355 500 произведений, 25 200 авторов.

Электронная библиотека книг » С. Чирков » Я познаю мир. Вирусы и болезни » Текст книги (страница 12)
Я познаю мир. Вирусы и болезни
  • Текст добавлен: 19 сентября 2016, 13:32

Текст книги "Я познаю мир. Вирусы и болезни"


Автор книги: С. Чирков


Жанр:

   

Энциклопедии


сообщить о нарушении

Текущая страница: 12 (всего у книги 14 страниц)

Это свойство дрожжей–убийц люди используют в пивоварении. Когда варят пиво, нужно, чтобы размножалась только та культура дрожжей, которую добавляет пивовар, а дрожжи, что случайно оказались в сырье, размножаться не должны. Дрожжи, выделяющие токсин, помогают справиться с этой задачей.

А можно как–нибудь избавиться от вирусов?

Коль скоро стало очевидным, что вирусные болезни наносят ощутимый ущерб растениеводству, возник естественный вопрос: нельзя ли как–то вылечить заболевшие растения? Если само растение неспособно избавиться от угнетающих его вирусов, так нельзя ли ему в этом помочь?

Выяснилось, что можно, и существует два основных приема, позволяющих добиться этой целй,.

Приемов–то, конечно, больше. Есть, например, такие способы, как негативный и позитивный отбор. В первом случае выбраковывают явно зараженные растения, оставляя на развод только внешне здоровые. Во втором отбирают только здоровые и их используют для размножения. Приемы хорошие, да вот беда – вирусное заболевание часто протекает настолько скрытно, что невооруженным глазом его не углядишь. Кроме того, многие ценные сорта заражены настолько, что любой отбор становится бессмысленным.

Но выход есть. Давно замечено, что вирус распределяется по зараженному растению неравномерно, и, что важно, не проникает в самую верхушку побега, которая называется точкой роста, или верхушечной (апикальной) меристемой. Кусочек побега, свободный от вируса, обычно очень мал, меньше миллиметра, но, тем не менее, его можно разглядеть и вырезать. Эту операцию производят под бинокулярной лупой в стерильных условиях, как и положено при операции. Можно, конечно, отсечь кусочек покрупнее, но тогда значительно возрастает риск захвата клеток, содержащих вирус, и вся работа пойдет насмарку. Нетрудно отрезать и совсем маленький кусочек, который почти наверняка окажется безвирусным, но очень маленькие меристемы плохо приживаются, так что всегда приходится искать какую–то золотую середину.

1безвирусное растение, выращиваемое в пробирке; 2верхушечная почка. Линия показывает место разреза

Отрезанный кусочек побега помещают в стеклянную пробирку на поверхность стерильной питательной среды, состоящей из сахаров, солей и гормонов роста. Из него довольно быстро, скажем, за месяц, вырастет полноценное растение с корнями и листьями. Его можно пересадить в почву, где оно будет нормально развиваться. Часто проводят дополнительную операцию. Выросшее пробирочное растение черенкуют, то есть разрезают стебель,на несколько частей, прихватывая пазушную почку. Так из одной меристемы, если она благополучно прижилась, можно получить несколько тысяч растений. Например, от одного исходного растения винограда за год можно получить до 160 тысяч оздоровленных растений. Поскольку вырастили его из куска побега, а не из семян, растение сохранит все сортовые свойства, а вируса в нем не будет.

Второй способ еще проще. Издавна человек выгоняет всяческую хворь, попарившись в баньке. Оказалось, что нечто подобное можно придумать и для оздоровления растений. Вначале использовали водолечение, при котором целые растения или их отдельные части в виде черенков, отводков или усов погружали в воду, нагретую до температуры 35–60 градусов. Время погружения составляет от нескольких минут до нескольких суток и зависит от термостойкости культуры и вируса. Впервые такую процедуру проделали в Японии еще в 1899 году на корневых отпрысках сахарного тростника. Впоследствие таким путем были возрождены ценные сорта малины, земляники, винограда и многих других культур.

