355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Сергей Бердышев » Открытия и изобретения, о которых должен знать современный человек » Текст книги (страница 12)
Открытия и изобретения, о которых должен знать современный человек
  • Текст добавлен: 2 мая 2017, 21:00

Текст книги "Открытия и изобретения, о которых должен знать современный человек"


Автор книги: Сергей Бердышев



сообщить о нарушении

Текущая страница: 12 (всего у книги 25 страниц)

6. Агрегатные состояния вещества

Создавая свое учение о первоэлементах, слагающих все тела мира, древние греки совершенно верно указали на то, что в природе существует лишь четыре основных агрегатных состояния вещества. Четырем первоэлементам – земле, воде, воздуху и огню – соответствуют твердое, жидкое, газообразное и плазменное состояния. То есть интуиция великих мыслителей античности не подвела.

Естественно, в ту пору они не могли догадываться, что помимо этих агрегатных состояний в природе существуют и другие. Одно из них – это состояние полной нейтронизации вещества, характерное для далеких звезд-пульсаров. В земных условиях вещество в данном состоянии пребывать не может. Зато может находиться в состоянии, промежуточном между основными.


Аморфное состояние

Промежуточные состояния немногочисленны, но крайне интересны. Внешне вещество, пребывающее в таком состоянии, напоминает какое-нибудь обычное твердое тело или жидкость, однако по своим свойствам и молекулярному строению не является ни тем, ни другим. Наиболее интересно аморфное состояние, пребывающие в котором тела внешне нередко напоминают кристаллы. На самом же деле нет ничего более фальшивого, чем эти кристаллы. Истинное кристаллическое вещество имеет четко упорядоченную структуру, тогда как внутри аморфных веществ царит полнейший хаос. Отсюда происходит и само слово «аморфный», означающее в переводе с греческого «бесформенный».

Открытие природы стекла

Согласно древней легенде, первооткрывателями аморфного состояния являются якобы безвестные финикийские или греческие торговцы. Сделав во время одного из своих многочисленных плаваний остановку на острове, они устроили большой костер на берегу. Песок от высокого жара расплавился и превратился в стекловидную массу.

В античности стекло не нашло существенного применения, даже зеркала тогда изготавливались преимущественно из металла. Но в последующие эпохи стекла стали применяться все чаще и чаще. В средние века получило широкое распространение использование цветной стеклянной мозаики для украшения окон в храмах.

Позднее Средневековье и начало Нового времени ознаменованы распространением стеклодувного производства. Разработкой технологий получения цветных стекол занимался М. В. Ломоносов. Открытие особой природы стекла состоялось лишь в XX в., когда ученые во всем мире стали проводить крупномасштабные исследования атомарной и молекулярной структуры разных веществ посредством рентгеновских лучей. Длина волны таких лучей настолько мала, что они легко высвечивают крайне малые элементы строения вещества, включая молекулы, узлы кристаллической решетки, атомарные комплексы и отдельные атомы.

Выяснилось, что твердые физические тела обладают строго упорядоченным строением, причем оно остается практически неизменным во всех частях тела. То есть кристаллическая решетка, в которую выстроены атомы или молекулы твердого тела, неизменна в любой своей точке. Определенные узлы, комплексы или любые другие значимые структурные группы повторяются через некоторый пространственный интервал. Такое строение физического тела называется дальним порядком.

В жидкостях дальний порядок полностью отсутствует, зато существует ближний порядок, который и обеспечивает их вязкость. Ближний порядок означает наличие слабо связанных друг с другом молекулярных комплексов. Внутри комплекса частицы сравнительно упорядочены, но сами комплексы размещаются в пространстве хаотически. Сходным строением обладают аморфные тела, или стекла. Их нельзя отнести к твердым или жидким телам. Если соблюдать точность, они даже не занимают промежуточного положения между ними.

