Текст книги "Чем мир держится?"
Автор книги: Роман Подольный
Жанр:
Физика
сообщить о нарушении
Текущая страница: 9 (всего у книги 15 страниц)
Что дает физике парадокс гравитационного коллапса? Чем значительнее парадокс, тем к большим результатам должно привести его разрешение. На повестке дня – не только судьба вещества, но и судьба самой Вселенной.
Что, кажется, страшнее, чем смерть, для человека, звезды, Вселенной? Но за «смертью» Вселенной неизбежно должно следовать новое ее рождение, процесс, в котором снова неизбежно будут порождены звезды, планеты, жизнь, разум.
Смотрите: гравитационный коллапс звезды, заканчивающийся ее превращением в черную дыру, ведет к поразительному обеднению звезды. Она теряет на этом пути большинство своих отличительных признаков. Получилась черная дыра из вещества или антивещества, из звезды или из облака излучения, из большой звезды или из относительно небольшой поначалу, но захватившей достаточное количество фотонов, – понять по черной дыре ее прошлое, определить ее происхождение невозможно. Но у черной дыры все-таки останется масса, электромагнитный заряд, момент количества движения. Три характеристики из многих и живых звезд… Однако коллапсирующая Вселенная должна потерять и заряд, и массу, и момент движения – точнее, они потеряют в ней свой физический смысл. И все же… И все же начинается новый цикл, сжатие сменяется расширением.
«…Единственная разумная картина следующая: Вселенная в период коллапса либо преобразуется, либо превращается, либо переходит, либо воссоздается вероятным образом от одного цикла своей истории к другому», – пишет Уилер, поясняя, что, по его мнению, Вселенная скорее всего не столько преобразуется, сколько воссоздается. Элементарные частицы – реликт, ископаемое, оставленное нам в наследство последним гравитационным коллапсом. Если все электроны во Вселенной, сегодня или десять миллиардов лет назад, все, где бы они ни находились, одинаковы, то из этого можно сделать вывод, что при каждом очередном коллапсе Вселенной, в каждом цикле ее развития должны среди других частиц рождаться электроны, идентичные сегодняшним. То же относится, по Уилеру, ко всем остальным частицам. Сильное предположение? (В физике это словосочетание имеет свой четкий «внутриведомственный» смысл. Предположение находят тем более сильным, чем меньше доводов в его пользу.) Да, конечно, сильное. Но ведь Уилер и употребляет тут выражения типа «по-видимому», «наиболее разумно»…
Он обращает внимание на так называемые большие числа в физике, явно взаимосвязанные между собой, хотя понимаем мы эту связь пока не очень хорошо. Вот эти числа.
Во Вселенной 1080 частиц.
Радиус Вселенной в момент максимального ее расширения (1028 сантиметров) так относится к среднему «размеру» элементарной частицы (10-12 сантиметра)[18]18
Так у Уилера. Подлинная величина ближе к 10-13 сантиметра.
[Закрыть], как электрические силы к гравитационным силам. Это составит 1040.
Отношение «размера» элементарной частицы к так называемой планковской длине, предполагаемому кванту пространства, составляет 1020. Во Вселенной отношение числа фотонов, частиц света, к числу барионов, тяжелых ее частиц, составляет 1010.
Выстроим эти числа в один ряд: 1080, 1040, 1020, 1010. Слишком все стройно для случайного распределения. Перед нами типичная логическая задача, внешне похожая на те, что так часто печатает журнал «Наука и жизнь». Требуется найти решение.
Числа огромны, и эту огромность, возможно, нельзя объяснить, полагает Уилер. Если все константы, все постоянные Вселенной, включая гравитационную постоянную, постоянную Планка, размеры заряда электрона, воспроизводятся в каждом новом цикле, то физика должна принимать эти константы как некие исходные данные, заложенные при начале очередного цикла и задающиеся заново каждый раз.
Что такое хаос? Это порядок, который уничтожили при сотворении мира.
