355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Сергей Бердышев » Открытия и изобретения, о которых должен знать современный человек » Текст книги (страница 18)
Открытия и изобретения, о которых должен знать современный человек
  • Текст добавлен: 2 мая 2017, 21:00

Текст книги "Открытия и изобретения, о которых должен знать современный человек"


Автор книги: Сергей Бердышев



сообщить о нарушении

Текущая страница: 18 (всего у книги 25 страниц)

Изобретена технология управляемого синтеза

Ученые сразу же обратили внимание на перспективы применения термоядерного синтеза. Естественно, физики никогда не рассчитывали получить дешевое золото из меди или свинца. Но достаточно напомнить, что благодаря такому синтезу таблица Менделеева приобрела свыше 20 новых элементов, не встречающихся в природе. Их массивные ядра крайне нестабильны и существуют доли секунды. У многих из них еще нет названия. Перечень поименованных атомов заканчивается на 102-м элементе – нобелии. Устоявшимся и общепринятым можно считать название курчатовия (104). Предположительно, 105-й элемент сохранит за собой название нильсбория. Элементы с 106 по 110 остаются пока безымянными, да и их физико-химические свойства почти не изучены.

Однако и изучение новых элементов не является главным движущим стимулом для ученых. Цели подчинения реакций синтеза гораздо более прозаичны и вместе с тем гораздо более важны. Синтез может послужить основой промышленной энергетики. Звезды расходуют свои запасы топлива в течение десятков миллиардов лет, одно наше Солнце горит уже порядка 5 млрд лет.

Термоядерное топливо обладает огромным запасом энергии. Приближенные подсчеты показывают, что синтез ядер способен давать человеку в 10 млн раз больше энергии, чем сжигание химического горючего. Достаточно обеспечить реакцию всего 1 г ядерного топлива, чтобы заменить им Ют бензина.

Обычный термоядерный синтез был осуществлен неоднократно при испытании маломощных водородных бомб. Современное ядерное водородное оружие является самым действенным средством уничтожения всего живого. Водородная бомба начинает действовать от атомного запала, вырабатывающего достаточное количество теплоты, чтобы практически мгновенно нагреть до высочайших температур горючую смесь дейтерия и трития.

Реакция синтеза дейтрона и тритона приводит к высвобождению колоссальной энергии. Происходит термоядерный взрыв, который сразу же уничтожает все живое на огромной площади, многократно превосходящей площади самых больших городов планеты. Одной-единственной бомбы средней мощности вполне достаточно для полного превращения в руины таких гигантских мегаполисов, как Нью-Йорк или Токио.

Но человечеству требуется не разрушительная, а созидательная энергия, которая будет давать электрический ток в дома и на заводы, двигать сверхскоростные поезда и космические корабли. Взрыв водородной бомбы является неуправляемой термоядерной реакцией, точно так же как взрыв обычной атомной бомбы является неуправляемой реакцией атомного деления. Человеку же требуется управляемый синтез легких ядер.

Единственным препятствием для ученых на пути осуществления контролируемой реакции синтеза остается высокая температура «зажигания» горючего. В недрах звезд температура достигает 15 млн °С. Предполагается, что космические светила зажглись при температурах свыше 50 млн °С. Оптимальная же температура для проведения термоядерных процессов с точки зрения энергетики равна 100 млн °С. Именно до такой степени требуется нагреть смесь дейтерия и трития, чтобы с высокой эффективностью извлекать из начавшейся реакции тепловую энергию. Продуктами этой реакции являются ядра гелия и свободные нейтроны. Последними можно облучать литий для возобновления запасов трития. Что касается дейтерия, то его возобновлять необязательно, т. к. в природе он встречается в достаточном количестве (например, в морской воде на 6000 атомов обычного водорода приходится 1 атом дейтерия).

Однако управляемая реакция подразумевает не только высокие температуры, но и удержание раскаленного вещества и беспрепятственное получение полезной энергии. В противном случае окажется, что установка поглощает гораздо больше энергии, чем выделяет. Любое вещество при температурах в несколько миллионов градусов переходит в плазменное состояние. Удержать его от немедленного рассеяния можно в магнитных полях. При этом необходимо изолировать плазму от внешней среды во избежание теплообмена. Физики подсчитали, что если плазма с плотностью 1014 ядер на 1 см3 заметно остудится за 1 с, то полезную энергию получить не удастся.