Стекла являются промежуточным состоянием между твердым телом и газом, от жидкостей их отличает лишь крайне высокая плотность. Из-за этого аморфные тела внешне проявляют почти все существенные признаки твердых, хотя атомы внутри этих тел не занимают строго определенного положения. Таким образом, стекла никогда не образуют многогранных кристаллов. Название «стекло» было присвоено аморфным телам не случайно. Получить данное агрегатное состояние для какого-либо другого вещества, кроме стекла, довольно-таки трудно. В природе можно встретить тектиты, происхождение которых связывают с падением на нашу планету метеоритных тел, и вулканическое стекло. Тектиты представляют собой твердые каплевидные шарики темного цвета, которые находят в породах на всех континентах, за исключением Южной Америки. Во время падения метеоритного объекта грунт, в который врезается космическое тело, подвергается мощному ударному воздействию. В результате происходит взрыв раскаленного метеорита, и на земле образуется воронка-астроблем, называемая метеоритным кратером.

Астроблемы имеют форму чаши, а сверху выглядят кольцевыми структурами. Во время взрыва грунт внутри кратера разрушается и частично оплавляется, после чего оказывается выброшенным с высокой скоростью в небо. Постепенно дожди и ветра разрушают следы астроблема, а сами тектиты оказываются похороненными под слоем песков и прочего обломочного материала. Иногда они сохраняются на поверхности, причем в большом количестве.

В Австралии слезовидные тектиты, возраст которых датируется 600 тыс. лет, удается найти даже в желудках страусов эму, а также в гнездах шалашников, которые обожают собирать разнообразные блестящие предметы. Австралийские камни-капли относятся к семейству сравнительно молодых тектитов, к которым причисляются также найденные на Яве и Филиппинских островах. Гораздо древнее группа молдавитов, обнаруженных в Восточной Европе, главным образом в Чехии. Их возраст равняется 14,8 млн лет. Возраст же техасских тектитов насчитывает 30 млн лет.

Оплавленная масса грунта, образующая под действием взрывной волны капельки-тектиты, во время застывания превращается в стекло, а точнее, переходит в аморфоподобное состояние. Вулканическое стекло возникает при застывании лавовой массы, исторгнутой из недр вулкана. Нередко оно несет на себе следы двойного оплавления. Повторно стекло оплавляется тогда, когда поверх застывшей лавы течет новый раскаленный поток, плавящий подстилающее его вещество. Так возникает аморфоподобная масса.

Все прочие виды аморфных и аморфоподобных веществ, известных науке, были получены человеком. Таким образом, к моменту открытия данного агрегатного состояния наука располагала подробными сведениями о свойствах главным образом одного лишь стекла. И уже после глубокого изучения строения стекла стало возможным получение в лабораториях и на производстве новых видов аморфных тел, также названных стеклами.

Получить аморфное тело можно не из каждого вещества. Больше всего подходят для этой цели расплавы с высокой вязкостью, причем чем выше вязкость жидкости, тем выше вероятность получения из последней стекла. Условием образования аморфной массы является чрезвычайно быстрое охлаждение жидкости. При плавном охлаждении избыточная тепловая энергия уходит в окружающую среду поэтапно, что позволяет хаотическим молекулам жидкости выстроиться в кристаллическую структуру. В веществе возникает дальний порядок одновременно с возрастанием вязкости, и оно становится твердым телом.

Если же скорость оттока тепловой энергии высока, то вязкость вещества увеличивается задолго до того, как между молекулами установится дальний порядок. Структура охлажденного вещества по-прежнему остается неправильной или почти неправильной, тогда как вязкость резко отличается от таковой, свойственной жидкостям. Тело переходит в новое агрегатное состояние, аморфное.

Изобретаются новые стекла

Сегодня разработаны технологии получения различных видов аморфных веществ, в первую очередь настоящих стекол. Несмотря на низкую в сравнении с твердокристаллическими телами вязкость, аморфные вещества обладают массой выгодных преимуществ, которых полностью лишены первые. Во-первых, к числу неоспоримых достоинств стекол следует отнести отсутствие дефектов строения.

