355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Сергей Бердышев » Открытия и изобретения, о которых должен знать современный человек » Текст книги (страница 13)
Открытия и изобретения, о которых должен знать современный человек
  • Текст добавлен: 2 мая 2017, 21:00

Текст книги "Открытия и изобретения, о которых должен знать современный человек"


Автор книги: Сергей Бердышев



сообщить о нарушении

Текущая страница: 13 (всего у книги 25 страниц)

Четвертое состояние

Подавляющее большинство веществ не образует стекол или жидких кристаллов. Почти все известные науке химические соединения, за редким исключением, способны существовать лишь в трех агрегатных состояниях – твердом, жидком и газообразном. При очень высоких температурах, не встречающихся на Земле в естественных условиях, практически любое вещество можно перевести в плазменное состояние. Однако молекулы вещества окажутся полностью разрушены. В чем же заключается плазменное состояние материи, сокращенно называемое плазмой?

Открытие плазмы

Плазма – значительно ионизированный газ, который по своим физическим свойствам резко отличается от обыкновенного, нейтрального газа. В природных условиях у поверхности Земли невозможно наблюдать плазму ни в какой ее форме, поскольку ионизационные процессы в воздухе очень слабы. Приземный воздух насыщен разнообразными ионами, причем для человека наиболее важны катионы (отрицательно заряженные молекулы), поскольку именно они поддерживают наше дыхание.

Естественно, избыточные электроны появляются у атома лишь потому, что их потерял другой атом. Процесс утраты электронов атомом, называемый ионизацией, приводит к образованию плазмы. Но если сравнить воздух с настоящей плазмой, то окажется, что нас окружает в целом нейтральная газовая смесь. Число катионов и анионов, называемых в совокупности аэроионами, ничтожно, а главное – слишком мала степень их ионизации.

Степень ионизации как величина означает количество электронов, утерянных ранее нейтральным атомом. Степень ионизации – очень важная физическая величина, потому что она может рассказать о свойствах плазмы и ее разновидностях. Во время грозовых разрядов, случающихся на нашей планете по 8 млн раз в день, на короткое время у земной поверхности рождается самая настоящая плазма с очень высокой температурой и большой степенью ионизации. В канале молнии (стримере) течет поток ионов, представляющих собой атомарные кислород и водород, и противоположный ему поток свободных электронов.

Напряжение, вызывающее разряд, равно 300 000 В, а сила тока достигает 1 А. Температура газов в канале молнии равна +27 тыс. °С. Этого вполне достаточно, чтобы вызывать кратковременные термоядерные реакции. В частности, во время примерно 1,24 % всех грозовых разрядов рождаются в ходе таких реакций потоки элементарных частиц нейтрино. Но постоянно такая плазма существовать не может, она быстро разрушается.

Человек научился создавать плазму самостоятельно. Ионизированный искусственным путем газ можно найти сейчас в каждой рекламной трубке. Неоновое газоразрядное свечение очень слабо ионизирует газ, ионы в нем холодны и движутся медленно. Зато электроны под действием постоянного напряжения разогреваются и разгоняются до больших скоростей.

Температура электронов в рекламной трубке достигает +10 000 °C, во что трудно поверить. Однако они действительно настолько горячи, вот только не способны передать свою тепловую энергию окружающим атомам. Электроны существуют совершенно независимо от ионов, образуя т. н. электронный газ. Вообще, настоящая плазма всегда представляет собой смесь из двух независимых газов – ионного и электронного.

На большой высоте над земной поверхностью царят подходящие условия для длительного существования слабо ионизированной низкотемпературной плазмы. Здесь происходят естественные процессы фотоионизации молекул воздуха под действием ультрафиолетового излучения Солнца. Слой этой плазмы, начинающийся на высоте около 60 км, получил название ионосферы. Ионосферой обладают и другие планеты Солнечной системы.

При слабой ионизации заряженные частицы составляют лишь 1 % от общей плотности плазмы. Космос является миром газа, подвергшегося более значительной ионизации. Громадными скоплениями такого газа оказались сильно разреженные туманности, сложенные продуктами взрывов сверхновых и т. д. Высокотемпературная сильно ионизированная плазма существует на горячих поверхностях звезд. Температура солнечной поверхности сравнительно холодна, она равняется +6000 °C. Существуют и более низкие звездные температуры – много менее +3000 °C. Самые горячие звезды, светила т. н. бело-голубого класса, нагреты до +20 000 °C и более.

