355 500 произведений, 25 200 авторов.

Электронная библиотека книг » С. Чирков » Я познаю мир. Вирусы и болезни » Текст книги (страница 13)
Я познаю мир. Вирусы и болезни
  • Текст добавлен: 19 сентября 2016, 13:32

Текст книги "Я познаю мир. Вирусы и болезни"


Автор книги: С. Чирков


Жанр:

   

Энциклопедии


сообщить о нарушении

Текущая страница: 13 (всего у книги 14 страниц)

По разным оценкам, от 20 до 60 процентов известных бактерий лизогенны, то есть несут в своем, так сказать, теле хотя бы один умеренный фаг.

Впрочем, иногда фагу надоедает вести такую растительную жизнь. Тогда он снова выщепляет свои гены из бактериальной хромосомы, превращается в полноценный вирулентный фаг, делает много своих копий, убивая бактериальную клетку, и заражает другие клетки, где, в зависимости от обстоятельств, ведет себя как вирулентный либо как умеренный бактериофаг.

Выгоды лизогении для фага понятны. А в чем выгода для бактерии? Почему она дает приют вирусу, который, конечно, долгое время может вести себя скромно и незаметно, но, с другой стороны, в любой момент готов разбушеваться и убить бактерию, пригревшую его в недобрый час?

Оказывается, для бактерии выгоды еще более очевидны, и, видимо, они вполне компенсируют риск вирулентного преображения умеренного фага.

Фаговые гены, пристроенные среди бактериальных, не являются бесполезным балластом, а работают на благо бактерии, обеспечивая зараженному хозяину важные преимущества перед другими, незараженными клетками. Умеренный фаг может, например, сделать бактериальную клетку устойчивой к заражению другим родственным вирусом. Клетки кишечной палочки, лизогенные по некоторым фагам, быстрее и активнее растут при недостатке питательных веществ, чем нелизогенные культуры. Фаг может придавать зараженной бактерии новые свойства, такие, как устойчивость к антибиотикам, изменения антигенности (что помогает бактерии избежать иммунного ответа хозяина), способность производить токсины и многие другие.

Такое мирное сосуществование двух организмов с обоюдной выгодой, которое идет на пользу им обоим, называется, как известно, симбиозом.

Но откуда у фага могут оказаться гены, полезные для бактерии? Генетического материала у вирусов, даже крупных, не так уж много, им бы о себе позаботиться. Выяснилось, что гены эти, в сущности, не фаговые, а бактериальные, которые фаг когда–то просто–напросто присвоил.

Выщепляя свои гены из бактериальной хромосомы, фаг может (конечно, совершенно случайно!) прихватить и расположенный по соседству бактериальный ген, который ему вовсе не принадлежал. Заразив другую бактерию, фаг передаст ей «украденные» гены. Эти гены начнут работать, придавая бактерии новые свойства, которые могут оказаться очень полезными для нее. Но ведь эти гены могут кодировать и какой–нибудь микробный токсин? Такое действительно случается сплошь и рядом, и вот несколько тому примеров.

Холерные вибрионы распространены довольно широко, но попадая – обычно с питьевой водой – в организм человека, не причиняют ему вреда. Заболевание вызывают только такие вибрионы, у которых, во–первых, есть нитевидный вырост, так называемый «пиль» – с его помощью бактерия прикрепляется к стенке кишечника – и которые, во–вторых, вырабатывают холерный токсин. Выяснилось, что ген холерного токсина привносит в холерный вибрион один из нитевидных фагов, а гены, определяющие образование пиля, когда–то проникли в него с другим фагом и закрепились в бактериальной хромосоме. В результате суперинфекции двумя фагами безобидная до той поры бактерия приобретает способность заселять кишечник, вырабатывать холерный токсин и становится смертельно опасной, вызывая обширные пандемии холеры.

Во всех регионах мира встречается сальмонеллез. Заболеваемость сальмонеллезом растет, особенно это касается крупных городов с централизованной системой продовольственного снабжения. Считается, что эпидемия сальмонеллеза, охватившая в последнее десятилетие весь мир, не в последнюю очередь обусловлена усилением патогенности сальмонелл под влиянием умеренного фага DT104, в результате заражения которым бактерия приобрела устойчивость к широкому спектру антибиотиков. Другой умеренный фаг ЭорЕФ усиливает способность сальмонелл к колонизации кишечника. Ген энтеротоксина А – одного из самых мощных факторов патогенности золотистого стафилококка – также переносится умеренным фагом. Коринебактерия – возбудитель дифтерии вызывает заболевания только в том случае, если она сама заражена умеренным фагом (3 («бэта»), который несет ген дифтерийного токсина. Бактериофаги могут распространять факторы патогенности возбудителей чумы и дизентерии. Возможно, таким же способом приобрели болезнетворность бактерии – возбудители скарлатины, коклюша и менингита.