Строго упорядоченная структура кристалла в некоторых своих участках имеет неизбежные нарушения. Это т. н. отклонения (дефекты) во внутреннем строении. Они возникают при возникновении твердого тела, при внешних воздействиях на него и при обработке. Иногда такие дефекты оказываются очень серьезны. Аморфные тела свободны от внутренних дефектов, потому что их строение хаотическое, близкое к таковому у жидкостей. То есть атомы друг относительно друга не упорядочены, а потому отклонений в их системе быть не может.

Более того, стекла внутренне однородны, тогда как в кристаллах существуют определенные направления и оси, существование которых обусловлено наличием у молекул или атомов какой-либо предпочтительной ориентации. Из этих двух ценных качеств прямо следуют прочие достоинства. Стекла прозрачны для электромагнитного излучения во всех диапазонах, а потому применяются при производстве светопроводящих стекловолокон, кинескопов и т. д.

Эти вещества не пропускают электрический ток и могут использоваться в качестве изоляционных материалов. Стеклянные изоляторы устанавливаются на высоковольтных линиях электропередачи. Впрочем, нужно заметить, что обыкновенное стекло приобретает электропроводные свойства при нагревании. Наконец, аморфные материалы прочны, долговечны, химически стойки. Последнее их качество позволило широко использовать стеклянную посуду в лабораториях.

Сегодня аморфные вещества претерпели значительные изменения. Стеклосмазки никак не похожи на лабораторную посуду, но по внутреннему строению материал в обоих случаях одинаков. Помимо настоящих стекол и материалов на их основе, сегодня получают металлические стекла. Правильнее их называть аморфными металлическими сплавами (АМС). Ранее сообщалось, что вещество переходит в агрегатное состояние при быстром охлаждении, когда вязкость нарастает быстрее, чем успевает установиться кристаллический порядок.

Если простое стекло самостоятельно приобретает аморфную структуру при остывании на воздухе, то другие вещества и материалы приходится остужать искусственным путем, в специальных условиях. Точно таким же образом удается из вязкого расплава получать аморфные металлы. К сожалению, превратить в стекло чистый металл технически невозможно. Зато некоторые сплавы переходят в аморфное состояние при быстром охлаждении.

Скорость такого охлаждения чудовищно высока. Она достигает порядка 1 млн °С в секунду. Естественно, процесс длится считанные доли секунды, поскольку иначе бы конечная температура сплава упала ниже абсолютного нуля, а это невозможно. Изготовление АМС невероятно сложно, однако эти материалы привлекают своими замечательными качествами. Такие сплавы почти не имеют магнитных потерь, а потому применяются в производстве трансформаторов, записывающих головок видео– и аудиотехники.

Жидкокристаллическое состояние

Все знают, что генетический код человека и прочих живых существ закодирован в последовательности атомов молекулы ДНК (подробнее о наследственности и генетике рассказано в главе 9). Но мало кто подозревает, что ДНК имеет что-то общее с плоским телевизором, с индикатором от часов, с устройствами визуализации в термометрии, термографии, медицине, технике отображения электронной информации или, наконец, с «перстнем настроения», который показывает, какое настроение у его хозяйки. И тем не менее все перечисленные устройства работают на материалах, которые, подобно ДНК, пребывают в жидкокристаллическом состоянии.

Открыты жидкие твердые тела

Удивительно, но биологи и химики принесли физике немало пользы, хотя единство всех наук было фактически признано лишь в начале XX в. И лишь за последние 50 лет ученые убедились в плодотворности сотрудничества специалистов из разных областей знания. Наиболее впечатляющие (001 открытия почти всегда совершались на стыке совершенно различных наук. Так получилось и на сей раз. Честь открытия жидких кристаллов принадлежит австрийскому ботанику Рейнитцеру. В 1888 г. он проводил исследования нового сложного соединения, которое сам же синтезировал, – холестерилбензоата.

