Текст книги "Открытия и изобретения, о которых должен знать современный человек"
Автор книги: Сергей Бердышев
сообщить о нарушении
Текущая страница: 10 (всего у книги 25 страниц)
5. Открытия в области оптики
В древности оптикой называлась наука о зрении. Тогда предполагалось, что из глаз человека исходят некие невидимые лучи, которые ощупывают предметы и тем самым сообщают людям информацию об окружающем мире. Впоследствии оптика тесно сотрудничала с геометрией, архитектурой и живописью, а также другими науками и искусствами, в которых рассматривалось движение лучей и зрительное восприятие человека. Однако со временем позиция ученых переменилась, после того как им удалось доказать, что свет не зависит от зрения, а наоборот – зрение существует благодаря свету. Законы лучей были пересмотрены, и оптика получила второе рождение, став физикой света.
Преломление и отражение света
Первым оптическим приспособлением следует считать отражатель, построенный древнегреческим механиком Архимедом из боевых щитов. С помощью такого отражателя ученый, как гласит легенда, сфокусировал солнечные лучи и поджег ими римские корабли, осаждавшие его родной город Сиракузы. Сегодня ученые ставят под сомнение справедливость легенды. Скорее всего, она описывает событие, которое никогда не имело места в действительности. Однако подлинная, лишенная прикрас история оптики ничуть не уменьшает достоинств этой науки. В первую очередь это касается т. н. геометрической оптики, которая позволила создать технику, открывшую перед человеком новые миры – бесконечный космос и микромир.
Человек открывает законы светового лучаНекоторые ученые убеждены, что приблизились к разгадке таинственных появлений в старинных замках привидений. Причиной необъяснимого возникновения призраков является устойчивое расслоение воздуха внутри обширных помещений такого рода зданий. Феодальные замки, как известно, невероятно холодны. Их комнаты, слишком высокие и просторные, располагаются таким образом, что неспособны аккумулировать тепло. Воздух внутри помещений замка холоден и тяжел. Камины, однако, давали мощные потоки легкого теплого воздуха. Он не перемешивался с холодным, т. к. система внутренних помещений замка не была на это рассчитана.
Легкий воздух вытеснялся холодным вверх и скапливался у потолка. Постепенно в комнатах с каминами возникали большие скопления легкого воздуха поверх тяжелого. Происходило сложное вертикальное расслоение воздушных масс, чему способствовали высокие потолки. Так как плотность этих слоев была различна, то получалась настоящая воздушная линза, обладающая за счет своей многослойности еще и зеркальными свойствами.
Такие линзы отлично отражали свет, попутно искажая его. Достаточно было войти в комнату со свечой, как под потолком возникало размытое отражение ее тусклого света. Появлялось дрожащее призрачное видение. Возможно, кому-то такое объяснение покажется надуманным и далеким от действительности. Что ж, проверить справедливость этой интересной гипотезы можно только опытным путем. Однако сама природа почти каждый день ставит сходные опыты и охотно демонстрирует их людям.
Речь идет о миражах, в естественном происхождении которых ни у кого не возникает сомнений. Миражи обычны в пустынях, поскольку там земля за день чрезвычайно раскаляется и сильно нагревает прилегающий к ней слой воздуха. Периодически этот легкий слой отрывается и вытесняется вверх более тяжелым холодным. Но это происходит довольно медленно, отчего над пустынями выстраивается целый ряд слоев разной плотности, а приземной воздух обычно оказывается менее плотным.
В таком толстом зеркале возникают самые причудливые изображения. Как бы то ни было, чаще всего люди видят в пустыне обширные озера с чистейшей пресной водой. Эта иллюзия подкрепляется изнуряющим ощущением жажды. Появление озер неизбежно, потому что над сухими песчаными морями раскинулось знойное голубое небо. Оно чаще всего и отражается в воздушных зеркалах. Отраженную небесную синеву люди принимают за далекое озеро. Миражи в пустынях погубили немало путешественников, доверчиво поддавшихся обману.