Таким образом, умеренные бактериофаги способны переносить отдельные гены и целые блоки генов от одного микроорганизма к другому, подчас радикально изменяя свойства бактерии, в которую этот фаг проник. Обеспечивая зараженной бактерии серьезные преимущества в борьбе за существование, умеренные бактериофаги являются важным фактором эволюции микроорганизмов.

Иногда бактерия настолько входит во вкус, что буквально порабощает проникший в нее фаг, лишая его возможности вернуться в вирулентное состояние. Фаговые гены, оказавшиеся полезными для бактерии, навсегда становятся частью бактериальной хромосомы. Фаг иногда предпринимает попытки вырваться из плена, и ему даже удается порой соорудить отдельные фрагменты вириона, чаще всего хвосты, но им уже не суждено собраться в полноценную фаговую частицу. Между тем, эти хвосты по–прежнему способны связываться с поверхностью других бактерий и наносить им точечные уколы. Бактерия, производящая такие хвосты, сама нечувствительна к их булавочным уколам, но охотно пользуется ими для устранения конкурентов, доводя их до гибели.

Водоплавающие фаги

Морская живность – это не только киты и акулы, треска и кораллы, водоросли и планктон. Выяснилось, что море буквально кишит бактериями! Ну, а где бактерии, там и их непременные спутники – бактериофаги. Вирусные частицы обнаружены в прибрежной зоне и в открытом океане, в тропических и полярных морях, на поверхности и в толще воды, вплоть до самого дна.

Какое–то время вирусы просто не замечали: ведь рассмотреть их можно было только в электронном микроскопе, к тому же пробу воды нужно сначала хорошо сконцентрировать. Но когда увидели и подсчитали количество вирусных частиц, стало ясно, что вирусы должны играть важную роль в жизни обитателей морей и океанов. Количество вирусных частиц может достигать 10 миллиардов в одном литре воды, то есть их оказалось в несколько раз больше, чем бактерий. Появился даже термин – виропланктон. Больше всего вирусов находится в поверхностных слоях прибрежных вод и меньше всего в океанических глубинах. В прибрежных водах численность вирусов мало зависит от глубины.

Вирусов всегда больше там, где больше бактерий. Обилие бактерий на дне и в его по сравнению с вышележащими слоями привлекает не только мелких придонных беспозвоночных, которые ими кормятся, но и вирусы. Морские льды обычно обогащены микроорганизмами по сравнению с омывающей их водой, и та же закономерность обнаружена и для вирусов. Тесная связь численности бактерий и вирусов показывает, что значительная часть морских вирусов является, скорее всего, бактериофагами. Убивая и разрушая бактерии, вирусы ограничивают их безудержное размножение. Считается, что смертность среди микроорганизмов, обитающих на поверхности, может быть наполовину вызвана вирусной инфекцией, и именно вирусы ответственны прежде всего за гибель микроорганизмов в глубоководных слоях.

Вирусы поражают не только бактерии, но и фитопланктон – сообщество фотосинтезирующих цианобактерий и микроскопических водорослей. Впрочем, цианобактерии (раньше их называли сине–зелеными водорослями) не слишком страдают от вирусов. Возможно, это происходит потому, что многие цианофаги находятся в лизогенном состоянии.

Помимо бактериофагов, в морской воде обнаружены вирусы, способные заражать диатомовые водоросли, которые являются основой фитопланктона, и многих представителей одноклеточных жгутиковых водорослей, таких как золотистые водоросли хризофиты, кокколитофориды, празинофиты и криптомонады. У мельчайшей жгутиковой водоросли микромонаса (в клетке этой водоросли, наряду с ядром, помещается всего один маленький хлоропласт и одна митохондрия) удалось обнаружить целых 5 неродственных вирусов. А у еще одной водоросли – раф ид офита нашли 14 близкородственных вирусов!