Это вещество существовало в нормальных условиях в кристаллической форме и плавилось только при высоких температурах. Вот здесь-то и заключался главный парадокс. Стоило нагреть кристаллики до +145 °C, как вещество немедленно плавилось. Однако дальнейший нагрев жидкости приводил к еще более удивительным превращениям. Мутная и вязкая, обладающая высоким рассеянием световых лучей, она полностью преображалась при температуре +179 °C. Стоило ботанику настолько подогреть жидкость, как она становилась прозрачной и водянистой на вид.

Промежуточное состояние между кристаллическим и нормальным жидким получило в дальнейшем название мутной фазы. Заинтригованный Рейнитцер провел исследование мутной фазы под микроскопом, в результате чего выявил двойное лучепреломление вещества. При этом двупреломления не наблюдалось в обычной жидкости холестерилбензоата, да и не могло наблюдаться. Ведь оно является свойством, присущим настоящим кристаллическим телам. Данный эффект возникает благодаря строгой ориентации молекул вещества, вызывающей поляризацию световых волн – их предпочтительное движение в заданной плоскости относительно т. н. оптической оси кристалла.

Ботаник не догадался о совершенном им открытии, но предположил, что в мутной жидкости оставались мелкие нерасплавившиеся кристаллики, не различимые под микроскопом. Лишь дальнейшие исследования необычной фазы, проведенные в прошлом столетии, позволили развеять все сомнения. Выяснилось, что научный мир столкнулся с новым агрегатным состоянием вещества, промежуточным между жидким и твердокристаллическим.

Жидкокристаллическая фаза свойственна далеко не всем веществам, но только органическим соединениям, характеризующимся крупными и массивными молекулами со структурой высокой степени сложности. Фаза приходится на небольшой интервал температур от температуры плавления настоящего кристалла до температуры перехода вещества в настоящую жидкость. Жидкий кристалл текуч и легко принимает форму сосуда.

Одновременно он обладает упорядоченным молекулярным строением: его частицы строго выстроены относительно друг друга и демонстрируют свойство определенной пространственной ориентации. На первый взгляд такое невозможно, поскольку порядок подразумевает наличие кристаллической решетки. Это устойчивая система, в узлах которой расположены центры масс молекул. Она жестко связывает молекулы и тем самым не допускает текучести вещества.

Откуда взялись противоположные качества у одного вещества? Дело в том, что жидкие кристаллы полностью лишены кристаллической решетки. Их порядок строгий, но не жесткий. Закрепления в определенных точках относительно друг друга не происходит, отчего в некоторых областях кристалла наблюдается небольшой беспорядок. Он-то и обеспечивает свойство текучести жидкого тела. Вместе с тем предпочтительная ориентация молекул обусловливает типично кристаллическую характеристику веществ в данном агрегатном состоянии, каковой является анизотропия.

Под анизотропией в физике понимается разделение физических свойств по направлениям. То есть физические свойства проявляют себя в одном направлении и не проявляют или проявляют иначе в другом. Таким образом, внутри всякого кристаллического тела есть предпочтительное направление свойств упругости, диэлектрической проницаемости, электропроводности, оптических свойств и др. Жидкие кристаллы анизотропны, равно как и настоящие твердые тела.

Вместе с тем уникальное агрегатное состояние обладает качествами, не типичными для остальных фаз вещества. В первую очередь обращает на себя внимание зависимость оптических свойств жидких кристаллов от условий окружающей среды.

Ученые различают несколько типов структурной организации жидких кристаллов: нематические кристаллы, смектические, холестерические и дискотические. Кристаллы с соответствующим строением называются нематиками, смектиками, холестериками и дискотиками, причем первые представляют собой наиболее простой по строению тип веществ данной фазы. Дискотики обладают молекулами в форме дисков, а остальные имеют молекулы-стержни.

