела. Газовые частицы непрерывно движутся на большой скорости, оттого их суммарные удары о какую-то поверхность приводят к тому же эффекту, как если бы на эту поверхность давило какое-то твердое тело. Главным условием давления является ограниченность объема. Если газ ничем не ограничен, то он разлетается в мировом пространстве, хаотически рассеивается и теряет возможность оказывать давление.
Иначе обстоит дело на космических кораблях, которые представляют собой замкнутое пространство. Не так давно, незадолго до начала космической эры, некоторые ученые спорили, будет ли воздух на борту космического корабля иметь давление. Ответ на этот вопрос очевиден сам по себе и подтвержден в настоящее время многократными космическими полетами. Замкнутое пространство поддерживает давление воздуха на космическом корабле. Молекулы постоянно ударяются о стенки и не разлетаются.
Давление планетной атмосферы весьма своеобразно, поскольку воздушная оболочка имеет лишь одну границу – нижнюю, т. е. поверхность планеты (Земли). Верхней границы для земного воздуха не существует, поскольку за пределами атмосферы начинается космическое пространство. В силу этой причины наша планета через 3 млрд лет утратит свою газовую оболочку. Атмосфера полностью улетучится в космос. Сейчас же она удерживается за счет сил гравитации.
Покинуть гравитационное поле Земли можно лишь на скорости 7,9 км/с, а большинство молекул не способны развить такую скорость. Они чересчур медлительны, а потому не могут улететь в космос, но парят над земной поверхностью, образуя воздушный слой. Естественно, парить постоянно под действием притяжения медленные молекулы не могут. И они периодически падают на земную поверхность и находящиеся на ней тела. Поскольку число частиц воздуха очень велико и достигает 27 на 1024 частиц на 1 м3, то на нас непрестанно обрушивается град молекул. Этот град создает вес воздуха, а попутно и атмосферное давление на земную поверхность.
Таким образом, давление воздуха по своей природе тесно связано с весом. Но разница между этими силами есть. Давление воздуха направлено равномерно во все стороны, потому что он, будучи газом, стремится разлететься во всех направлениях. Вот почему давление действует на тела на дне воздушного океана со всех сторон.
А вот вес по своему действию сонаправлен с силой земного притяжения. Причина столь тесной взаимосвязи между двумя разными силами коренится в том, что гравитация создает ограничение для разлета газовых молекул атмосферы, заменяя собой отсутствующую стенку «сосуда», в который заключен воздух. А если есть стенка, пусть и ненастоящая, то получается замкнутое пространство, в котором воздух обладает давлением.
Величина атмосферного давления, приходящегося на тело человека, составляет 200 кН (килоньютон). Получается, что воздушный столб давит на нас с силой 20 т! Обычно в некоторых учебниках или популярных книгах, особенно устаревших, подчеркивается, что человек «адаптировался» к столь чудовищному давлению и не замечает его. Давления этого мы действительно не замечаем, но совсем по другим причинам. Адаптироваться к жизни под прессом, увы, невозможно.
Атмосферное давление не причиняет нам ни малейшего вреда лишь потому, что само себя компенсирует, а также компенсируется внутренним давлением организма. Вспомним, что площадь человеческого тела равняется 2 м2. Стоит разбить 20 т на эту солидную площадь, как получится сравнительно скромная величина – 10 г/мм2. Полученное нами значение является физической постоянной – нормальным атмосферным давлением. Оно, как видно, невелико.
Нельзя забывать и о том, что воздух давит на человека со всех сторон, а не только сверху. Оттого спинной хребет не претерпевает никаких существенных нагрузок. Нижняя и верхняя половины тела придавливаются друг к другу с одинаковой силой, равной 5 кН, т. е. 500 кг. Но и опять внутренние органы не расплющиваются. Они спокойно переносят фантастические нагрузки, поскольку площадь соприкосновения половин тела насчитывает 1000 см2, а потому давление остается прежним по значению – 10 г/мм2.
Кроме того, внутреннее давление человеческого тела компенсирует наружное сдавливание. Впрочем, происходит так не всегда. Например, в суставах давление в сравнении с атмосферным ничтожно. В результате головки костей прочно держатся в суставных впадинах: они туда вдавливаются силой атмосферы. Хитрое устройство, изобретенное природой, защищает нас от вывихов. Удержать суставы столь крепко сцепленными и при этом подвижными каким-либо другим способом не удалось бы.
Страшно представить, что случилось бы с человеком, имей мы другое анатомическое строение. Каждому из нас доводилось брать со стола различные предметы – книги, листы бумаги, деловые папки и т. д. Эти предметы плотно прилегают к крышке стола, поэтому любой скажет, что между поверхностью стола и лежащей на ней книгой, например, ничего нет. Оба объекта тесно соприкасаются. Физик обязательно оспорит положение. Он знает, что поверхности тел неровные, а потому между столом и книгой всегда есть прослойка воздуха.