Сейчас чаще используют воздушную термообработку, при которой активно растущее растение помещают на несколько недель в камеру с температурой воздуха от 35 до 40 градусов с постоянным освещением. Горячий воздух меньше повреждает растения, чем горячая вода. Без освещения никак нельзя, если растение находится в состоянии активного роста. Сферические вирусы разрушаются быстро, но вирусы с палочковидными и нитевидными частицами переносят эту процедуру без серьезных потерь. Однако, скорость их распространения по растению все же замедляется, отставая от прироста побега. Поэтому обычно сразу по окончании прогревания у обработанных растений срезают верхушки побегов, которые оздорав лившотся в первую очередь, и прививают их на безвирусные подвои или просто укореняют. Особенно хорошие результаты термотерапия дает на плодовых культурах. Но растения по–разному переносят «сауну». Например, для оздоровление хрена от вируса черной кольцевой пятнистости капусты обработку подогретым до 37–40 градусов воздухом проводят в термокамерах с постоянным освещением в течение от 60 до 100 дней. При этом выживает только половина растений, и только часть из них освобождается от вирусов. Зато тополю прогревание нравится. Во всяком случае, обработка тополя для удаления вируса мозаики при переменных температурах – 40 градусов днем и 20 градусов ночью – вызывает просто безудержный рост побегов.

В странах с очень жарким климатом растения могут освобождаться от вирусов естественным путем. В Индии собранные клубни картофеля хранят полгода при температуре до 36 градусов, и вирус скручивания листьев разрушается от индийской жары сам собой, в то время как в клубнях, хранящихся по всем правилам в охлаждаемых хранилищах, вирус выживает. Еще хуже переносит жару вирус некротической кольцевой пятнистости косточковых. При температуре воздуха выше 25 градусов вирус перестает размножаться и накапливаться в зараженном растении, однако не исчезает совсем и при понижении температуры проявляется с новой силой. Это обстоятельство можно использовать. Из–за летней жары большая часть почек сливы, зараженной вирусом некротической кольцевой пятнистости, оказывается расположенной у основания побегов, а ближе к верхушке и периферии кроны число зараженных почек уменьшается. Таким образом, в августе часто оказывается возможным вычленять не крохотную меристему, а использовать – что, конечно же, совсем другое дело – полноценную почку, естественным образом оздоровленную от вируса.

Все эти методы оздоровления растений от вирусов широко применяются в современном растениеводстве. Сформировалась целая отрасль сельского хозяйства, называемая безвирусным растениеводством. Целью безвирусного растениеводства является производство оздоровленого от вирусов посевного и посадочного материала. Получение здорового посадочного материала, своевременная диагностика вирусных инфекций и защитные мероприятия против повторного заражения оздоровленных культур вирусами – вот три кита, на которых базируется эта отрасль. Абсолютно четко доказано, что комплексное применение этих мер позволяет заметно повысить урожайность сельскохозяйственных культур и качество сельскохозяйственной продукции.

Устойчивость к вирусным болезням 

Ну хорошо, если трудно бороться с возбудителем (а это и впрямь нелегко), то нельзя ли сделать так, чтобы само растение препятствовало распространению вируса более активно? То есть наделить растение способностью к самозащите!

На этот вопрос любой мало–мальски знакомый с предметом человек сразу же ответит, что, конечно, сделать это можно; более того, так веками и делают люди, называемые селекционерами, что среди прочих полезных человеку признаков они ищут и отбирают также и признаки устойчивости к тому или иному заболеванию. Все это правильно, вот только традиционная селекция – дело очень небыстрое, нелегкое и неблагодарное, хотя результат, конечно же, неоспорим. Самое же главное заключается в том, что, выводя, к примеру, сорт яблони с крупными, медового вкуса плодами, просвечивающими на солнце так, что видны семечки – выстраивая годами сложнейшую комбинацию генов, обеспечивающих эту красоту – легко потерять гены устойчивости к тому или иному заболеванию.