Возникновение миражей и прочие оптические явления, наблюдаемые людьми в природе, тесным образом связаны с физикой лучей света. Световой луч является в известной степени абстрактным понятием, служащим для обозначения направления потока лучистой энергии. Это геометрическая линия, возможно, самая идеальная прямая в природе. Еще древние греки это прекрасно поняли. Они же первыми догадались, что в воздухе свет распространяется прямолинейно, причем лучи идут параллельно друг другу.
Древнегреческий геометр Евклид первым дал четкую формулировку закону прямолинейного распространения света. Евклид утверждал, что световые лучи, не пересекаясь, движутся по кратчайшему пути, т. е. по самому короткому расстоянию между двумя точками – прямой линии. Этот же ученый впервые сформулировал закон отражения света: угол падения световых лучей равен углу отражения.
Оба закона, как ни странно, были выведены задолго до Евклида эмпирически, из опыта. Опираясь на эти законы, геометр дал научное объяснение многим оптическим явлениям. Последовательно применяя методы геометрии при восстановлении пути лучей, Евклид заложил основы т. н. геометрической оптики, просуществовавшей почти без изменений вплоть до XVII в. Ключевое положение данной науки – о прямолинейном ходе лучей – верно лишь отчасти.
На самом деле луч не распространяется прямолинейно ни в одной среде, даже в вакууме. Дело в том, что в космосе на луч влияют силы гравитации, которые отклоняют его от прямой. Впрочем, согласно теории относительности, именно так и должна выглядеть кривая, помещенная в гравитационное поле. Луна вокруг Земли тоже движется по прямой линии – прямой для гравитационного поля. Иного ожидать от гравитации не приходится, поскольку она меняет геометрические свойства пространства.
Что касается воздуха, то здесь все гораздо проще. В небольшом объеме воздух прозрачен, отчего световые лучи распространяются в нем прямолинейно. Однако атмосфера в целом весьма неоднородна. В одном из разделов второй главы, посвященном давлению воздуха, было подробно рассказано об областях разной плотности в пределах атмосферы. Таким образом, воздушная оболочка планеты многослойна и к тому же постоянно содержит в себе воздушные линзы разной плотности. Оптические свойства атмосферы меняются от места к месту, что и приводит к образованию воздушных «зеркал», порождающих миражи и гало.
Особое значение для развития оптики имело открытие закона преломления света, которое происходило постепенно, поскольку он не был столь очевиден, как законы прямолинейного движения световых лучей и отражения. Александрийский геометр и астроном Птолемей во II в. до н. э. изобрел диск для измерения угла преломления световых лучей, проходящих из воздуха в воду. Однако установить на основании своих замеров закона преломления Птолемей не сумел.
Дальнейшие достижения оптики связаны с именем немецкого астронома И. Кеплера. Он попытался сформулировать закон преломления и построил теорию движения световых лучей в оптическом приборе. Кеплер в 1604 г. провозгласил, что каждой точке предмета соответствует только одна точка изображения, которое попадает в глаз наблюдателя. Опираясь на этот принцип, ученый геометрически восстановил ход световых лучей в разных оптических приборах.
Причем под последними ученый понимал и хрусталик глаза, и линзу, и систему линз, и зеркало. Когда законы построения изображения в оптических приборах были в целом сформулированы, Кеплер разбирает работу зрительных трубок, в частности телескопов. К этим исследованиям он приступает в 1611 г., уже после того, как Галилей провел свои наблюдения.
Однако предложенный Кеплером телескоп, получивший название трубы Кеплера, оказался гораздо удачнее галилеевой трубы. Попутно немецкий ученый ввел в науку термины «фокус» и «оптическая ось». Отталкиваясь от выводов Кеплера, Снеллиус и Декарт в 1630-х гг. уточнили закон преломления света, завершив тем самым становление науки.
Благодаря трудам Кеплера были объединены и сформулированы более четко известные прежде законы света, открыты новые законы, создан фундамент для дальнейшего развития оптической науки. Причем теперь оптика развивалась сразу в нескольких направлениях. Прежнее изучение методами геометрии было дополнено экспериментальными исследованиями при помощи линз, зеркал и прочих оптических приборов. А также внутри оптики зародилось прикладное направление, занятое проектированием и расчетом наблюдательных устройств с системой стекол – телескопов и микроскопов.