Полностью устранить эту прослойку невозможно, т. к. предельно выровнять поверхность стола или книги не получится. Но это даже к лучшему. На книгу обычного формата действует давление воздуха с силой около 28 кг. Разумеется, мы этого давления не замечаем, т. к. оно уравновешивается противодавлением тонкого воздушного слоя, находящегося под книгой и отделяющего ее от стола. Если хотя бы значительно сократить его толщину, то человеку придется в буквальном смысле слова отрывать книгу от стола, прилагая физическую силу, как если бы речь шла о поднятии груза в 20–25 кг. Естественно, книгу поднять получится, но она будет сильно изорвана.
Известен и более наглядный пример. В старых учебниках по физике, как школьных, так и университетских, по традиции непременно помещали классический рисунок магдебургского опыта. Шестнадцать лошадей пытаются разнять два полушария, надежно скрепленных давлением воздуха. Автор эксперимента – просвещенный бургомистр О. фон Герике, знаменитый изобретатель воздушного насоса. Этот человек, прозванный современниками «германским Галилеем», одним из первых поверил в существование воздушного давления и реально оценил фантастическую мощь последнего.
Всего бургомистр провел множество самых разнообразных опытов, как тогда говорили, «над безвоздушным пространством». Но эксперимент с двумя упряжками лошадей вошел в историю, поскольку стал настоящим событием в науке. Он проводился 8 мая 1654 г. в чрезвычайно торжественной обстановке. Политическая ситуация в Германии и Европе в целом в ту пору была крайне нестабильной, однако на удивительное зрелище съехались многие князья и сам император.
Не все знают, где конкретно проходил этот эксперимент. Нередко доводится встречать ошибочное заключение, будто бы событие имело место в городе Магдебурге. Герике был бургомистром Регенсбурга, в истории которого магдебургские опыты стали самым знаменательным событием. К слову, не так давно, в середине 1980-х гг., местные власти, обеспокоенные тем, что городок почти никто не посещает, решили периодически устраивать для привлечения гостей эксперимент с полушариями и лошадьми. В те времена опыты также носили характер рекламы, но на сей раз это была реклама научного открытия, которое могло пройти незамеченным. Медные полушария названы магдебургскими в честь города, в котором были изготовлены.
Сам фон Герике описал свои эксперименты в книге «Так называемые новые магдебургские опыты над безвоздушным пространством…», вышедшей в Амстердаме в 1672 г. Опыт с лошадьми изложен в главе XXIII. Герике сообщает о том, как по его заказу изготовили медные полушария диаметром 36,9 см, к которым были прикреплены 4 кольца для продевания канатов от упряжки. Одно из полушарий было снабжено краном для откачки воздуха.
Фон Герике пишет следующее: «В кран вставлена была трубка воздушного насоса, и был удален воздух внутри шара. Тогда обнаружилось, с какою силою оба полушария придавливались друг к другу через кожаное кольцо. Давление наружного воздуха прижимало их так крепко, что 16 лошадей рывком совсем не могли их разнять…». В строгом смысле слова, к полушариям была приложена сила только 8 лошадей, а противоположная упряжка создавала противодействие. С тем же успехом можно было бы закрепить полушария на стене каменного дома и заставить восьмерку лошадей тянуть их в направлении от стены.
Эти восемь лошадей развивают тягу, равную 20 т. Она оказалась недостаточной, чтобы разъединить полушария, столь сильно сдавливал их воздух. «Но стоило поворотом крана открыть свободный доступ воздуху, и полушария легко было разнять руками», – сообщает далее фон Герике. Нелишне будет напомнить, что железнодорожные вагоны имеют массу в пределах 20–22 т. То есть давление воздуха приближенно равнялось весу вагона.
От лошадей требовалась задача, равная перемещению вагона, не поставленного на рельсы. И неудивительно, поскольку величина давления, приходившегося на каждое полушарие, насчитывала 1 т! Кто-то может возразить, что лошадь способна везти тонну. Это верное замечание, вот только лошадь везет ее на телеге. Магдебургские полушария являлись телегой без колес. От этого масса «воздушного груза» составила свыше 20 т. Чтобы разорвать полушария, потребовалось бы употребить силу 26 лошадей вместо 16.