В большинстве случаев в водорослях находят крупные полиэдрические частицы с четкими очертаниями диаметром 150–250 нанометров, которые больше всего напоминают иридовирусы насекомых. Частицы подобных вирусов найдены в зеленых и в бурых водорослях; в зеленых и красных водорослях обнаружены также вирусоподобные частицы других типов. Вирусные частицы из харовых водорослей выглядели как жесткие палочки и по внешнему виду напоминали вирус табачной мозаики, но были почти вдвое длинней. Их белок оболочки тоже очень похож на белок оболочки вируса табачной мозаики.

Жизнь в море только внешне может выглядеть хаотичной. На самом деле все морские организмы связаны, так сказать, пищевыми цепями, и фитопланктон находится в основании этих цепей. Это означает, что, поражая водоросли, вирусы регулируют количество корма для организмов, питающихся планктоном, прежде всего рыб и мелких ракообразных. Кроме того, фитопланктон вырабатывает кислород, и получается, что вирусы могут влиять на содержание кислорода в морской воде и в атмосфере. Обнаружено, что при разрушении вирусами некоторых одноклеточных водорослей выделяется газ диметилсульфид, который, попадая в атмосферу, способствует конденсации водяного пара и образованию облаков. Таким образом вирусы могут влиять на погоду, как ни фантастично это звучит. Вирусная инфекция имеет непосредственное отношение к прекращению цветения воды, наступающей при бурном размножении водорослей.

Вирусы можно найти и в пресных водоемах. Например, в планктоне Ладожского озера их оказалось несколько миллиардов в одном литре воды, то есть содержание вирусных частиц в относительно чистом пресноводном озере может быть не меньше, чем в морской воде. Встречались главным образом хвостатые бактериофаги с головкой различной формы и отростком разной длины, а также нитевидные вирусные частицы, которые могли быть или фагами, или вирусами растений. Кроме того, обнаружены крупные сферические вирусы, покрытые оболочкой.

Любопытнейшую находку сделали американские вирусологи. Они нашли фаги, заражающие бактерию сульфолобус. Казалось бы, что особенного? Выделяя тот или иной вид бактерий, исследователи обычно обнаруживают и соответствующие фаги. Но дело в том, что сульфолобус живет в горячих серных источниках при температуре около 80 градусов. В этих источниках газ сероводород, выделяющийся из толщи горных пород, превращается в элементарную серу. Ей–то и питается сульфолобус, попутно выделяя серную кислоту. Но даже жизнь в горячей серной кислоте не спасает от настырных бактериофагов. Сульфолобус обнаружен в кислых горячих источниках в Исландии, Новой Зеландии, на Камчатке, в Иеллостоунском национальном парке США, Италии, Сальвадоре, Доминиканской республике и в Японии, и всюду в этих же источниках обнаружены фаги, заражающие этот микроорганизм.

Фаги сульфолобуса очень разнообразны. Среди них обнаружены формы, совершенно невиданные не только у бактериофагов, но и у вирусов вообще. Например, встречаются вирусы, похожие на веретено, при этом они любят собираться в розетки. Другие тоже выглядят как веретено, но их частицы намного крупнее и сильно утолщены посередине, так что их центр смахивает скорее на лимон. Обнаружены вирусы в форме капли. И все они, подобно своему хозяину сульфолобусу, тоже вынуждены жить в почти кипящей серной кислоте. Как им это удается, пока непонятно.

Фаги – лекари

Кажется, что фаги просто созданы для лечения бактериальных инфекций: они уничтожают только болезнетворного микроба, а не всех скопом, как антибиотики; они безвредны для организма, их количество по мере уничтожения микроба не только не падает, а, наоборот, возрастает – и тем не менее, широкого распространения как средство борьбы с болезнетворными микробами бактериофаги не получили.

А ведь было время, когда казалось, что найдена чуть ли не панацея. Инициатором был все тот же Д’Эррель. Изучая причины эпидемии дизентерии, он обнаружил, что количество фага, небольшое в начале заболевания, очень сильно возрастает по мере его развития и достигает максимальных значений, когда больной пошел на поправку. Напрашивался вывод: развитие фага, заражающего данную патогенную бактерию, является причиной выздоровления больного от инфекционного заболевания.