Но в настоящее время появились новые возможности, которых не было у традиционной селекции. Методами генетической инженерии из растений, животных или микроорганизмов выделяют нужный ген и тем или иным способом внедряют его в хромосому растения, свойства которого предполагается изменить (модифицировать).

Таким образом генетически модифицированное (трансгенное) растение будет содержать среди своих «родных» генов чужеродный ген, проявление которого приведет к появлению нового признака у модифицированного растения. Предполагается при этом, что все другие полезные для человека признаки останутся в неизменном виде. Интенсивное развитие научных исследований в области биотехнологии и генетической инженерии уже привело к внедрению генетически модифицированных растений в практику земледелия. Площади под ними в мировом земледелии возросли с 1,7 миллионов гектаров в 1996 году до 52,6 миллионов к 2001 году, то есть в 30 раз. Львиная доля площадей, занятых под трансгенные растения, приходится на США и Аргентину; а из культур – на сою, кукурузу, хлопчатник и рапс. Главный признак, который подвергается генетической модификации, – это устойчивость к гербицидам. После обработки таких посевов гербицидами сорняки погибают, а культурные растения нет, потому что они устойчивы к гербицидам благодаря внедренному в них гену.

Разработаны и методы получения генетически модифицированных растений, устойчивых к вирусным заболеваниям.

Один из способов создания противовирусной устойчивости заключается в том, что в растение внедряют ген белка оболочки вируса. Казалось бы, полная чепуха. От вируса надо избавиться, а тут... Но оказалось, что такой прием хорошо работает.

В клетке генетически модифицированного растения вырабатывается много вирусного белка. Клетка настолько перекормлена этим белком, что, когда в нее попадает вирус с тем же белком оболочки, она просто не выдерживает и не позволяет вновь прибывшему раздеться – у нее все места на вешалке уже заняты. А вирусу совершенно необходимо снять верхнюю одежду, чтобы обнажить нуклеиновую кислоту и начать инфекционный процесс. Или могут принять пальто, но не пустят дальше гардероба – там, дальше, и так уже толпа из таких же точно вирусных белков. Вирус полностью зависит от клетки, и, если нет возможности образовать полноценные вирусные частицы, инфекция прервется, не начавшись.

Например, генетически модифицированные деревья сливы, с внедренным геном белка оболочки вируса шарки, сливы не заражались этим вирусом. Вот тля, только что покормленная вирусом. Вот она садится на сливовый лист и начинает питаться соком растения. Все идет как обычно, но растение, в отличие от немодифицированного, остается практически здоровым. Вирус оказывается неспособен распространиться даже по тому листу, на котором питалась тля, а в других листьях его не нашли и через два года.

Все было бы хорошо, да только вирусов много. Белок оболочки вируса шарки сливы, образующийся в клетках генетически модифицированного растения, защитит от заражения только этим вирусом. А от другого вируса он не защитит, потому что белки оболочки у всех вирусов разные.

Но при вирусной инфекции образуется не только белок оболочки. Продвижение вируса из клетки в клетку обеспечивает транспортный белок вируса. Он расширяет плазмодесму – коридор, соединяющий клетки, и, таким образом, дает возможность вирусу передвигаться из одной клетки в другую. Если в растение встроить ген дефектного транспортного белка, то он займет все места возле плазмодесмы, но плазмодесму не расширит и не позволит нормальному транспортному белку даже приблизиться к плазмодесме. Обнаружилось, что ген дефектного транспортного белка вируса табачной мозаики, внедренный в растения, создает устойчивость не только к вирусу табачной мозаики, но и ко многим другим, совершенно неродственным вирусам. Да, конечно, вирус может проникнуть в растение, но окажется не в состоянии распространяться по нему, а это равносильно отсутствию инфекции.

Разработано немало других способов придать растению устойчивость к вирусным заболеваниям. Получены, например, растения томатов, устойчивые к тле. Значит, тля не сможет передать растению вирусы, переносчиком которых она является.