Станислав Ежи Лец
Американский физик Б. Картер попробовал посмотреть, что получилось бы, если бы константы были хоть немного другими. Достаточно сделать одну из них всего на один процент больше, чтобы все звезды стали красными, на один процент меньше, – чтобы все они стали голубыми, В этом новом мире не найдется места для маленькой желтой звезды, которую мы зовем Солнцем. А ведь жизнь, которую мы знаем, нуждается в свете и тепле, идущих именно от такой звезды.
Вот и выходит, что нашей планете, а вместе с ней и всему живому, в том числе и нам, людям, крепко повезло с «местом во Вселенной». Впрочем, «повезло» – это не более чем метафора…
Во всех попытках решить проблему дальней истории мира принимает свое участие черпая дыра – «лабораторная модель» Вселенной.
И все-таки, как мы видели, иногда ставится под сомнение сама реальность черной дыры. Да, ставится. Может она исчезнуть из астрофизики? Да, конечно. История науки знает не так мало поистине замечательных идей, сослуживших человечеству и познанию хорошую службу и все-таки ушедших с арены науки, поскольку за ними не оказалось объективной реальности. Чтобы далеко не ходить, возьмем теплород – некое вещество, наделявшееся когда-то теплотворной способностью. Но затем этот таинственный флюид оказался выброшенным за ненадобностью, но до этого ученые успели, пользуясь представлением о нем, вывести основные формулы термодинамики, формулы, не отвергнутые и сегодня. Можно долю перечислять случаи, когда на основе явно неверных, как позже выяснилось, данных бывали сделаны верные выводы.
Есть старый анекдот про человека, остановившего поднятой рукой машину, но не решающегося открыть дверцу, поскольку это не такси. Он спрашивает у шофера: «А где шашечки?» И слышит в ответ: «Вам шашечки или ехать?»
Пока черные дыры «работают» в науке, они нужны.
Все расчеты, предсказания, идеи, касающиеся черных дыр, имеют смысл только в том случае, если дыры эти представляют собой не только чрезвычайно интересную математическую модель, по и реальные участки реального пространства космоса. Л это в конечном счете могут узнать не теоретики, а астрономы-наблюдатели.
Наука всегда оказывается неправа. Она никогда не решает вопроса, не поставив при этом десятка новых.
Бернард Шоу
Первоначально казалось очевидным, что положение черной дыры в пространстве может выдать только ее тяготение. В нашем небе астрономы видят множество двойных звезд. На самом деле таких звезд может быть еще больше, только из пары звезд одна, положим, продолжает жить и светиться, а другая умерла и стала черной дырой. Но «труп» звезды в детективе научном тоже нельзя «спрятать»: его масса осталась прежней, его тяготение должно сказываться на движении живой звезды, это движение и выдаст черную дыру пристрастным наблюдателям.
Английский ученый Р. Пенроуз, однако, обратил внимание на то, что предполагаемые космические объекты находят, как правило, не по тем признакам, на которые поначалу полагаются наблюдатели.
«Вполне возможно, – говорит он, – что черные дыры также будут обнаружены через некоторый побочный эффект, о котором мы сейчас даже не подозреваем. Сегодня в астрономии имеются в изобилии различные непонятные явления, которые могут иметь отношение к черным дырам. Известен феноменальный энергетический выход квазаров и радиогалактик, взрывы в центрах обычных галактик, аномальные красные смещения в спектрах некоторых квазаров и галактик, расхождения в определении массы галактик». Впрочем, последнее предложение приведенной цитаты иллюстрирует скорее важность и сложность проблемы черных дыр, чем способы их найти.
Но поиски идут и весьма активно.