Однако никакая теплоизоляция не поможет сохранять температуру плазмы приближенно постоянной. Плазма непременно прожжет изоляционное вещество и вырвется наружу. Наиболее активные частицы обязательно покинут магнитное поле. Скорость водорода внутри ионного газа плазмы при необходимой температуре равняется 1000 км/с. Следовательно, требуется удерживать плазму каким-то совершенно особым способом, создав для нее как бы магнитную ловушку. Впервые общая идея магнитной ловушки была сформулирована в конце 1940-х гг. отечественными физиками И. Е. Таммом, А. Д. Сахаровым и O. А. Лаврентьевым. Почти одновременно к сходным выводам пришел американский физик Л. Спитцер.

С 1950 г. начались активные работы по проектированию устройства, технически воплощавшего магнитную ловушку. Первоначальной моделью такого устройства был прямотрон.

Ему присвоили такое название потому, что он представлял собой прямую трубу (прямолинейную ловушку), в которой должны были разгоняться частицы. Конструкция прямотрона была несовершенной, т. к. длина такой трубы должна была равняться нескольким десяткам километров. Гораздо перспективнее оказался проект прямолинейной ловушки с магнитными «пробками» на концах. Они должны были отражать поток частиц плазмы, отбрасывая их в противоположную сторону. Длина «пробкотрона» составила бы менее 100 м.

После того как была отвергнута и конструкция «пробкотрона», физики разработали замкнутую ловушку со сведенными вместе концами. Получился ускоритель-тороид, в котором плазма могла бесконечно долго разгоняться, двигаясь по кругу. Проблема удержания быстрых частиц была решена на основе работ И. Е. Тамма по теории электромагнитного поля. Чтобы частицы не смещались в замкнутом тороидальном магнитном поле, необходимо завить его силовые линии в спираль. Для этого требуется пропустить друг через друга два тока. Первый будет создавать магнитные силовые линии в форме окружностей, тогда как второй потечет по новым силовым линиям. В результате оба тока будут генерировать общее магнитное поле с силовыми линиями, закрученными спирально. Частицы плазмы внутри тороида будут двигаться не только вдоль замкнутых линий тороидального поля, но и описывать вокруг них спираль.

В 1954 г. под руководством И. Е. Тамма была создана первая тороидальная электромагнитная ловушка для плазмы, получившая название «ТОКАМАК». Ее название представляет собой аббревиатуру, которая расшифровывается как «Тороидальная КАмера с МАгнитными Катушками». В названии подчеркнуто, что главным элементом конструкции являются катушки, создающие мощное, в несколько Тл (тесла), магнитное поле. За последующие годы ученым удалось построить еще несколько установок подобного типа, которые также были названы Токамаками.

Эти катушки напоминают гигантские трансформаторы. Рабочая камера Токамака заполняется газом, а в катушках возбуждается магнитное поле. В результате пробоя под действием вихревого поля происходит усиленная ионизация газа в камере, отчего тот превращается в плазму. Возникает плазменный шнур, движущийся вдоль тороидальной камеры и разогреваемый продольным электрическим током. Магнитные поля катушек и плазмы удерживают шнур в равновесии в вакууме и придают ему форму, которая не дает шнуру касаться стенок.

Ток используется для нагрева плазмы лишь до температуры не более 10 млн °С, для получения большей температуры необходимо применить другие методы. Кроме того, постоянно нагревать плазму током опасно, поскольку он создает собственное магнитное поле. Если оно превысит по силе поле катушек, то скорость движения плазменного шнура сильно увеличится и он, прорывая теплоизоляцию, будет касаться стенок. Поэтому дополнительный подогрев осуществляется посредством ультразвука, электромагнитных волн высокой частоты или введения (инжекции) в камеру пучков быстрых атомов.

В современных Токамаках удалось получить температуру плазменного шнура около 200 млн °С. Этого более чем достаточно для проведения термоядерных реакций. Однако Токамак нельзя считать энергетической установкой. Он не вырабатывает энергию, а служит для проведения опытов и научных исследований. Это устройство является одним из сложнейших инструментов физиков. Работа на Токамаке напоминает генеральную репетицию перед выступлением – созданием энергетики синтеза.