Человек способен получать температуры, сопоставимые с теми, что царят в недрах звезд. В начале 1950-х гг. П. Л. Капица установил, при каких условиях в плотном газе под действием мощного разряда рождается плазменный шнур. Сегодня этот эффект используется в установках типа «ТОКАМАК», предназначенных для ядерно-физических экспериментов. Здесь плазменный тор нагревается до нескольких десятков миллионов градусов!

Применение плазмы – новые изобретения

Плазма нашла широкое применение в современной технике. Она применяется для создания неоновых трубок, ламп-вспышек для самолетов и лазеров. Лампы-вспышки на самолетах известны всем, кто наблюдал за ночным полетом самолета. Мигающие на крыльях самолета огоньки являются лампами-вспышками. Сходные лампы производят импульсы для накачки рубиновых лазеров. Есть плазменные лазеры, в которых ионизированный газ является рабочим телом.

Ошибочно думать, будто бы плазма совершенно не применяется в другой бытовой технике. Достаточно вспомнить известные всем почитателям компьютерного мира газоплазменные мониторы. Эти устройства мало популярны среди пользователей, поскольку несколько велики и потребляют много тока. Работать от аккумуляторов и батареек в переносном компьютере плазменные дисплеи не станут. И все-таки необычность устройства, высокая светимость экрана, неувядающая яркость красок, долговечность и полное отсутствие запаздывания привлекают к себе внимание ценителей прогрессивных изобретений в сфере компьютерной техники.

Устроен подобный монитор по аналогии с жидкокристаллическим. В нем установлены несколько стекол, пространство между которыми заполнено газовой смесью. Электрические импульсы поступают в эту среду и превращаются в газовые разряды, ионизирующие смесь. В результате молекулы газа возбуждаются и начинают светиться. Таким образом на дисплее высвечивается информация. Плазма внутри монитора, естественно, низкотемпературная и представляет собой слабоионизированный газ.

7. Законы тока

Настоящим переворотом в технике на рубеже XIX и XX вв. стало освоение электрической энергии и широкое ее приспособление для нужд развивающейся промышленности. Сегодня электрические приводы, электромоторы, электромагниты и прочие устройства вытеснили паровые установки из заводских цехов. Но электричество пошло гораздо дальше, оно проникло в быт, послужив толчком к созданию массы полезнейших устройств. Несомненно, открытие законов электрического тока заслуживает внимания как одно из наиболее крупных достижений физики.


Электрический заряд

Электрический ток представляет собой направленное движение элементарных частиц – электронов, являющихся единичными носителями электрического заряда. Таким образом, ток можно представить в виде течения зарядов по проводнику. Прежде чем человек открыл ток, ему предстояло обнаружить существование заряженных тел и установить законы взаимодействия зарядов, чтобы в дальнейшем прийти к мысли об их движении.

Открытие количества электрического заряда

Электрические явления были известны человеку с древнейших времен. Речь идет вовсе не о молниях, которые дали людям огонь, но при этом и порождали суеверный ужас. Молнии не так скоро связали с электричеством. В действительности история учения об электромагнетизме началась с открытия удивительного свойства, которым обладает янтарь. Древние греки заметили, что кусочек янтаря вследствие трения притягивает к себе мелкие и легкие предметы.

Так человек впервые наблюдал электричество без ужаса и пытался даже объяснить поразительный феномен с натурфилософских позиций. В XVII в. англичанин Гильберт повторял опыты древних. Он убедился, что присущими янтарю свойствами обладают и другие минералы, в частности горный хрусталь и алмаз. Изучением необычных свойств камней занялись многие физики. Поскольку янтарь по-древнегречески назывался «электроном», то и природные явления, связанные с притяжением тел минералами в результате трения, получили название электрических.

В 1672 г. выходит в свет первая книга, в которой приводится описание опытов с электричеством. Ее автор – немецкий ученый О. фон Герике, известный своими экспериментами с магдебургскими полушариями. Герике является первым изобретателем электрической машины. Его установка не выполняла полезной работы, но была опытной. Устройство состояло из крупного шара, изготовленного из серы, который заряжался посредством трения.

Герике сделал немало открытий при помощи своего шара, в т. ч. обнаружил существование электрического отталкивания. Оказалось, что под действием электричества тела не только притягиваются, но и отталкиваются друг от друга.