Советские физики Я. Б. Зельдович и О. X. Гусейнов обратились к каталогам так называемых спектрально двойных звезд. Двойные звезды чрезвычайно распространены в космосе. Но довольно часто из двух звезд увидеть в телескоп можно только одну, иногда потому, что вторая звезда совсем не излучает света или излучает его очень мало, иногда потому, что более яркая звезда «забивает» своего спутника, хоть он и светится вполне «нормально». Но на спектре света этой первичной звезды сказывается ее обращение вокруг спутника: когда звезда движется по своей орбите в направлении к Земле, линии спектра смещаются к голубому краю, когда от Земли – к красному. Тут действует знаменитый эффект Доплера. Он проявляется тем сильнее, чем массивнее звезда-спутник. Зельдович и Гусейнов среди нескольких сот спектрально двойных звезд выделили пять, в которых спутник по меньшей мере втрое превосходит по массе Солнце. Черная дыра может, конечно, обладать и меньшей массой, но в таком случае сразу исключается, что выделенные спутники – белые карлики или нейтронные звезды.
Американские физики К. Торн и В. Тримбл продолжили эту работу, в их списке оказалось уже восемь кандидатов на звание черной дыры. Увы, все время можно было найти для наблюдаемого эффекта какое-то другое объяснение, кроме черной дыры. К. Торн назвал ученых, подыскивающих такие альтернативные решения, в том числе своего соавтора В. Тримбл, адвокатами дьявола. Надо сказать, что из-за нашего нехорошего отношения к дьяволу, даже несуществующему, слова «адвокат дьявола» сейчас воспринимаются как не слишком лестная характеристика. Между тем происхождение этого термина весьма почтенное и связано с одним из установлений католической церкви. Когда какого-то из ее «героев» решали посмертно объявить святым, по этому поводу устраивался… судебный процесс. На нем шло серьезнейшее разбирательство обстоятельств жизни и деятельности кандидата в святые. При этом одному из самых почтенных богословов поручалось находить все возможные детали, говорящие против «святости» претендента. Этот-то богослов и получал официальное наименование «адвоката дьявола». В нашем случае в роли претендента в «святые», то есть на конкретное место в космосе, выступает черная дыра. Окончательный ответ на вопрос о ее «святости» должны дать наблюдения.
Большие надежды научный мир возлагал на первый рентгеновский телескоп, который был установлен на борту американского спутника «Ухуру», запущенного в 1970 году. Ведь межзведный газ или газ, стянутый черной дырой со звезды-спутника, должен излучать в рентгеновском диапазоне. А спутник тут был нужен постольку, поскольку земная атмосфера надежно защищает нас от вредных рентгеновских лучей. Что защищает нас – хорошо, что наши приборы – плохо.
К весне 1972 года рентгеновский телескоп довольно многое сообщил нам о ста двадцати пяти рентгеновских источниках. В их числе не оказалось ни одного кандидата в «святые». Зато в этом списке шесть рентгеновских источников принадлежат двойным системам звезд, причем таким, которые раньше не считались двойными. К сожалению, два из шести источников выпадали из числа претендентов по некоторым особенностям излучения. Зато четыре до сих пор остаются под сильным подозрением, причем один – Лебедь X–I – считается почти «изобличенным». Масса его, как показали исследования, не меньше восьми масс Солнца. А ведь именно масса – критерий выбора между тремя объектами с такими мощными полями тяготения, в которых падающий газ порождает сильное рентгеновское излучение. Белый карлик не может превосходить Солнце более чем в один и четыре десятых раза. Нейтронная звезда – более чем в три раза. И только черная дыра не имеет ограничений по массе «сверху».
А не так давно журнал «Знание – сила» опубликовал небольшую статью В. Шикана «Увидеть „черную дыру“»? В заглавии стоит знак вопроса. Однако аппаратура для того, чтобы именно увидеть саму черную дыру, создается. Кандидат физико-математических наук В. Шварцман, работающий в Специальной астрофизической обсерватории АН СССР, расположенной на Северном Кавказе, у станицы Зеленчукской, разрабатывает установку, которая должна увидеть то, что как будто уже по определению увидеть нельзя.
Сигналы, естественно, должны быть получены не от самой черной дыры, а от вещества, на нее падающего. Межзвездный газ при таком падении разгоняется постепенно почти до скорости света и разогревается до триллиона градусов. При этом образуются мощнейшие магнитные поля. Движущиеся в них с околосветовыми скоростями электроны излучают энергию в основном в виде света. Часть фотонов успеет уйти – не из самой гравитационной ловушки, конечно, а из ее ближайших окрестностей.