Ученые предполагают, что в будущем термоядерный синтез окажется гораздо более важным и нужным для человека, поскольку позволит нам зажечь искусственное Солнце, когда погаснет настоящее. Это катастрофическое событие случится спустя 5 млрд лет. Человечество должно к тому времени освоить контроль над термоядерными реакциями настолько, что бы не дать гаснущему Солнцу взорваться и погибнуть, погубив заодно жизнь на нашей планете. Следовательно, энергетика синтеза имеет одновременно гораздо более значимое будущее, чем может показаться на первый взгляд: ей суждено спасти обитателей Земли.

На этом завершается еще один раздел, посвященный великим открытиям и изобретениям. А заодно закрывается в книге и тема физики. При всем уважении к заслугам этой науки нельзя не заметить, что другие дисциплины дали человеку не меньше благ и ценных знаний. Среди этих наук биология, химия, математика, геология и другие. Некоторые из их достижений настолько ошеломительны и обладают таким влиянием на все сферы деятельности человека, что не будет преувеличением сказать: образ жизни человечества есть результат чьих-то фантастических открытий.

9. Облик современного мира

Наша эпоха отличается невиданной властью человека над природой. Властью, которая позволяет нам создавать новые виды растений и животных и получать вещества, не встречающиеся в природе. Другим свидетельством нашего безграничного могущества являются компьютеры, которые внедряются во все сферы общественной жизни и производства. Однако именно эта неограниченная власть человека приносит ему наибольшее количество проблем, главнейшей из которых на сегодняшний день является, пожалуй, угроза экологического кризиса. Понять причины нынешнего сложного положения человечества помогают открытия и изобретения, во многом повлиявшие на облик современного мира.


Манипуляции жизнью

Каждому из нас доводилось совершать досадные ошибки при письме, когда случайная замена в слове одной-единственной буквы (например, «О» на «И» в слове «кот») приводила к появлению принципиально иного смысла, а следовательно, и иного предмета, обозначаемого этим словом. К сожалению, в природе не происходит столь чудесных превращений котов в китов и т. п. На протяжении столетий люди вели скрещивание самых разных животных в надежде получить необычное потомство. Иногда это удавалось. Так появились, к примеру, лошаки и мулы, которые, однако, оказались бесплодны. Полноценное живое существо искусственно вывести не получалось, поскольку тому препятствовали законы наследственности. Со временем стало очевидно, что манипулировать жизнью возможно лишь при условии, что эти законы будут раскрыты.

Открытие кода ДНК

Итак, наследственность записана в каком-то виде, и эта запись скрыта внутри организма. Но что она собой представляет, оставалось для ученых загадкой. Путь к исследованию природы столь сложного явления был долог и сопровождался интереснейшими открытиями.

Во второй половине XVII в. английский ботаник P. Гук, впервые применивший микроскоп для исследования растительных и животных тканей, с удивлением обнаружил, что они сложены загадочными образованиями. Последние напоминали многочисленные пустоты, своеобразные ячейки, которые Гук окрестил клетками.

В дальнейшем удалось установить, что клетки не являются полостями, но содержат в себе жидкость и мельчайшие структурные элементы – органоиды. В 1838–1839 гг. в результате глубоких исследований клеток ботаник М. Шлейден и физиолог Т. Шванн создали клеточную теорию – учение о клеточном строении организмов. Ученые провозгласили, что все живые существа состоят из клеток. Все, что происходит внутри организма микроба, растения или животного, является результатом работы клеток. Вот только микробы состоят из одной-единственной клетки, а большинство растений и животных многоклеточные.

«Ячейки» растут, делятся, преобразуют питательные вещества в энергию, порождают движение, участвуют самым непосредственным образом в размножении. Из половых клеток рождаются новые существа, которые растут и развиваются по тем же законам. Биолог P. Вирхов добавил к этим утверждениям еще один принцип: всякое существо происходит из клетки, неклеточная жизнь невозможна. Сегодня ученые открыли тысячи неклеточных форм живой материи – вирусов и вироидов, однако эти создания способны к жизнедеятельности и размножению только внутри клеточной среды.