Француз Дюфе в 1734 г. создает теорию стеклянного и смоляного электричества, в дальнейшем преобразившуюся в теорию положительного и отрицательного электричества (теорию плюсовых и минусовых зарядов). Дюфе выяснил, что янтарь притягивает к себе строго определенные тела, а другие отталкивает. Точно так же ведут себя потертые шелк, бумага и прочие материалы и минералы. Но вот стекло ведет себя с точностью до наоборот. Оно притягивает то, что отталкивает янтарь, и отталкивает то, что янтарь притягивает. Со стеклом сходны по электрическим свойствам горный хрусталь, шерсть и прочие материалы. Тем самым Дюфе убедился, что в природе существуют две группы материалов, порождающие два противоположных друг другу рода электричества.

Нелишне будет заметить, что утверждение о притягивании тел с противоположными зарядами не совсем верно, если понимать его буквально. Если тела притягиваются, то одно из них может вовсе не иметь заряда, т. е. быть электрически нейтральным. Но вот отталкивание возможно лишь между действительно заряженными телами, причем заряженными одинаково.

Сам Дюфе называл эти две разновидности стеклянным и смоляным электричеством. Новое название – положительное и отрицательное – было предложено американским ученым Б. Франклином, который больше известен как общественный деятель. Именно Франклин первым догадался об электрической природе молнии и нашел способ показать это экспериментально. Однако этой догадке предшествовало создание лейденской банки. Это устройство, являющееся первым в истории конденсатором, было создано на рубеже 1745–1746 гг. независимо двумя учеными – голландцем Мушенбруком и немцем Клейстом.

Название конденсатора происходит от города Лейден, в котором ставил свои эксперименты Мушенбрук. Посредством металлического шеста и медной проволоки он соединил источник электричества (натираемый руками стеклянный шар) с банкой, заполненной водой. Мушенбрук стремился извлечь рукой искру из металлического шеста. Банка предназначалась для отвода излишнего электричества, поскольку тогда считалось, что вода не обладает электрическими свойствами.

Эффект получился обратный ожидаемому: вода накопила в себе электрический заряд и разрядилась в Мушенбрука, который держал лейденскую банку своей правой руке. «Моя правая рука, – признавался физик в письме Реомюру, – была поражена ударом такой силы, что все тело содрогнулось, как от удара молнии». Сходство действия лейденской банки с грозой и ярчайшие искры, которые получали последующие экспериментаторы из первого конденсатора, убедили Франклина в принадлежности молнии к электрическим явлениям.

В 1750 г. Франклин составил описание машины для изучения электрической природы молнии. Он утверждал, что специальный железный шест, размещенный на крыше башни, во время грозы будет собирать атмосферное электричество и позволит ученому извлекать искры. Спустя некоторое время Франклин уже разработал на основе своего шеста громоотвод.

С этим устройством связана прелюбопытная история. Ученые долгое время спорили, какой формы громоотвод следует устанавливать на крышах – закругленный или заостренный. Ситуация в физике напоминала войну «тупоконечников» и «остроконечников» в книге Дж. Свифта «Путешествия Гулливера».

Но на самом деле развитие науки вовсе не было таким уж забавным. Познание природы грозы было весьма опасным. После того как французский исследователь Далибар успешно проделал первый опыт по рекомендации Франклина, т. н. громовая машина была создана в России учеными Г. Рихманом и М. В. Ломоносовым. Во время одного из экспериментов, проходивших в 1753 г., Рихман погиб от соприкосновения с шаровой молнией. В конце XVIII столетия электрические силы привлекают к себе все большее внимание, причем не только физиков, но и медиков.

Сообщение Мушенбрука о действии на его организм разрядного удара не прошло незамеченным. Сходные сообщения от прочих экспериментаторов и богатые данные о пострадавших вследствие попадания молнии насторожили некоторых врачей. Знаменитый деятель Великой Французской революции Марат был по специальности медиком и одним из первых заинтересовался проблемой. Он всерьез полагал, что электричество может пригодиться медицине для лечения болезней и даже посвятил этому вопросу свой научный труд «Трактат о медицинском электричестве».

В 1820–1830-х гг. эти изыскания увенчались изобретением электрофореза, предназначенного для введения под кожу или через слизистые оболочки лекарственных веществ (в то время – соединений йода) под действием постоянного тока.

Направление исследований феномена живого электричества назвали гальванизмом. Гальванизм, как ни странно, первоначально очень мало был полезен медицине, хотя эксперименты ставились преимущественно на живых существах. Зато физика многим обязана возникновению этого учения, названного в честь итальянского врача и изобретателя Л. Гальвани. О его работах будет рассказано ниже.