Большинство этих разработок пока не вышли из стен лабораторий. Но, например, в США генетически модифицированный картофель выращивают с 1996 года. Зарегистрированы три типа сортов: сорт, устойчивый к колорадскому жуку; сорт, устойчивый к колорадскому жуку и вирусу скручивания листьев картофеля, и сорт, устойчивый к колорадскому жуку и вирусу Y картофеля. Оказалось, что жук практически не трогает генетически модифицированную картошку, а затраты на защиту посадок от вирусов снижаются примерно в десять раз.

Вирусы бактерий: бактериофаги

Три столетия прошло с тех пор, как голландский коммерсант Антони ван Левенгук первым из людей увидел микробы в им же самим сконструированный микроскоп. Сейчас даже ребенок знает, что мир вокруг нас кишит бактериями. И вот оказалось, что почти каждый известный в настоящее время вид бактерий может заражаться одним или несколькими вирусами. Такие вирусы называются бактериофагами (то есть "пожирателями бактерий") или просто фагами.

Представим, что в прозрачный мясной бульон попали бактерии. Почувствовав себя как дома, они начинают размножаться. Их численность быстро увеличивается, и бульон мутнеет. Если к этой растущей культуре бактерий добавить бактериофаг, то часть бактериальных клеток окажется зараженной. Впрочем, вначале может показаться, что ничего не произошло: никаких видимых изменений ни в бульоне, ни в зараженных клетках не наблюдается. Так может продолжаться несколько минут, или час, или еще дольше. Затем внезапно происходит разрушение зараженных клеток, они лопаются, будто взрываются изнутри. При этом из разрушенной бактерии высвобождается большое количество новых фаговых частиц – потомков того фага, что проник в бактериальную клетку и заразил ее. Они похожи одна на другую и на исходную фаговую частицу, как две капли воды. Эти частицы в свою очередь заражают другие бактерии, процесс повторяется, и через несколько часов все бактерии оказываются уничтожены, а бульон вновь становится прозрачным.

Прозрачные пятна, образованные фагом на бактериальном газоне

Бактерии могут жить и размножаться не только в жидкости, но и на твердой питательной среде, например, на поверхности студня или желе. В этом случае они усеивают поверхность отдельными колониями или покрывают ее равномерной пленкой («газоном», как принято выражаться на лабораторном жаргоне). Отдельную бактерию нельзя рассмотреть без микроскопа, а вот их скопления – колонии или газон – хорошо видны невооруженным глазом. Когда среди бактериальных клеток, образующих газон, оказываются зараженные, фаг последовательно разрушает вначале их, а затем окружающие клетки. В результате в газоне образуются округлые прозрачные зоны, прогалины; мутноватая бактериальная пленка выглядит в некоторых местах как бы продырявленной.

С тех пор как Роберт Кох впервые разработал желеобразную среду для выращивания бактерий, прошло более ста лет, и образование таких зон, равно как и внезапное просветление бульона наблюдали, должно быть, многие микробиологи. Наблюдать–то наблюдали, но только двум из них – Фредерику Туорту и Феликсу Д’Эррелю – пришло в голову, что причиной таких изменений может быть гибель бактерий в результате вирусной инфекции.

В 1910 году в Мексике Д’Эррель изучал, смешно сказать, понос у саранчи. Высевая испражнения больных насекомых на поверхность твердой среды – питательного агара – Д’Эррель обнаружил рост каких–то бактерий. Выросшую культуру микроба он наносил на растения, саранча пожирала такие растения и заболевала. На первый взгляд этот результат казался неизмеримо важнее того наблюдения, что некоторые газоны, случалось, бывали усеяны мелкими прозрачными пятнами, совершенно круглыми, диаметром два–три миллиметра. Ну пятна, ну круглые – наверное, была допущена какая–то ошибка, и надо попробовать более аккуратно посеять газон. Даже опытный ученый порой не сразу схватывает смысл неожиданного явления.