Строго говоря, полного вакуума внутри полушарий никогда не было. Получить глубокий вакуум и сегодня технически нереально, в XVII в. же это была неосуществимая задача. Поэтому сжимало полушария не атмосферное давление, а разница давлений – атмосферного и сверхнизкого внутреннего. Следует оговориться и касательно другого момента. Использовать 26 лошадей для разрыва полушарий вовсе не обязательно. Роль второй упряжки опять-таки вполне может сыграть прочная каменная стена.
Это прекрасно понимал, видимо, и автор эксперимента фон Герике. Достаточно сказать, что в последующих Магдебургеких опытах мы уже не встречаем никаких двойных упряжек. Герике разрывал полушария грузами и прочими способами. Например, он подвешивал полушария на крюк и прикреплял к нижнему платформу, на которую накладывал грузы.
Видоизмененный вариант полушарий Герике представляют собой присоски, которыми обязательно пользуются грабители и шпионы экстра-класса в кинофильмах. Посредством таких присосок человек якобы обретает возможность передвигаться по стенам. Создатели кинопродукции никого не обманывают. Присоски действительно способны удержать человека, поскольку из-под них выкачивается воздух. Резина плотно прилегает к поверхности стены, а ничтожно низкое давление скудной воздушной прослойки не может скомпенсировать давления воздуха.
Площадь одной такой присоски равняется 70 000 мм2. Это означает, что устройство способно выдержать вес до 700 тыс. г, или 700 кг! Поскольку глубокого вакуума создать такая присоска не может, ее сила значительно меньше. И тем не менее очевидно, что человек в состоянии удержаться всего на одной присоске. Ловкие режиссеры показывают гораздо более захватывающие сцены с использованием присосок. Например, когда человек срывается со стены или с крыши скоростного поезда, и от смерти его спасает только присоска. Корректны ли эти сцены с точки зрения физика? Вполне! Падение со стены в изображаемых сценах занимает по времени около 3 с. За это время человек под действием ускорения утяжеляется до 235 кг. Именно такая нагрузка приходится на присоску. Даже если падение будет длиться 5–6 с, присоска все равно исправно выполнит свою задачу.
Падение со скоростного поезда длится примерно 1 с (на самом деле сцена занимает несколько меньше времени). Вес человека увеличивается за счет сил инерции, сообщающих ему ускорение 28 м/с2. Нетрудно подсчитать, что среднего роста и телосложения мужчина в такой момент будет оказывать на присоску нагрузку в 2240 Н (ньютонов), что соответствует в нормальных условиях весу 224 кг. Это приближенно равно 3-кратной перегрузке, которую легко выдерживает тренированный человек. Присоска опять-таки справляется с поставленной перед ней задачей.
Между прочим, именно присоски больше всего убеждают в том, что давление воздуха направлено равномерно во все стороны. Ведь с их помощью киногерои двигаются по вертикальным поверхностям и потолкам, следовательно, воздух одинаково давит и вбок, и даже вверх.
В заключение этого разговора следует рассказать о вакууме. Аристотель верил, что пустоты не существует, и до известной степени был прав. Неужели Торричелли ошибался и все его старания опровергнуть точку зрения античного философа были пустой тратой времени и принесли вред науке? Отнюдь. Так рассуждать нельзя. В свое время Аристотель спорил с Платоном, Галилей спорил с Аристотелем, Пуанкаре объявил, что Земля не вращается, и тем самым опроверг Галилея.
И тем не менее каждый из этих мыслителей и ученых был по-своему прав, поскольку изучал законы мира с новой позиции. Судить этот вечный спор нельзя, поскольку в нем нет неправой стороны. Галилей не поддерживал Платона, когда опроверг физику Аристотеля. Пуанкаре не восстанавливал авторитет Стагирита, когда оспаривал великого итальянца. Так склонны думать лишь люди с плоским мышлением, тщетно пытающиеся «навести порядок в науке».
Пустота есть, и одновременно ее нет. В мире нет абсолютной пустоты, однако есть та пустота, против которой восстал Аристотель. Вакуум представляет собой особое состояние материи, обладающее минимальной энергией. Оно почти свободно от частиц вещества, но насыщено физическими полями и различными волнами. Из энергии полей и волн способны возникать виртуальные частицы, которые при подходящих условиях «материализуются» – становятся реальными. Вакуум не терпит пустоты и сам порождает вещество.
Физический вакуум, как видно, не является абсолютной пустотой. В еще меньшей степени ей является космический вакуум. В мировом пространстве рассеяно колоссальное количество вещества – межзвездного газа и пыли. Плотность этого газа ничтожна, однако на каждый 1 см3 самого глубокого вакуума в среднем приходится 1 атом вещества. Если бы человек обладал способностью двигаться с околосветовой скоростью, то на собственном опыте убедился бы в насыщенности космоса газо-пылевым веществом.