Изобретение микроскопа и телескопаПервым оптическим прибором был, как ни странно, микроскоп. Его сконструировал в 1590 г. голландский изобретатель З. Янсен. К сожалению, про это открытие надолго забыли. Гораздо больший интерес вызвала оптическая (зрительная) труба. Ее пытался создать еще Л. да Винчи в начале XVI в., но об этих попытках сведений не сохранилось. Поэтому создателем подзорной трубы считается Г. Липперсгейм, который в 1608 г. впервые применил линзы в «волшебной трубке» для наблюдения за удаленными объектами. Это изобретение не прошло незамеченным, оно обратило на себя внимание великого итальянского физика и астронома Г. Галилея.
Уже в следующем году Галилей собирает собственную, усовершенствованную зрительную трубу и в августе 1609 г. демонстрирует устройство главе Венецианской республики – венецианскому дожу, чтобы заручиться его поддержкой в своих научных изысканиях. Дож счел изобретение полезным для военно-морского флота, а потому дал согласие на дальнейшие работы. Галилей же направляет свою трубку на небо и совершает массу астрономических открытий.
Поразительные открытия позволяют ученому утверждать, что Земля является рядовой планетой Солнечной системы. Свое творение Галилей именовал по-латыни просто «окуляром». Лишь спустя какое-то время после опубликования Галилеем результатов наблюдений с помощью «окуляра» в «Звездном вестнике» (1610 г.) на свет появилось современное название прибора. Филолог Демесиани нарек зрительную трубу для астрономических исследований телескопом, что в переводе с греческого означает «смотрю в даль».
Этот первый телескоп был рефрактором, т. е. в переводе с латыни «преломляющим», поскольку его оптическая система состояла из преломляющих световые лучи линз. Выпуклая линза объектива имела диаметр 53 мм и давала 30-кратное увеличение, что на порядок превосходит мощность всех зрительных труб той эпохи. Длина трубы насчитывала 124,5 см. С тех пор конструкция телескопов непрерывно совершенствовалась.
Основатель современной геометрической оптики, немецкий астроном и математик И. Кеплер усовершенствовал окуляр. Ученый избрал для отверстия окуляра двояковыпуклую линзу, и это в дальнейшем позволило применять телескопическую технику не только и не столько для наблюдений, сколько для измерений. Первый телескоп-рефлектор (дословно «отражатель») с зеркальцем в качестве собирающего свет устройства построил в XVI в. И. Ньютон.
Что касается микроскопа, то его новым создателем был опять-таки Галилей. Ученый перевернул свою зрительную трубу, а точнее, изменил конструкцию, приспособив ее для наблюдения за малыми объектами. Галилей с увлечением описывал открывшийся ему при увеличении облик мух, блох и прочих насекомых. Но и на сей раз микроскоп никого не заинтересовал, поскольку уровень биологической науки был недостаточно высок, чтобы у ученых-естественников возникла потребность в применении техники. Натуралисты в то время вообще не могли предположить, что же можно изучать в живой природе посредством физических приборов.
Но проходит немногим более полвека, и ситуация в корне меняется. Английский оптик P. Гук усовершенствовал трехлинзовый микроскоп и с его помощью открыл в 1665 г. существование клеток. В 1675 г. голландский естествоиспытатель А. Левенгук собственными силами создает это замечательное устройство и открывает инфузорию. Впоследствии Левенгук обнаружил немало других занятных «зверьков» (аниманкулов) – разнообразных бактерий. Кроме того, биолог открыл эритроциты (красные кровяные тельца) и сперматозоиды.
Ученый занимался усовершенствованием микроскопов и всего изготовил порядка 400 моделей. Его творение стало общепризнанным символом биологической науки. Современные оптические микроскопы, применяемые в медицине, микробиологии и прочих биологических науках, являются гораздо более сложными устройствами, обладающими значительным увеличением. Их оптическая система, тем не менее, по-прежнему состоит из окуляра и объектива. Зрительная трубка, несущая в себе линзы, называется тубусом. Тубус крепится на тубусодержателе, устройство которого допускает вертикальные движения тубуса для достижения фокусировки.