Жидкокристаллическую фазу всегда образуют только сравнительно плотные вещества с компактно уложенными крупными молекулами дисковидной или стержневидной формы. На то есть несколько причин, в основе которых лежит такое обыкновенное межмолекулярное взаимодействие. Молекулы, о чем сообщают школьникам на первых уроках физики, притягиваются и отталкиваются. Силы притяжения имеют электромагнитную природу. Они заставляют частицы вещества сближаться, а силы отталкивания препятствуют взаимному проникновению молекул.

При высокой концентрации крупных молекул со сложной формой – стержней или дисков – они начинают за счет сил отталкивания мешать друг другу свободно двигаться. Дисковидная молекула не может, к примеру, встать на ребро, а стержневидная не может произвольно повернуться поперек. Все частицы принимают примерно однонаправленное расположение. Таким образом, форма молекул задает их пространственную ориентацию.

Различают два способа образования жидких кристаллов. Прежде всего вещество в это агрегатное состояние можно перевести с помощью нагревания. Именно так получил мутную фазу холестерилбензоата Рейнитцер. Если продлить нагревание жидкокристаллической фазы, то энергия молекул возрастет и они станут двигаться гораздо быстрее. Постепенно беспорядочное тепловое движение станет преобладать, в результате чего кристалл перейдет в жидкое состояние. Принято говорить, что кристалл плавится. При застывании расплава образуется обычный твердый кристалл.

Плотность жидкого кристалла может быть очень низкой, близкой к плотности жидкости. Но есть и плотные тела, подобные по консистенции пасте. Такие жидкие кристаллы называют термотропными. Кроме них, различают лиотропные жидкие кристаллы, которые образуются при растворении какого-либо вещества в другом. Растворяемое вещество называется мезогеном, потому что сама фаза называется еще мезоморфной.

Типичными лиотропными кристаллами являются биологические мембраны. Мембрана представляет собой молекулярную стенку, отделяющую живое вещество клеток от окружающей среды. Она сложена двумя слоями липидных молекул, т. е. имеет толщину порядка 10 нм максимум. При этом длина волны зеленого излучения в 50 раз больше! Настолько хрупка грань между живым и неживым. Липиды представляют собой мезоген, который образует двухслойную структуру мембраны при взаимодействии с жидкой средой клетки.

Изобретается техника на жидких кристаллах

Холестерические кристаллы используются для изготовления пластинчатых термометров для грубого определения температуры. В настоящее время спрос на эти изделия несколько снизился, зато лет 10 назад подобные устройства были весьма популярны, особенно среди школьников. Дети имели при себе пластинки, которые было удобно носить на одежде.

Пока температура тела нормальная, пластинка высвечивает букву «N», с которой начинается слово Normal (temperature). При повышении температуры выше нормы пластинка меняет цвет и высвечивает букву «F», с которой начинается слово Fever – жар. Как только ребенок замечает появление этой буквы, он обращается к родителям, и те уже измеряют ему температуру с помощью обычного градусника.

Технической новинкой являются плоские телевизионные и компьютерные экраны на жидких кристаллах. Эти удобные средства отображения информации настолько основательно вошли в нашу жизнь, что большинство людей поддалось иллюзии, будто бы жидкокристаллическим мониторам много десятков лет. На самом деле сооружение первых экспериментальных моделей LCD-устройств (англ. Liquid Crystal Displays – жидкокристаллические дисплеи, или ЖК-дисплеи) началось лишь в середине 1980-х.

Первые образцы продукции для массового покупателя появились в конце 1980-х. Распространение телевизоров на жидких кристаллах и персональных компьютеров «лэптоп» приходится на 1989–1991 гг. Первые большие цветные телеэкраны (диагональ 35 см и более) стали собираться лишь начиная с 1991 г., и то единственным их производителем тогда была японская фирма «Шарп».