Пока же рассмотрим, как ученые объясняли сущность электричества. Наиболее прогрессивные умы стремились в духе того времени свести новооткрытое явление к элементарным частицам и фундаментальным законам классической механики. Главные заслуги в данном направлении принадлежат Франклину и петербургскому академику Ф. Эпинусу. Франклин под влиянием учения о теплоте верил, что электричество связано с мельчайшими частицами особого рода, которые наделены способностью проникать сквозь вещество.

Эти частицы образуют в совокупности т. н. электрическую жидкость. Если у тела отнять путем трения часть электрической жидкости, то оно приобретет положительный заряд. Тело, перенявшее долю частиц, зарядится отрицательно. Если тела вновь соединить, то количество жидкости между ними выровняется таким образом, что оба станут электрически нейтральны (незаряжены). Таким образом, Франклин приблизился к открытию закона сохранения электрического заряда.

Эпинус, пребывая под влиянием открытий И. Ньютона, увязал взаимодействие заряженных тел с законом всемирного тяготения. Он полагал, что заряженные тела притягиваются и отталкиваются по аналогии с притягивающимися массами в классической механике. Эпинус сделал немало открытий, сравнивая теорию Ньютона с результатами экспериментов над электричеством, и первым четко сформулировал закон сохранения электрического заряда: «Если я хочу в каком-либо теле увеличить количество электрической материи, то я должен неизбежно взять ее вне его и, следовательно, уменьшить ее в каком-либо другом теле».

Эти воззрения, возобладавшие во всем научном мире, послужили предпосылкой для открытия основного закона электростатики, получившего название закона Кулона. Ш. Кулон – великий французский физик, установил данную закономерность в 1780-х гг. Если Эпинус только предполагал аналогию между электричеством и гравитацией, то Кулон решил проверить опытным путем существование подобного сходства между внешне разнородными явлениями. Параллельно с Кулоном и независимо от него сходными исследованиями занимался англичанин Кавендиш.

Кулон использовал в своих экспериментах изобретенные им самим же крутильные весы, представлявшие собой разновидность электроскопа. Посредством крутильных весов можно было наблюдать сравнительную величину «электрических сил» двух взаимодействующих зарядов. Кулон в ходе изысканий показал, что электрические заряды взаимодействуют между собой по закону Ньютона: сила притяжения и отталкивания обратно пропорциональна квадрату расстояния. Но ученый пошел еще дальше. Он выяснил, что отталкиваются только одноименные заряды («плюс» и «плюс» или «минус» и «минус»), тогда как притягиваются разноименные («плюс» и «минус»).

Кроме того, если Ньютон опирался в формулировке своего закона на количество вещества, как тогда называли массу, то Кулон ввел эквивалент массы в учение об электричестве. Ученый назвал этот эквивалент очень просто – количеством электричества. Экспериментально Кулон показал, что величина количества электричества пропорциональна силе взаимодействия между зарядами. Наконец, Кулон определил минимальное количество электрического заряда, возможное в природе. Впоследствии ученые поняли, что носителем минимального заряда является элементарная частица, предсказанная Б. Франклином. В такой обстановке совершил свое открытие Л. Гальвани.

Изобретение гальваноэлемента

История физики полна курьезов и парадоксов, в чем успел убедиться читатель. Если спросить у человека, далекого от точных наук, кто изобрел гальванический элемент, то можно услышать в ответ, что это сделал итальянский врач Л. Гальвани. В действительности создатель первого гальванического элемента безвестен, а само изобретение насчитывает несколько тысячелетий.

Об этом мы можем судить благодаря удивительной археологической находке, сделанной под Багдадом. Ученые во время раскопок древнего города Вавилона, находившегося прежде на этом месте, обнаружили странную конструкцию из металлических кружков, в которой специалисты узнали очень примитивную гальваническую батарею. Для чего понадобилась батарейка в ту далекую эпоху, никому неизвестно. Находка отнесена к числу самых загадочных артефактов.

Гальвани же не мог создать гальваноэлемент, поскольку придерживался ошибочных взглядов на сущность открытого им явления. Заинтересованный действием электрического тока на живые ткани, ученый в 1780-х гг. проводит серию экспериментов над препарированными лягушками. Гальвани наблюдал, как во время грозы мышцы лягушек, подвешенных на металлические крюки, сокращаются под действием атмосферного электричества.