Постепенно стало очевидным, что носителем наследственности выступает либо сама клетка, либо ее часть. И только в первой половине XX столетия американскому ученому Моргану в результате длительного наблюдения за делением клеток удалось доказать, что носителями наследственности являются особые элементы клеточного ядра, т. н. хромосомы. В каждой клетке человека, за исключением половых (гамет), содержится по 46 хромосом.

В гаметах хромосом в 2 раза меньше, поскольку зачатие нового человека происходит при слиянии женской яйцеклетки и мужского сперматозоида, когда объединяются до целого половинчатые хромосомные наборы. Такие наборы названы учеными кариотипами. Кариотипы разных растений и животных сильно отличаются по числу хромосом и их размерам. Оттого скрещивание между существами с различными кариотипами в большинстве случаев или невозможно, или оно дает неполноценных гибридов. Так, у собаки имеется 78 хромосом, у шимпанзе – 48, у плодовой мушки – всего 8, у кукурузы – 20.

Облик и строение каждого существа определяются особенностями кариотипа. Хотя хромосомы одного вида одинаковы, они содержат в себе разные вариации генов. Ген – единица вещества наследственности, отвечающая за определенный признак или конкретную функцию организма. Количеству генов соответствует количество признаков и функций. Вот почему люди, имеющие одинаковые кариотипы, различаются по цвету глаз, волос, кожи, комплекции, форме лица, дактилоскопическому рисунку на пальцах и прочим признакам.

В 1953 г. состоялось долгожданное открытие. Ученые Ф. Крик и Д. Уотсон сумели проникнуть внутрь хромосом и извлечь из них вещество наследственности. Им оказалась дезоксирибонуклеиновая кислота, или сокращенно ДНК. Несмотря на свое название, ДНК не имеет ничего общего с обычными кислотами, а представляет собой жидкий кристалл, отдаленно похожий на те, что применяются в индикаторах электронных часов. Молекула ДНК представляет собой невероятно длинную цепочку, сложенную двумя спиралями из сахара и фосфора. Каждая спираль напоминает контур винтовой лестницы.

Обе спирали оборачиваются одна вокруг другой и объединяются с помощью химических «мостов», в качестве которых выступают аденин, гуанин, тиамин и цитозин (А, Г, Т, Ц). Последовательность четырех перечисленных веществ уникальна, она несет в себе закодированную информацию о синтезе белков и прочих клеточных веществ. Отдельный блок такой информации, т. е. смысловой отрезок ДНК, является единичным геном.

Когда этот ген включается, клетки начинают производить определенные белки, что приводит к запрограммированным биологическим процессам. ДНК служит матрицей для производства веществ, обеспечивающих протекание различных процессов в организме и само существование организма. Записать формулу гена можно как АГЦ-ТТА-ЦТГ-… и т. д., т. е. в виде любой кодирующей последовательности.

Расположение информации на молекуле нуклеиновой кислоты имеет следующий вид: САЙТ – БЕЛОК НОМЕР ОДИН («формула») – САЙТ – БЕЛОК НОМЕР ДВА. Под сайтом понимается участок узнавания, по которому организм отличает одну запись от другой. Впрочем, у некоторых вирусов, разновидностей т. н. бактериофагов, запись генетического кода очень неразборчива, в ней одни гены наслаиваются на другие: БЕЛОК НОМЕР ОДИЕЛОК НОМЕР ДВАЛОК НОМЕР ТРБЕЛОК… и т. д.

Размеры генов ничтожны. Если собрать все ДНК из клеток взрослого человека, то молекулы свободно уместятся в наперстке. Но при этом объем хранимой веществом наследственности информации колоссален. Если сравнить молекулу ДНК с перфокартой, то количество информации на первой напрямую зависит от протяженности молекулы. Ученые вычислили суммарную длину всей человеческой ДНК и получили астрономическое число – 60 млрд км! То есть если вытянуть ДНК из всех клеток человека в мировом пространстве в виде тончайшей нити, то эта нить протянется от Земли в 10 раз дальше, чем находится от нас планета Плутон.