Экран LCD собран из стеклянных пластин, уложенных слоями, перемежающимися с прослойками жидкого кристалла. Оптическая структура последнего меняется в зависимости от величины электрического заряда, поступающего на кристалл. Электроника телеприемника или компьютера генерирует электромагнитное поле, в котором молекулы кристалла меняют свою пространственную ориентацию. В результате меняются направления оптических осей кристаллов, и разные области экрана по-разному отражают свет и строят тем самым изображение.

Поскольку сами жидкие кристаллы светиться не могут, то для работы устройств LCD приходится применять подсветку, которая устанавливается в телевизорах и компьютерах. Подсветка необходима даже для работы в дневное время. Солнечный свет в течение суток падает на экран под разными углами и неоднократно меняет мощность. Поэтому картинка на жидкокристаллическом дисплее будет изменчивой и далекой от истинной. Впрочем, начиная с конца 1990-х гг. ведутся успешные разработки мониторов, в которых кристаллы меняют цвет в электрическом поле, а также «активных» (самосветящихся) LCD-устройств.

Единственным недостатком самых ранних ЖК-дисплеев было высокое сопротивление жидкокристаллической среды. Скорость частиц обладающего большой вязкостью жидкого кристалла невелика. Получая новый электрический импульс, кристаллы затрачивали порядка 500 мс (миллисекунд) на переориентацию. Ограничение скорости кристаллов экрана привело к невозможности полноценно работать операторам со средствами ввода информации типа «мышь». Курсор «мыши» при быстром передвижении по экрану нередко попросту пропадал из виду, т. к. реакция кристаллов запаздывала.

В настоящее время помеха устранена благодаря внедрению двух технологий – DSTN и TFT. Первая технология сводится к использованию особого рода кристаллов-нематиков и двойного сканирования. Не так давно эта технология пополнилась методом многолинейной адресации MLA, сократившей замедление реакции экрана до 50 мс. Еще более продвинутой является предложенная фирмой «Тошиба» технология TFT, которая практически полностью сокращает запаздывание. Использование плоского дисплея с технологией TFT позволяет владельцу компьютера не испытывать затруднений во время т. н. «динамичных» компьютерных игр и т. д.

Пользователь LCD-устройства или плоского телевизора должен знать, что качество изображения во многом зависит от угла зрения. Жидкокристаллические экраны сконструированы таким образом, чтобы на них смотрели под прямым углом. Только тогда зритель может рассчитывать на высококачественное изображение. Если плоские компьютерные мониторы удобны своей компактностью, что позволяет устанавливать их на переносные ПК, то жидкокристаллические телевизоры весьма удобны в другом отношении: они не занимают много места и могут быть даже повешены на стену вместо картины. Большинство марок плоских телевизоров, между прочим, способно работать в режиме показа картинки, когда не настроено на прием радиосигнала. К слову, сейчас в продаже имеются настоящие «движущиеся картины», которые изображают слегка меняющиеся пейзажи. Представляющие собой экран на жидких кристаллах, такие картины воспроизводят бег облаков, дрожание листвы на ветру, течение воды в роднике или водопаде и т. п. Нужно заметить, что еще недавно на эти картины мало кто обращал внимание, считая их забавной игрушкой, а сегодня многие спешат приобрести переменчивые пейзажи.

И последнее замечание, которое касается плоских экранов. Обычно принято считать, что любой плоский экран построен на жидких кристаллах. Если в отношении современных персональных ЭВМ это в целом верно, то плоские экраны телевизоров могут быть конструированы с использованием многих других материалов. Преимущественно в роли таких аналогов выступают электролюминесцентные элементы и цветные светодиоды. Однако жидкие кристаллы занимают, безусловно, главенствующее положение.


    Ваша оценка произведения:

Популярные книги за неделю