Однако более поздние опыты, поставленные в ясную погоду и в комнатных условиях, показали, что мышцы у препарированных лягушек все равно сокращаются время от времени. Спинной мозг у таких лягушек был по-прежнему соединен с медным крюком, который касался железной пластины. Врач решил, что обнаружил «живое электричество», вырабатываемое организмом лягушки. Над Гальвани многие посмеялись. «На меня нападают две совершенно противоположные партии: ученые и невежды, – писал впоследствии Гальвани. – И те и другие называют меня лягушачьим учителем танцев».

Возможно, замечательное открытие оказалось бы забыто, но необычными опытами заинтересовался соотечественник Гальвани, физик А. Вольта, который доказал, что в организме лягушки нет «живого электричества». До известной степени Вольта ошибался, поскольку в организме любого живого существа присутствуют электрические заряды. Электротоки постоянно перемещаются в тканях, в первую очередь в нервной, передавая по ней импульсы в мозг и из мозга. Электротоки особенно ярко проявляются при работе мышц – скелетных и сердечной.

Электрокардиограммы (ЭКГ) и электроэнцефалограммы (ЭЭГ) составляются по данным измерений интенсивности биотоков, чтобы проследить за работой сердечной мышцы и коры головного мозга. Тем не менее Вольта был прав в одном: в своих экспериментах Гальвани не смог бы выявить электротоки в организме лягушки, поэтому «живого электричества» врач не открыл. Физик предположил, что мускулатура животного послужила всего лишь индикатором присутствия тока, т. е. среагировала на него сокращениями.

Мышцы лягушки в экспериментах Вольта сокращались под воздействием обычного электричества (не «живого») точно так же, как в опытах Гальвани. Источником тока в опытах врача послужил, видимо, контакт двух металлов, а именно меди и железа. Тканевые жидкости в теле лягушки играли роль дополнительного проводника, помещенного между металлами. Отталкиваясь от своих предположений, физик сконструировал первую гальваническую батарею, повлиявшую на дальнейшее развитие науки.

Вольтов столб, как назвали этот источник постоянного тока ученые, состоял из ряда металлических пластин двух типов – цинковых и серебряных, разделенных картонными кружками, которые предварительно пропитывались соленой водой. Поскольку приборов для измерения тока тогда не существовало, то Вольта использовал собственную руку для регистрации тока. Если подключить гальванический элемент в замкнутую цепь, проходящую через человеческое тело, то возникают сходные ощущения, как в эксперименте с лейденской банкой.

Вольта объяснил возникновение тока дисбалансом электрических зарядов в батарее. Когда взаимодействуют разнородные металлы, то в них нарушается равновесие электрических зарядов. В замкнутой цепи заряды приходят в движение, стремясь прийти к равновесию. Но поскольку это не удается, то заряды движутся постоянно, порождая непрекращающийся электрический ток. В дальнейшем Вольта усовершенствовал свой столб, предложив чашечную батарею гальваноэлементов.

Используя химическое действие электротока, ученые стали применять батареи для проведения исследования веществ. Так, к примеру, англичанин Дэви в 1807 г. открыл неизвестные до того момента элементы калий и натрий, расщепляя постоянным током некоторые щелочи. Ныне батареи применяются невероятно широко почти во всех компактных или переносных устройствах, работающих от электротока.

На батарейках работают переносные компьютеры, карманные фонарики, магнитофоны, наручные кварцевые часы, будильники, поющие поздравительные открытки, детские игрушки и множество других устройств. Наконец, на батарейках работают самые полезные домашние устройства – пульты дистанционного управления. Американские специалисты по маркетингу подсчитали, что сегодня в развитых странах на каждую семью приходится в среднем от 2 до 3,5 пульта дистанционного управления.

С помощью таких пультов мы включаем телевизор и видеомагнитофон, управляем джакузи и компактным домашним кинотеатром, открываем дверь гаража. Вероятно, в обозримом будущем станут выпускаться пульты, совмещающие в себе все необходимые функции, т. е. позволяющие оперировать любой бытовой техникой, рассчитанной на дистанционный контроль. Уже сейчас в продаже появились универсальные пульты, пригодные для дистанционного управления как телевизором, так и видеомагнитофоном (естественно, речь идет не о видеодвойке). По мере совершенствования пультов и их дальнейшей эволюции будут требоваться и батарейки, которые, скорее всего, тоже претерпят различные метаморфозы.


    Ваша оценка произведения:

Популярные книги за неделю