В JL915 году Д’Эррель работал уже в Пастеровском институте в Париже. Шла Первая мировая война, а эпидемия дизентерии, разразившаяся в одной из кавалерийских частей, подрывала боеспособность французской армии. Изучая причины эпидемии, Д’Эррель снова обнаружил прозрачные пятна на газоне шигелл (микробов, вызывающих дизентерию). Содержимое этих пятен нельзя было разглядеть в микроскоп, но мутные бульонные культуры, куда его добавляли, становились совершенно прозрачными. Бактерии, по словам Д’Эрреля, растворялись, как сахар в воде! «В одну секунду я понял, – пишет Д’Эррель, – что образование прозрачных пятен вызывалось невидимым вирусом, который паразитирует на микробах».

Д’Эррель не знал, что в этом же 1915 году появилась статья англичанина Фредерика Туорта, который обнаружил похожее явление при изучении других микроорганизмов – микрококков. Он предположил, что возбудителем может быть вирус, заражающий микрококки, развивающийся на них и разрушающий их. Работа Туорта тогда вообще осталась незамеченной и лишь через несколько лет внезапно привлекла к себе внимание в результате бума, возникшего после аналогичного открытия Д’Эрреля. Д’Эррель был и автором названия вирусов бактерий – "бактериофаги". С тех пор открыто огромное количество бактериофагов, паразитирующих на самых разных микроорганизмах, но название, присвоенное им Д’Эррелем, сохранилось до сих пор. Правда, сейчас их чаще называют просто фагами.

Фаги встречаются повсюду, где есть бактерии – в почве, в океане, в организме человека, в пищевых продуктах и в сточных водах. Фаг кишечной палочки fd («эфдэ») обнаружили впервые в канализации Манхеттена. Другой паразит кишечной палочки фаг Qb («кью–бэта») был выловлен в канализации города Киото – древней столицы Японии. Несколько фагов бацилл были впервые выделены из садовой земли и из перепревшего сена.

Как устроены бактериофаги

Хотя среди бактериофагов встречаются формы, напоминающие вирусы животных или растений, чаще всего они отличаются по внешнему виду от тех и от других. Вирион подавляющего большинства фагов состоит, грубо говоря, из двух частей: головки и хвостового отростка, или попросту хвоста. Головка может быть округлой или более или менее вытянутой; внутри головки упакована нуклеиновая кислота – генетический материал фага. Чаще всего это двунитевая линейная молекула ДНК. Отростки различаются сильнее. Во–первых, они могут быть разной длины, характерной для данного вида фага. Встречаются фаги с очень длинными и гибкими отростками. Встречаются фаги с таким коротким хвостом, что он едва заметен даже при разглядывании фага в электронный микроскоп. Одним концом отросток прикреплен к фаговой головке, а другой, свободный конец обычно выглядит утолщенным, как бы расплющеным, отчего несколько похож на шляпку гвоздя: эта структура называется базальной пластинкой. У некоторых фагов к базальной пластинке крепятся длинные нити – фибриллы. Фибриллами фаг ощупывает поверхность бактерии, чтобы узнать, подходит ли она для заражения, и, если подходит, фаг швартуется к бактериальной стенке. Фибриллы, как канаты, притягивают фатовую частицу к поверхности бактерии и удерживают ее там.

Распространенные формы бактериофагов: 1фаг с икосаэдрической головкой и длинным отростком, на конце которого расположена базальная пластинка: 2фаг с коротким отростком и шестью фибриллами; 3сферический фаг с выступами на поверхности вириона; 4сферический фаг с коротким отростком; 5нитевидный фаг

На поверхности многих бактерий есть нитевидные выросты – жгутики, с помощью которых бактерии передвигаются. И некоторые фаги наловчились набрасывать фибриллы на эти жгутики, как набрасывают лассо, соскальзывать по ним к поверхности бактерии и заякориваться там. Фаги, лишенные фибрилл, прикрепляются к поверхности бактерии непосредственно базальной пластинкой.