Не в традициях Пастеровского института (а Д’Эррель в 1917 году работал именно в нем) было медлить с внедрением новшеств в медицинскую практику. Поначалу все же решили попробовать на цыплятах. Куры болели сальмонеллезом, их надо было как–то лечить, а антибиотики еще не были открыты. Выяснилось, что бактериофаг, введенный через клюв или путем инъекции, снижал смертность, укорачивал время эпидемии и предотвращал ее повторное развитие. Вскоре эти результаты подтвердили другие исследователи в Голландии. Фаготерапия оказалась очень эффективна при лечении заражения крови у буйволов в Индокитае, тогда еще французской колонии. После этого Д’Эррель решил попробовать эффективность фаготерапии на себе. Вначале он проверил безопасность сальмонеллезного фага как такового, глотая все возрастающие его количества, и не обнаружил ни малейшего вреда от этой процедуры. Не избежали участи подопытных кроликов и члены его семьи, проделавшие то же самое. После этого Д’Эррель выяснил, опять–таки экспериментируя на себе, на членах своей семьи и на своих сотрудниках, что подкожные инъекции бактериофага тоже не вызывают побочных реакций. Было решено, что фаготерапию можно внедрять в клиническую практику.

О фаготерапии заговорили, когда Д’Эррель вылечил – ни много, ни мало – четырех больных бубонной формой чумы. Когда он работал в Александрии (этот непоседливый ученый объездил практически весь мир), случилось так, что Суэцким каналом проходило судно с больными чумой на борту. Д’Эррель сделал инъекцию противочумного фага прямо в бубон, и больные выздоровели.

Это открытие привлекло всеобщее внимание. Появилась великая надежда на создание универсального способа лечения! Да и первые результаты оказались весьма обнадеживающими. За короткое время были обнаружены бактериофаги, эффективные против возбудителей сибирской язвы, скарлатины, тифа, холеры, дифтерии, гонореи, паратифа, бубонной чумы. Этот непредвиденный способ избавления человечества от ряда самых опасных заболеваний воспламенил общественное воображение. Работы по фаговой терапии наводнили медицинскую литературу. Откликнулись и писатели. Герой романа Синклера Льюиса «Эроусмит», написанного в 1924 году, решает заняться практическим применением фаготерапии. Когда на островах Карибского архипелага вспыхивает эпидемия бубонной чумы, он немедленно отправляется туда, чтобы испытать свой бактериофаг. Однако, возбудитель чумы не спешил погибать от чумного бактериофага, а вот жена Эроусмита и его ближайший сотрудник погибли во время испытаний. Эроусмит возвращается в Нью–Йорк и решает посвятить свою жизнь уже не практическому применению бактериофага, а изучению его природы.

Но крестовый поход за уничтожение бактериальных заболеваний с помощью фага продолжался. Британское правительство пригласило Д’Эрреля в Индию для борьбы с холерой. Лучших условий для проверки эффективности фаголечения нельзя было и представить! Возбудитель находится в желудочно–кишечном тракте, способ передачи и эпидемиологические характеристики холеры хорошо изучены, убитые бактерии перестают выделять токсин, и нет никакой вакцины против этого страшного заболевания. Проведенные в Индии в 20–30–х годах XX века работы показали: применение холерного фага облегчает течение заболевания, снижает его продолжительность и смертность от холеры.

Фаги пробовали использовать для предупреждения нагноения огнестрельных ран в Красной Армии во время Финской войны и в армии фельдмаршала Роммеля, воевавшей в Северной Африке во время Второй мировой войны.

Кто знает, как сложилась бы дальнейшая история фаготерапии, но Д’Эррель просидел всю войну в Виши под домашним арестом, работа Туорта была прервана в 1944 году, когда его лаборатория была разрушена немецкой бомбой. Кроме того, энтузиазм Д’Эрреля разделяли немногие, и важнейшей причиной была та, что о природе бактериофагов практически ничего не было известно. Даже то, что бактериофаг – это вирус, признавали далеко не все. Но самая главная беда для фаготерапии пришла, откуда не ждали – появились антибиотики. Легкость их получения, известный химический состав, широкий спектр действия и масса других достоинств обеспечили антибиотикам быструю победу в состязании с фагами.