Вещество податливо и после должной обработки приобретает те свойства, которые выгодны человеку. Дезоксирибонуклеиновая кислота – не исключение, она также способна видоизменяться, если правильно на нее воздействовать. А это означает возможность преобразования живой материи. Генетики (ученые, занимающиеся секретами наследственности), поставили перед собой несколько задач. Если эти задачи удастся без проблем решить, то человечество сможет управлять генетическим кодом и создавать новые виды организмов.

Первой задачей является выделение гена. Его нужно найти на бесконечно длинной двойной нити ДНК и вырезать оттуда. Это весьма сложно сделать не только технически, но даже теоретически: отрезок молекулы выбирается из десятков тысяч схожих отрезков. Затем необходимо научиться синтезировать ген, получать его искусственным путем в лаборатории в любых масштабах.

Эта мера вовсе не излишняя. Допустим, сельское хозяйство нуждается в овощах, содержащих животные жиры. Для этого необходимо внедрить овощам соответствующий животный ген. Но сначала его требуется найти в клетках животных и выделить оттуда, а затем размножить. В единичном экземпляре ген не представляет интереса. С одним геном нельзя провести серию экспериментов, нельзя обеспечить гибридизацию в масштабах всего растениеводства.

То есть первоначально выделенный отрезок ДНК будет использован в качестве матрицы, на основе которой произведут множество аналогичных генов, которыми можно будет смело пользоваться в исследовательских и хозяйственных целях. Третьей задачей является модификация гена. Полученный отрезок кислоты необходимо предварительно переработать, изменить его размеры и свойства.

На завершающей стадии от ученых требуется научиться внедрять генетический материал в чужие клетки и активировать его. Ген может попасть в такую область, где не станет функционировать. Вот почему необходимо, во-первых, точно разместить его на новом месте и подсоединить к уже имеющемуся генетическому материалу, а во-вторых, заставить там полноценно работать. Реализовать поставленные задачи оказалось возможным лишь в последние годы, когда была создана генная инженерия.

Изобретена технология генной инженерии

Генная инженерия представляет собой направление биологической науки, возникшее на стыке генетики, молекулярной биологии, биотехнологии, микробиологии, селекции и медицины. Эта область знания занимается разработкой способов управления генетическим кодом. То есть генная инженерия ищет пути внедрения в клетку новых генов и получения при этом положительного эффекта.

Возможности генной инженерии безграничны. Некогда античные философы любили аллегорически изображать все нереальное и противоестественное в виде мифического козлоконя. В наши дни генетическое конструирование организмов теоретически допускает существование козлоконей и прочих химерических животных – кентавров, сирен, грифонов, базилисков и т. п. Требуется лишь правильное оперирование с наследственным материалом. Однако это не является истинной целью генной инженерии.

На сегодняшний день задача генетического конструирования заключается в выведении штаммов бактерий (дробянок) с запрограммированными свойствами. Хотя задача выглядит весьма скромной, она многое дает для человека. Никакой химик пока не способен состязаться с бактериями в синтезе органических соединений. Как правило, эти соединения не представляют пользы для человека, а иногда и вредны: выделения болезнетворных бактерий токсичны.

Посредством генного конструирования можно заставить дробянок производить те вещества, которые чрезвычайно необходимы человеку. Бактерии размножаются в столь большом количестве, что их продукцию можно получать в колоссальных объемах. Главное – вывести новую разновидность (штамм) бактерий и создать условия для их размножения. В 1980 г. начался промышленный выпуск соматотропина, синтезированного бактериями с измененной генетической конституцией.

Бактерией-производителем выступила хорошо известная ученым кишечная палочка. Прежде соматотропин, необходимый для лечения детской карликовости (нанизма), получали из гипофиза мозга скончавшихся людей. Естественно, препарата катастрофически не хватало. Как, впрочем, не хватало и инсулина, получаемого из печени забитого скота. Потребность в инсулине, используемом при лечении диабета, была удовлетворена лишь на 7 %. Генетики получили штамм кишечной палочки, выделяющий инсулин, и начиная с 1982 г. это вещество производится в промышленных масштабах.

Для того чтобы достичь подобного результата, потребовалось «скрестить» бактерию (!) с человеком, поскольку только в человеческом организме есть гены, ответственные за производство нужной формы соматотропина и инсулина. Эти гены были вырезаны из последовательности человеческой ДНК и внедрены в ДНК бактериальную. Микроорганизм стал синтезировать человеческие гормоны. Сегодня ученые знают уже наверняка, что бактерии в состоянии синтезировать все.