Отросток внутри полый; вдоль него проходит канал, по которому нуклеиновая кислота из головки фага проникает в клетку бактерии. До поры до времени внешний конец отростка запечатан базальной пластинкой.

У некоторых фагов отросток зачехлен, и этот чехол может сжиматься, как пружина. Когда фаг сталкивается с бактериальной клеткой и фиксируется на ней, чехол резко укорачивается, и находящийся внутри чехла отросток пронизывает стенку бактериальной клетки.

Так выглядит большинство вирусов бактерий, но не все. Генетический материал некоторых фагов представлен однонитевой молекулой ДНК, замкнутой в кольцо. Например, таким образом устроен генетический материал фага fd. Нитевидные частицы этого фага – одни из самых тонких из встречающихся в природе. Их толщина едва превышает 5 нанометров, зато длина составляет почти 900 нанометров. Встречаются фаги, лишенные отростка, и фаги со сферической формой вирусной частицы. Одни из самых мелких вирусов – это фаги, генетический материал которых представлен однонитевой молекулой РНК. Их икосаэдрические частицы имеют диаметр около 25 нанометров. А в Северном море обнаружили фаг совершенно богатырских размеров: диаметр головки составлял 340–400 нанометров, а длина хвоста достигала почти 3000 нанометров. По сравнению с другими фагами это просто слон среди овец.

Этой бактерии ужасно не повезлоее атакуют сразу три вида фагов. 1 – бактерия;2половой пиль; 3 – фаг с сократившимся отростком;4сферический фаг; 5нитевидный фаг

Как протекает фаговая инфекция

Начинается все с того, что вирусная частица случайно сталкивается с клеткой бактерии. Фаг способен заразить вовсе не любую бактерию. Например, фаг, заражающий кишечную палочку, не замечает – сколько бы он с ними ни сталкивался – клетки стафилококка, и наоборот. Больше того, у той же кишечной палочки известно много разновидностей (их называют штаммами), и фаги, как правило, способны очень хорошо их различать. Они охотно заражают одни штаммы и совершенно игнорируют другие. Почему так происходит? Дело в том, что на поверхности бактериальной клетки есть структуры, к которым базальная пластинка фага по форме подходит, как ключ к замку. Такие структуры называются рецепторами. Есть рецептор для данного фага – фаг способен заражать эту бактерию, а эта бактерия способна стать его хозяином. Не подходит ключик? – Ну, стало быть, эта бактерия не для него.

Возникает вопрос, почему бактериальная клетка вынуждена жить под постоянной угрозой фаговой интервенции, не проще ли незаметно потерять где–то эти рецепторы и стать неприступной для фага? Но фаг тоже не прост, он использует в качестве причала структуры, предназначенные не для него, а совсем для других целей и жизненно важные для клетки, у которой, стало быть, есть веские причины не лишаться их.

Если фаг и бактерия узнали друг друга, фаг прочно связывается с ее поверхностью. Дальнейшая задача вируса состоит в том, чтобы ввести свой генетический материал внутрь бактериальной клетки, не нанеся ей – до поры до времени – вреда. Вот как это делает, например, фаг Т4, заражающий кишечную палочку – обычного обитателя нашего кишечника.

Бактериофаг Т4 является одним из наиболее сложно устроенных вирусов. Несколько вытянутая головка служит контейнером для хранения нуклеиновой кислоты. Сокращение чехла обеспечивает прободение бактериальной стенки. По внутреннему каналу стержневого отростка фаговая ДНК перемещается внутрь бактериальной клетки. К шестиугольной базальной пластинке крепятся длинные нити – фибриллы, которые обеспечивают начальный контакт фага с поверхностью бактерии. Чехол с одной стороны жестко закреплен на фаговой головке, а с другой прикреплен к базальной пластинке, находящейся на конце отростка. Чехол заметно короче отростка, поэтому, подобно пружине, пребывает в растянутом состоянии. После стыковки фага с бактерией форма базальной пластинки меняется, она больше не может удерживать чехол в растянутом состоянии, тот сжимается, и жесткий стержень как бы выстреливает из чехла, проминая клеточную стенку бактерии.