Дальнейшая судьба оптических изобретений удивительна. Самым примечательным событием за всю историю конструирования телескопов следует назвать необычную технологическую конкуренцию между рефлекторами и рефракторами, затянувшуюся вплоть до XX в. Когда в начале XVIII столетия и компактные, и огромные универсальные рефлекторы, казалось бы, полностью потеснили рефракторные телескопы, вскрылись многочисленные недостатки зеркал. Зеркала тускнеют, их изготовление очень дорого, кроме того, стекла часто ломаются под тяжестью собственного веса.
В начале второй половины XVIII в., после получения в 1758 г. новых сортов стекол, в астрономии наступил период двухлинзовых объективов. Первый из них, т. н. объектив-ахромат, был построен англичанином Дж. Доллондом, отчего многие модели объективов этого типа получили название доллондовых труб. По прошествии некоторого времени рефрактор был усовершенствован немецким астрономом Й. Фраунгофером.
Фраунгоферовские телескопы в XIX в. становятся главным инструментом астрономов. И только со второй половины XIX в. зеркальные телескопы вновь занимают прежние позиции. Полностью они не вытеснили рефракторы и по сей день, однако являются наиболее значимыми инструментами ученых. Зеркальные системы в наше время главенствуют в науке. Учеными строятся рефлекторы со все большим размером зеркала.
Самое большое цельное зеркало установлено на телескопе Зеленчукской обсерватории в Ставрополье. Его диаметр составляет 6 м. Гораздо крупнее сборные большие зеркала, составляемые из маленьких. Два телескопа Кека, установленные на Гавайях, представляют собой спаренную оптическую систему и имеют общее на двоих зеркало диаметром 85 м. Истинные размеры зеркал в этой системе составляют всего 1,8 м. Малые зеркала числом 36 объединяются в одно 10-метровое зеркало, установленное на одном телескопе. На втором установлено точно такое же. Расстояние между телескопами равно 85 м. Компьютер объединяет оба телескопа в один с гигантской, 85-метровой базой.
Сегодня телескопом называют практически любое устройство, предназначенное для приема волновой энергии всех видов из мирового пространства. Если рефлекторы и рефракторы принимают исключительно волны видимого света, то есть телескопы, которые способны принимать ультрафиолетовые, инфракрасные, рентгеновские и радиоволны, а также гамма-лучи. Таким образом, астрономы изучают космос по поступающему из него излучению с любой частотой из всего диапазона.
Естественно, ультрафиолетовые телескопы или радиотелескопы имеют мало общего в техническом плане с оптическими системами. Однако удобное название прочно закрепилось за устройствами для наблюдения за космическими телами и процессами. Ультрафиолетовые телескопы предназначены главным образом для изучения поверхности Солнца, поскольку оно испускает много ультрафиолета.
Инфракрасное излучение несет информацию о тепловом режиме на планетах. Оно свободно проходит сквозь планетные атмосферы и представляет собой поток энергии от неодинаково нагретых участков космического тела. Инфракрасные лучи позволяют более результативно изучать колоссальные газовые скопления в мировом пространстве, строение далеких звезд и т. д. Рентгеновские лучи особо информативны при изучении рентгеновских пульсаров и прочих источников этого излучения, гамма-лучи позволяют наблюдать уникальные внегалактические гамма-источники, а радиоволны одинаково хороши для исследования почти всех космических объектов.
Нужно заметить, что эта упрощенная схема возможностей всеволновой астрономии показывает лишь одно: какие виды волн (излучения) особо информативны и полезны при исследовании тех или иных объектов. В действительности же астрономы никогда не изучают какой-нибудь объект исключительно одним типом волн. Почти каждое небесное тело рассматривается и в радиоволнах, и в ультрафиолетовом диапазоне, и в инфракрасном диапазоне, и в «рентгене», а иногда даже в гамма-лучах.
Волновая и лазерная оптика
Современная оптика есть не что иное, как совокупность дисциплин, тесно взаимосвязанных друг с другом и одновременно совершенно различных. Объединяют эти дисциплины лишь предмет изучения (свет) и фундаментальные законы физики света. Отрасль оптики, изучающая самые общие свойства светового луча, получила название геометрической оптики. Ее сегодня дополняют волновая, молекулярная, волоконная, нелинейная отрасли оптики и многие другие. Причиной недостаточности единственно геометрической оптики для описания всех свойств света послужило то, что он проявляет себя двояко, т. е. в виде волн и потока частиц сразу.