Естественно, наука не собирается останавливаться на достигнутом. Когда изменение генотипа бактерий окажется весьма простым делом, то начнутся работы над сельскохозяйственными растениями и животными. Отдельные изыскания в этой области ведутся уже сейчас. К числу недавних открытий следует отнести обнаружение гена, удваивающего число клубней картофеля, и пр. Генная инженерия позволит выводить принципиально новые сорта культурных растений и породы домашних животных.

Ввести генетический материал в чужую клетку можно несколькими способами. Поколение трансгенных животных получается при внедрении генов в яйцеклетку матери с помощью микроинъекций. Но этот метод применим не всегда.

Ученые имеют дело со столь мелкими объектами, что манипулировать ими посредством любых инструментов невозможно. Вот почему генетики применяют для проведения операций по внедрению отрезков ДНК молекулярные векторы.

В качестве последних выступают вирусы, плазмиды и космиды. В природе постоянно происходит перенос генетической информации от одного организма другому посредством вирусов, которые распространяют инфекцию. Получается, что достаточно заразить подопытные клетки вирусами, несущими нужные гены, как эти гены окажутся внедренными в наследственный материал клеток. Вирусы самой природой устроены таким образом, чтобы внедрять свою ДНК или ее аналог РНК (рибонуклеиновую кислоту) в чужой генетический аппарат.

Впрочем, нельзя сказать, чтобы вирусам отдавалось предпочтение. Выбор вектора зависит от условий эксперимента. Плазмиды не так давно использовались чаще всего. Под плазмидами понимаются особые, кольцевые молекулы ДНК в бактериальных клетках.

В целом методы генной инженерии выглядят следующим образом. На начальной стадии, носящей название рестрикции, идет операция по извлечению нужного гена из человеческой или любой другой ДНК. На молекулу химически воздействуют ферментами, которые отщепляют необходимый отрезок. Ферменты влияют на нуклеиновую кислоту таким образом, что у отрезка остаются «липкие» концы. Это означает, что они легко присоединятся к любой другой молекуле ДНК. Затем следует процедура лигирования. На этой стадии бактериальную плазмиду рассекают ферментами и вклеивают в нее готовый ген-отрезок. Затем плазмиду склеивают веществом лигазой, чтобы она опять приняла кольцевую форму.

Третий этап носит название трансформации. Измененная плазмида (или рекомбинантная) вводится в бактериальную клетку. Это сравнительно нетрудно, поэтому ученые и пользуются плазмидными векторами. Бактерии часто обмениваются между собой генетической информацией с помощью плазмид. Этот процесс заменяет им половое размножение. К сожалению, плазмиды проникают внутрь далеко не всех бактерий. Вирусы более эффективны в этом отношении, поскольку при переносе информации они инфицируют 100 % клеток (бактерий).

Бактерии с измененным генетическим аппаратом называются трансформированными. Они впоследствии размножаются, в результате чего образуется колония генетически одинаковых организмов. Новый генотип оказывается растиражирован. Полученной колонии присваивается название клона. Поскольку клон является конечным продуктом генной инженерии, то само создание и тиражирование трансформированного наследственного материала таким путем носит название клонирования. Завершает процедуру клонирования скрининг – отбор клонов. Из множества трансгенных колоний выбирается одна, отвечающая всем требованиям. Осуществляется такой отбор за счет меток колоний радиоактивным веществом.

Генетическое конструирование включает в себя, помимо создания трансгенных существ, и другие приемы манипуляций над наследственным аппаратом. Среди этих методов числится искусственный мутагенез. Он менее впечатляет, чем операции с применением плазмид, однако весьма эффективен. Искусственный мутагенез сводится к усиленному воздействию на гены в клетках животного или растения активных веществ-мутагенов, ультрафиолета, рентгеновских лучей и прочих факторов, вызывающих изменения генов. Мутагенез протекает под контролем ученых, а потому приводит к возникновению существ с измененной в лучшую сторону наследственностью.


    Ваша оценка произведения:

Популярные книги за неделю