Бактериофаг Т4: 1 – головка; 2отросток, покрытый чехлом;3базальная пластинка; 4длинные фибриллы

Одного механического усилия недостаточно. Прогибаясь, клеточная стенка успешно сопротивляется попытке фагового отростка проткнуть ее, но оказывается бессильной противостоять секретному оружию фага – ферменту лизоциму, который находится вблизи острия отростка и, войдя в плотный контакт с клеточной стенкой, моментально прогрызает в ней дыру. Наконец–то стержень отростка пронзает клеточную стенку насквозь. Тут же по внутреннему каналу отростка, как сквозь игольное ушко, в бактерию впрыскивается нуклеиновая кислота, до того момента покоившаяся в фаговой головке.

На первый взгляд, задача может показаться не слишком сложной, но надо учесть, что молекула ДНК – очень длинная и чрезвычайно плотно упакована. Если уж сравнивать внутренний диаметр канала с игольным ушком, то в этом масштабе длина нити ДНК будет около метра, а скорость ее разматывания напоминает разматывание лески с катушки спиннинга при забрасывании блесны. И протащить нить надо так, чтобы не порвать ее. Порванная даже в одном месте, она уже неинфекционна и, стало быть, совершенно безвредна для бактерии и абсолютно бесполезна для фага.

Большинство фагов не имеют сократимого чехла, не говоря уже о том, что у многих и отростка–то никакого нет, ни большого, ни маленького. А преграда на пути серьезная – клеточная стенка бактерии. Она состоит из нескольких слоев и, подобно неповрежденной коже человека или кутикуле на поверхности листа, совершенно непроницаема для вируса. Как–то ее надо продырявить, и, так или иначе, все фаги умеют это делать.

Например, многие фаги связываются только с половыми пилями – нитевидными выростами на мужских клетках кишечной палочки. Да, как ни удивительно, у бактерий есть пол, мужской и женский, а у мужских клеток есть вырост, с помощью которого они конъюгируют с женской клеткой. Облепив вырост, фаги внедряют свою нуклеиновую кислоту в клетку бактерии. В общем, тем или иным способом, но фаги вводят свой генетический материал внутрь бактериальной клетки, оставляя на поверхности пустую, никому уже не нужную белковую оболочку.

Фаговая ДНК проникла внутрь бактерии. 1фаговая ДНК; 2стенка бактериальной клетки; 3сократившийся чехол; 4длинные фибриллы

С этого момента все меняется для бактериальной клетки. Вирус на время как бы исчезает. В клетке, куда проникла фаговая нуклеиновая кислота, не удается обнаружить никаких вирусных частиц. Более того, зараженная клетка выглядит совершенно нормальной. Но на самом деле жить ей осталось всего несколько минут. Под покровом клеточной стенки фаг начинает свое черное дело. Он заставляет все клеточные структуры работать на себя. Все ресурсы клетки отныне тратятся только на размножение фаговой ДНК, самой клетке уже ничего не достается. Белки образуются только фаговые, синтез клеточных компонентов совершенно подавлен или осуществляется лишь в той мере, в которой это нужно фагу. Многочисленные копии вновь образованной фаговой ДНК упаковываются в форме многогранника. Сверху они покрываются фаговым белком, и возникает зрелая фаговая головка с упакованной внутри нее ДНК. В другом месте клетки, в другом ее помещении налажено производство и сборка других фаговых белков, из которых образуется хвостовой отросток. Наконец, отростки и головки соединяются в полноценную фаговую частицу. Проникла в бактерию нуклеиновая кислота одной–единственной фаговой частицы, а теперь, через полчаса, их уже больше сотни. Им тесно, им пора покидать эту бактерию, с которой уже нечего взять. Вот только как это сделать? Бактерия мертва, но ее клеточная стенка все еще надежно удерживает взаперти многочисленное фаговое потомство.