Оттесненные на далекую периферию, исследования по фаготерапии все же продолжались. Под контролем Всемирной организации здравоохранения в 70–х годах XX века в Пакистане было проведено изучение эффективности холерных фагов, аналогичное довоенным исследованиям в Индии. Было установлено, что использование очень высоких доз фага (100 – 200 фаговых частиц на один холерный вибрион) позволяет добиться таких же результатов, как и применение тетрациклина, а если фага брать меньше – скажем, одну частицу фага на один вибрион – то никакого эффекта обнаружить не удается. В 80–х годах открыли, что бактериофаги уничтожают патогенные варианты кишечной палочки в кишечнике телят, причем делают это не хуже, чем тетрациклин, ампициллин или левомицетин. С помощью бактериофагов пробовали бороться с бактериальной порчей мясных продуктов, однако результаты оказались не слишком впечатляющими. Более успешным оказался опыт применения бактериофагов для лечения бактериальных заболеваний рыб, моллюсков (мидий и устриц) и ракообразных (крабов, креветок, омаров и тому подобных обитателей) – нет, не морских глубин, а тех, что искусственно разводят в бассейнах. В ограниченном водном пространстве фаг действует очень эффективно.

В медицине фаготерапия применяется сейчас главным образом при острых кишечных инфекциях. В этих случаях бактериофаг вводят* через рот, как микстуру, предварительно нейтрализовав кислотность желудочного сока, иначе фаг теряет в желудке активность. В последние годы фаги, используемые для лечения, изготавливают со специальным покрытием, которое препятствует разрушительному действию желудочного сока. Например, для лечения дизентерии может назначаться дизентерийный бактериофаг, эффективный против различных видов шигелл. Препарат выпускается в жидком виде и в таблетках с кислотоустойчивым покрытием. Фаги используют для ликвидации хронических очагов внутрибольничной инфекций в стационарах.

И все же антибиотики представляют собой гораздо более эффективное средство лечения бактериальных инфекций. Однако, появилось огромное количество болезнетворных бактерий, устойчивых к антибиотикам. Общеизвестны побочные эффекты применения антибиотиков. С другой стороны, уже давным–давно выяснена природа бактериофагов. Поэтому в последнее время наблюдается новый всплеск интереса к фаготерапии и, вполне возможно, у этой главы когда–нибудь появится продолжение.

Тем не менее, на возможный вопрос, а есть ли от вирусов какая–нибудь польза, кроме вреда? – можно дать безусловно положительный ответ. Бактериофаги уже сослужили неоценимую службу человечеству, только польза состояла не в их медицинском применении, а совсем в другом. Изучение бактериофагов сыграло первостепенную роль в понимании молекулярных основ жизненных процессов и оказалось абсолютно решающим для рождения молекулярной биологии и генетической инженерии. В наши дни биотехнологическая индустрия, основанная на фантастических достижениях этих наук, приносит прибыли, исчисляемые десятками миллиардов долларов. А началось–то все с бесконечно далекого от насущных нужд исследования природы бактериофагов, предпринятого впервые в 30–х годах XX века австралийским ученым Ф. Бернетом и венгерским ученым М. Шлезингером и блестяще продолженного в США работами фаговой группы под руководством физика Макса Дельбрюка.

Происхождение вирусов

Жан Эффель в своей книге "Сотворение мира" утверждает, что вирусы созданы дьяволом. Нельзя не признать, что для этой точки зрения есть все основания.

Говоря всерьез, вопрос о том, как возникли вирусы, далек от разрешения и, возможно, никогда не будет решен. Очевидно одно – вирусы не могли возникнуть раньше, чем клетка, в которой они только и могут размножаться. Таким образом, вирусы нельзя считать простейшими формами жизни, от которых пошли ее более продвинутые формы.

Существует несколько теорий происхождения вирусов. Одна из них заключается в том, что вирусы произошли от клеток, которые когда–то приспособились к существованию внутри других клеток, чтобы кормиться их содержимым. При этом постепенно происходило упрощение структуры паразитирующих клеток и утрачивались многие свойства, которые становятся ненужными, когда живешь за чужой счет. Возможно, именно так возникли риккетсии и хламидии – тоже, как и вирусы, внутриклеточные паразиты, и тоже, как и вирусы, возбудители многих инфекционных заболеваний.

Риккетсии вызывают такие заболевания, как эпидемический сыпной тиф (называемый также вшивым, военным, голодным тифом), крысиный сыпной тиф, клещевой сыпной тиф Северной Азии; различные лихорадки, такие как марсельская лихорадка, лихорадка Ку, японская речная лихорадка, пятнистая лихорадка Скалистых гор и другие заболевания. Болезнь кошачьей царапины тоже является риккетсиозом. Риккетсии – это очень мелкие бактерии. У них есть оболочка, напоминающая стенку бактериальной клетки, и размножаются они, подобно другим бактериям, путем деления. С вирусами их роднит внутриклеточный паразитизм.