Теория корпускулярно-волнового дуализмаЕще античные атомисты, такие как Демокрит, Эпикур и Лукреций, догадывались, что свет представляет собой поток частиц, которые достигают человеческого глаза и оставляют в нем отпечаток предметов окружающего мира. Аристотель полагал, что свет есть движение, распространяющееся само по себе в пространстве. Тем самым эти философы отказывались от традиционных представлений о природе световых лучей и заложили фундамент двух физических теорий – корпускулярной и волновой. Эти теории вновь возродились в XVII в., когда ученые попытались объяснить оптические явления.
Французский математик и философ P. Декарт разрабатывает волновую теорию света. Согласно его представлениям, свет есть волны, расходящиеся в упругой тонкой среде, заполняющей пространство между телами, – эфире. Декарт не верил в существование пустоты, поэтому прибегнул к эфиру для объяснения физики света. Многие другие ученые придерживались мнения, что свет есть поток частиц. В пустом пространстве, как верили физики этого направления, витают атомы вещества и световые частицы.
Итальянский астроном Ф. Гримальди известен тем, что вел наблюдения за Луной и дал названия 300 объектам на ее поверхности. Двести селенонимов из предложенных им прижились, оказавшись красивыми и очень удачными. Это весьма романтические названия: Море Дождей, Море Кризиса, Море Нектара, Океан Бурь и пр. В физике Гримальди сделал великое открытие, опытным путем доказав волновую природу света.
Астроном, по роду занятий вынужденный много времени отводить на изучение оптики, ставил в начале 1660-х гг. нехитрые эксперименты. Он помещал на пути очень узкого светового пучка предмет. Обычно каждый предмет отбрасывает тень, но в данном случае она была неотчетливой, как если бы свет волнами огибал объект и сходился позади последнего. Ученый присвоил обнаруженному явлению название дифракции, однако не стал спешить с опровержением корпускулярной теории света.
Придерживавшийся данной теории И. Ньютон примерно в это же время провел ставший знаменитым опыт по разложению света на спектр. Ученый пропустил пучок белого света через призму и направил этот луч на экран. Луч распался на семь цветов, выстроившиеся в экране в виде полоски – спектра. Повторив опыт с одноцветным световым пучком, Ньютон не вызвал его разложения на составные части. Пройдя через призму, луч остался одноцветным. Физик пришел к выводу, что белый свет сложный и состоит из частиц семи расцветок.
Одноцветные (монохроматические) лучи простые и образованы только одним родом частиц. Призма отклоняет световые частицы на разный угол в строгой зависимости от цвета последних. Тем самым великий физик убедительно подтвердил справедливость корпускулярной теории. Ньютон провозгласил, что для каждого отдельного цвета величина преломления строго задана и всегда остается неизменной. А значит, неизменны и элементарны световые частицы-корпускулы, подобные в своем постоянстве неделимым атомам вещества. Однако здесь физик ошибался, о чем будет подробнее рассказано ниже.
P. Гук попытался оспорить точку зрения Ньютона, однако так и не смог дать приемлемого объяснения разложению света на спектр. Тем не менее Ньютон внимательно изучил работу Гука и, согласившись со многими доводами своего оппонента, пришел к неожиданному заключению. Свет имеет двойную природу и способен вести себя в разных условиях как поток частиц и как волны эфира. Таким образом, великий англичанин стал первым ученым, провозгласившим корпускулярно-волновой дуализм. К сожалению, об этом надолго забыли.
В XVII столетии Гюйгенс настойчиво разрабатывал волновую теорию, которую связал с законами геометрической оптики. В конце XVIII в. Т. Юнг обнаруживает явление интерференции света, которое объясняется только волновыми свойствами света. С этим оптическим явлением каждый из нас сталкивается всякий раз, когда видит разноцветные разводы от бензина, покрывающего пленкой поверхность лужи. Солнечные лучи отражаются и от бензиновой пленки и от поверхности воды. В результате возникают два перекрывающих друг друга отраженных световых потока. Поскольку свет представляет собой волны, то их перекрывание создает замысловатый узор, который мы воспринимаем как радужные разводы.