Продольный разрез фага с пустой головкой: 1фибриллы, прикрепленные к головке;2«воротничок»; 3отросток;4канал, проходящий внутри отростка

И вновь приходит на помощь фаговый лизоцим. Он подгрызает клеточную стенку обреченной бактерии изнутри до тех пор, пока она достаточно не истончится и в конце концов не разорвется. Фаговое потомство выходит наружу и немедленно набрасывается на соседние бактерии, которые ожидает та же участь.

Такая инфекция называется продуктивной, а фаги, вызывающие продуктивную инфекцию – вирулентными.

Почему фаги не уничтожили до сих пор всех бактерий?

Потому что не всегда фаговая инфекция заканчивается столь печально для бактерии, возможны и иные исходы.

Во–первых, всегда найдется какая–нибудь паршивая, с точки зрения фага, овца, которая все стадо портит. Эта бактерия – в силу разных причин – не заразится и быстро даст потомство, невосприимчивое к данному фагу.

Во–вторых, некоторые нитевидные фаги не убивают клетку даже при успешной продуктивной инфекции. Фаговые белки располагаются на клеточной мембране. Созревание фага и его высвобождение происходит в результате того, что фаговая ДНК выталкивается из клетки и во время проползания через клеточную мембрану одевается фаговым белком оболочки. Клетка–хозяин, покинутая фагом, остается жизнеспособной и продолжает расти.

Случается прерывание инфекции, которая называется поэтому абортивной. При абортивной инфекции фаговые частицы не успевают созревать, «недонашиваются» в результате преждевременной гибели клетки.

Бактериальная клетка, зараженная фагом, погибает, но погибает она не из–за опустошительного вторжения вирулентного фага, а в результате самоубийства. Она или продырявливает себя изнутри, или прекращает делать белок – и свой, а заодно и фаговый. Ее гибель препятствует появлению сотни новых фаговых частиц, которые заразили и истребили бы соседние бактериальные клетки того же вида. Преждевременная гибель бактерий в ответ на фаговое заражение выглядит как акт самопожертвования, ценой которого спасается целая группа бактерий того же вида, находящихся поблизости.

Однако самая важная причина, почему не все бактерии уничтожены бактериофагами, заключается в том, что фаги вовсе не стремятся достичь этой цели. Дело в том, что, помимо вирулентных, встречаются и так называемые умеренные фаги, которые не убивают бактерии. Причем умеренные фаги распространены гораздо шире вирулентных.

О пользе умеренности

Умеренный фаг попадает в бактериальную клетку точно так же, как и вирулентный. Но, проникнув внутрь, ведет себя иначе – не как громила, а скорей как квартирант. По одному из сценариев, нуклеиновая кислота умеренного фага встраивается в бактериальную хромосому и становится ее частью. В хромосоме даже зарезервировано одно или несколько мест, куда может встроиться фаговая ДНК. По другому сценарию, фаговая нуклеиновая кислота не встраивается в хромосому, а свернувшись в кольцо, живет в цитоплазме бактериальной клетки совершенно автономно, удваиваясь синхронно с делением клетки. Так или иначе, пристроив свои гены среди бактериальных, фаг, конечно, ограничивает себя, даже, можно сказать, теряет лицо, но взамен получает неоспоримое преимущество: он находится под защитой бактериальной клетки и размножается вместе с бактерией, не затрачивая на это никаких усилий. Культура бактерий, зараженная умеренным фагом, называется лизогенной, а само явление носит название "лизогении". Бактерии размножаются быстро, и так же быстро вместе с ними размножается и фаг. Такой способ размножения особенно полезен, когда бактерий, доступных для заражения, мало. Таким образом, лизогения – это способ выживания вируса при низкой численности клеток хозяина. Лизогения помогает фагу пережить тяжелые времена.


    Ваша оценка произведения:

Популярные книги за неделю