Еще более просто устроенными паразитами являются хламидии, вызывающие, например, орнитоз, трахому и многие инфекции мочеполового тракта. Как и у вирусов, у них есть внеклеточные и внутриклеточные формы, весьма отличные одна от другой. Они и по размеру больше похожи на крупный вирус. Долгое время их даже считали вирусами. Но, как и риккетсии, хламидии тоже являются очень мелкими бактериями.

Казалось бы, еще шаг в сторону упрощения – и из внутриклеточных паразитов, подобных риккетсиям и хламидиям, могли бы появиться вирусы. Тем не менее сомнительно, что все происходило именно так, потому что вирусы резко, принципиально отличаются от них. Вирусная частица устроена совсем иначе, чем любая, даже самая маленькая клетка. В отличие от клеточной мембраны, оболочка вируса построена из белка. Если вирусная частица одета еще и в мембрану, то эта мембрана всегда имеет клеточное происхождение. Ни один вирус не умеет вырабатывать энергию, необходимую для жизнедеятельности. Ни один вирус не обладает собственной системой для синтеза белка. Ни один вирус не размножается, подобно клеткам, делением надвое. Вирусная частица после проникновения в клетку распадается, а дочерние вирионы образуются заново. Словом, разрыв между вирусами и другими внутриклеточными паразитами подозрительно похож на пропасть, а пропасть, как известно, нельзя перепрыгнуть в два прыжка.

Поэтому более популярна теория происхождения вирусов не от клетки в целом, а из ее генетических элементов, прежде всего из хромосомной ДНК.

Согласно этой гипотезе, вирусы возникли из структур, предназначенных для переноса генов из одной клетки в другую. Какие есть основания у этой гипотезы?

Гены любого живого организма подвержены непрерывному изменению. Такие изменения возникают как из–за точечных замен одного нуклеотида на другой, так и при перемещении по геному довольно крупных кусков генетического материала.

Разнообразные мобильные генетические элементы переносят гены из одного участка хромосомы в другой и из одной хромосомы в другую, постоянно создавая новые генетические комбинации и видоизменяя проявления генов, по соседству с которыми они временно расположились. Такие элементы широко распространены и у бактерий, и у высших организмов. За свою уникальную способность они весьма образно названы «прыгающими генами». Их деятельность ограничена данной клеткой, точнее, ее ядром, но почему надо непременно оставаться внутри клетки? Почему не попытаться проникнуть в соседнюю клетку? Почему – может быть и так – не предложить соседке К&кую–то вдруг возникшую выгодную комбинацию – да хотя бы из альтруистических соображений: мы же все одна семья. Иными словами, идея превращения внутриклеточного мобильного генетического элемента в межклеточный просто носилась в воздухе, и в какой–то момент, после длительной обкатки, путем проб и ошибок, была наконец реализована. Научиться после этого перемещаться между организмами было уже делом техники.

Сразу ли так было задумано, или в какой–то момент фрагмент генетического материала, предназначенный для отправки на экспорт, вышел из–под контроля и на свой страх и риск пустился в автономное плавание, то есть превратился в полноценный вирус, способный к размножению – кто теперь может ответить на этот вопрос! Как бы там ни было, вирус возник и зажил отныне самостоятельной жизнью, по собственным законам, у него началась его собственная история.

Кстати, подвижные генетические элементы высших организмов имеют много общего с эндогенными ретровирусами. Может быть, последние являются постоянным резервом для образования мобильных генетических элементов, пока еще не обладающих способностью к образованию полноценных вирусных частиц. У бактерий широко распространены так называемые плазмиды – небольшие кольцевые молекулы ДНК, которые способны к автономному размножению внутри бактериальной клетки и переходу из одной клетки в другую при клеточном контакте. Плазмиды определяют много самых разнообразных признаков, например, устойчивость к антибиотикам, и способны быстро распространяться среди бактерий. Заманчиво рассматривать умеренные фаги как фрагменты бактериального генома, которые приобрели способность не только к независимому размножению, но и к построению вирионов.

Такие элементы «в экспортном исполнении» могли образовываться из разных источников, отчего различные группы вирусов имеют мало общего в строении и свойствах. Они возникали, а, весьма вероятно, возникают и в настоящее время в огромном избытке. В результате исходного материала, который в принципе способен стать вирусом, оказывается более чем достаточно.