В 1864 г. Дж. Максвелл приходит к выводу об электромагнитной природе света. Свет – это волновые колебания электромагнитного поля, заполняющего пространство. Только частота колебаний и, как следствие, длина волны видимого излучения отличают его от прочих видов электромагнитных волн. В остальном радиоволны, инфракрасные (ИК) волны, ультрафиолет (УФ волны), рентгеновские и гамма-лучи родственны видимому свету. То, что они не воспринимаются нашим зрением, объясняется чисто биологическими причинами.
Эволюция вела высших теплокровных животных к умению пользоваться главным каналом оптической информации – световым. Инфракрасные волны передаются сравнительно хуже и сообщают только о нагретых объектах, ультрафиолет поступает лишь от Солнца и поглощается веществом. Жесткие лучи (гамма– и рентгеновские) редко встречаются в природе, т. к. они зарождаются далеко в космосе и гасятся земной атмосферой, не достигая поверхности нашей планеты. Вот почему жесткое излучение интересует среди нефизиков почти единственно астрономов.
Но и они вынуждены признать, что свет несет куда больше информации о звездах и галактиках, чем прочие виды электромагнитного излучения. Именно поэтому самый большой космический телескоп «Хаббл», запущенный на орбиту в 1990 г., работает в оптическом диапазоне. Свет информативен, живым существам, включая и человека, выгоднее воспринимать этот вид волн.
Эффекты, связанные с корпускулярными свойствами света, долгое время оставались необъясненными. Лишь в начале XX в. А. Эйнштейн создал теорию корпускулярно-волнового дуализма, в которой объединил на основе новейших научных представлений все проявления двойственной природы излучения. Свет действительно распространяется волнами, но при этом сохраняет способность квантоваться, т. е. делиться на энергетические порции (кванты), ведущие себя как элементарные частицы. Эти частицы получили название фотонов.
С позиций новой теории света легко доказать, в чем состояла ошибка Ньютона, полагавшего, что преломление цветов неизменно. Угол преломления зависит от частоты, которая напрямую связана с энергией фотонов и одновременно определяет длину световой волны. Частота же меняется в силу разных причин, отчего в спектре может происходить смещение. Известно, к примеру, что фотоны излучения сверхмассивных звезд меняют свою частоту. Чтобы преодолеть гравитационное поле светила, им приходится затрачивать колоссальную энергию, а это немедленно сказывается на частоте.
Другим случаем изменения частоты световых волн является т. н. эффект Допплера. Они распространяются со скоростью 300 000 км/с. Если источник света движется, то волны смещаются относительно друг друга. Одна отстает от предшествующей или, напротив, стремится опередить ее. Соответственно меняется в большую или меньшую сторону длина волны. Поскольку источники света в большинстве случаев движутся на ничтожно малых скоростях в сравнении со световой, то заметных изменений длины волны не происходит. Зато если источник обладает субсветовой скоростью, то его излучение меняет свой истинный цвет.
В 1929 г. американский астрофизик Э. Хаббл, в честь которого назван вышеупомянутый крупный орбитальный телескоп, открыл красное смещение в спектрах галактик. На основании своего открытия ученый пришел к выводу о разбегании галактик. Вселенная расширяется, и звездные системы стремительно разлетаются друг от друга. В каждой точке мирового пространства наблюдателю откроется одинаковая картина – удаляющиеся галактики.
Астрономия способна преподносить и другие сюрпризы. Скажем, в 1978 г. в созвездии Водолея астрономы открыли странный объект. И сейчас трудно сказать, является ли он звездой или далекой галактикой. Известный под номером 88 433, он имеет в своем спектре линии смещения в красной и фиолетовой области. А это надлежит понимать так, что космическое тело одновременно приближается к нашей планете и удаляется от нее.
Скорость загадочного объекта равняется, судя по величине смещения длины волн, 80 000 км/с, т. е. 0,27с (0,27 скорости света). Возможное объяснение феномена следующее. Объект выбрасывает в мировое пространство газовые струи, движущиеся на колоссальной скорости. Одна струя направлена к Земле, другая летит в противоположную сторону. Отсюда двойное смещение в спектре удивительного космического тела.