Но даже если образования вирусов из генетических элементов клетки в настоящее время уже почему–то не происходит, имеющегося материала вполне достаточно для того, чтобы постоянно возникали новые виды вирусов. Сколько детей у человека? А у вируса иммунодефицита человека только за одни сутки образуется несколько миллиардов дочерних вирусных частиц. И пусть другие вирусы далеко не столь плодовиты и более консервативны, все же скорость их размножения и темпы изменчивости таковы, что обеспечивают вирусам не просто непотопляемость, но постоянную возможность образования все новых и новых форм. Поэтому вирусы неистребимы; пока на земле существует жизнь, они останутся нашими хотя и нежелательными, но непременными спутниками.

Вместо приложения

Куриный грипп

Природным резервуаром вируса гриппа А являются различные виды диких птиц, между которыми вирус циркулирует сравнительно свободно. Домашняя птица – куры, утки, индейки, гуси – особенно восприимчива к этому заболеванию. Известны вспышки гриппа, которые были вызваны прямой передачей вируса от водоплавающей птицы свиньям, лошадям и домашней птице. Хотя эти случаи и наводили на мысль, что вирус гриппа способен преодолевать межтиповой барьер, считалось, что человек не может заразиться гриппом от птицы, в частности от кур. Конечно, вирус порой попадает на слизистую верхних дыхательных путей – при дыхании или через грязные руки. Но для того, чтобы вирус мог проникнуть в клетку и начать размножаться, его гемагглютинин – белок вирусной оболочки – должен, во–первых, связаться с соответствующим рецептором на клеточной поверхности и, во–вторых, расщепиться в специфическом участке, чтобы обеспечить слияние вирусной и клеточной мембраны. Это расщепление осуществляется ферментами носоглотки человека. Считалось, что у человека нет рецепторов к гемагглютининам птичьих вирусов гриппа и что человеческие ферменты не способны разрезать молекулу гемагглютинина птичьего вируса.

Однако весной 1997 года в Гонконге, одновременно с эпидемией гриппа среди домашней птицы, случилась вспышка куриного гриппа среди людей. Восемнадцать человек заразились от цыплят вирусом гриппа A(H5N1); шестеро умерло. В отличие от «человеческого» вируса, вирус куриного гриппа у своих природных хозяев, то есть птиц, не ограничивается клетками поверхности дыхательных путей, а способен заражать и другие органы. Таким же точно образом он повел себя, проникнув в человека, что и обусловило особую тяжесть этого заболевания и высокую смертность. Главной причиной гибели людей оказалась тяжелая дыхательная недостаточность из–за вирусной пневмонии. Кроме того, эта инфекция опасна поражением почек, печени и кроветворных органов.

В то же время при заражении вирусом куриного гриппа в клинической картине болезни не слишком выражены такие важные компоненты, как кашель и чихание, что затрудняет передачу вируса гриппа от человека к человеку по воздуху. Кроме того, вирус куриного гриппа не успел распространиться между людьми ввиду высокой смертности среди заболевших, да и восприимчивых к нему людей оказалось, по–видимому, не так много. Эпидемии не возникло еще и потому, что практически все йоголовье домашней птицы было быстро уничтожено.

Другой случай проникновения птичьих вирусов в человеческую популяцию был зафиксирован также в Гонконге в 1999 году. От двоих детей выделили вирус гриппа A (H9N7). Оба ребенка были госпитализированы и выздоровели.

В Нидерландах в феврале 2003 года произошла вспышка высокопатогенного птичьего гриппа A (H7N7). Болезнь перекинулась в сопредельные районы Бельгии и Германии. В профилактических целях ветеринарными службами было уничтожено свыше 15 миллионов кур. Вспышка вызвала смерть одного ветеринара и легкую форму болезни у 83 человек.

С середины декабря 2003 года стали поступать сообщения об эпидемиях куриного гриппа A(H5N1) среди домашней птицы из некоторых стран Азии. Эпидемия началась в

Южной Корее и быстро охватила Вьетнам, Таиланд, Лаос, Камбоджу, Тайвань, ряд провинций на юго–востоке Китая и некоторые префектуры в Японии. В одном только Вьетнаме число инфицированных кур приблизилось к миллиону. На фоне этой эпидемии вновь, как и в предыдущие годы, возникли вспышки куриного гриппа среди людей.


    Ваша оценка произведения:

Популярные книги за неделю