Плотность межзвездного газа – один атом на кубический сантиметр пространства. Вблизи черной звезды она должна увеличиваться, но все равно только очень слабый ореол окружает самое загадочное тело космоса. Считают, что его можно будет увидеть как слабый источник света. А отличить черную дыру от обычной звезды можно постольку, поскольку ее «светимость должна меняться с огромной быстротой – сотни тысяч раз в секунду и к тому же в чисто случайном порядке». Ведь реальный источник света – падающий межзвездный газ, частицы которого достигли околосветовых скоростей. В нем происходит чрезвычайно бурные и неустойчивые процессы. Светимость обычных звезд колеблется гораздо медленнее.
Решение задачи сводится к тому, чтобы не только заметить, но и исследовать источник света с очень быстрыми резкими колебаниями. «Внешне, – пишет В. Шикан, – все выглядит довольно обычно. К небольшому телескопу – рефлектору с зеркалом диаметром 60 сантиметров прикреплен фотометр, регистрирующий изменения яркости звездного объекта. Преобразовав кванты излучения в электронные импульсы, он передает эту информацию по кабелю в устройство, которое измеряет промежутки времени между отдельными квантами и выражает результат словами из двоичных букв. Далее запись вводится в электронно-вычислительную машину… Если его (объекта наблюдения) яркость менялась сравнительно медленно, значит, в объективе находилась обычная звезда. Если же частота колебаний измерялась нано– или микросекундами, это может означать, что мы увидели не что иное, как… „черную дыру“».
Может означать… Что ж, будем ждать результатов. Стоит сказать еще, что в Москве астрономы Р. Сюняев и Н. Шакура предлагают отличать черную дыру от других небесных тел по небольшим вспышкам интенсивности рентгеновского излучения в газе, падающем на черную дыру от ее звезды-спутника. Такие вспышки, как показывают расчеты, должны состоять каждая из чрезвычайно коротких импульсов с интервалами между ними порядка миллисекунд.
Надо добавить, что, по мнению ученых, сторонников существования черных дыр, наша Вселенная должна буквально кишеть такими объектами. Скажем, американский профессор Пиблс полагает, что значительная часть вещества в Галактике давным-давно перешла в звезды, способные сжаться и стать черными дырами. Только наша Галактика может содержать около миллиарда черных дыр – цифра, которую даже в масштабах Вселенной не сочтешь незначительной.
…А может быть, черные дыры сумеет показать нам только гравитационная астрономия, когда она наконец возникнет? При образовании черной дыры может испускаться мощный поток гравитационных волн, то же происходит при падении на черную дыру сгустка вещества, при встрече двух черных дыр (когда они сливаются в новую черную дыру).
Так или иначе, не в первый раз человек собирается узнать то, что в принципе, как казалось поначалу, нельзя узнать.
Если черные дыры есть – они будут обнаружены. Если нет… Что же, неожиданный результат наблюдений или опыта имеет для физики неизмеримо большее значение, чем тот, которого ждут.
Единство физики, единство материи
Эйнштейн в свое время был очень разочарован, когда его десятилетние труды по разработке того, что он называл общим принципом относительности, дали «всего-навсего» теорию гравитации. Он ждал от своей работы много большего.
Это здорово, когда человек так требователен к себе, что собственное достижение столь грандиозного масштаба кажется ему не таким уж крупным. С другой стороны, именно это разочарование, именно желание попять мир в еще более высокой степени заставило ученого погрузиться с головой в разработку единой теории поля. Сегодня такой теории нет, во всяком случае признанной.
Но зато сама общая теория относительности, оставаясь учением о гравитации, стала чем-то гораздо более широким. И не потому даже, что ее развитие Эйнштейном и после Эйнштейна привело к интереснейшим результатам, имеющим значение для других областей физики. А потому еще, что эти другие области отнюдь не стояли на месте. Они развивались параллельно теории относительности, а уж «научное-то пространство» никогда, даже во времена самого Евклида, не было «евклидовым». В науке параллельные линии развития имеют свойство пересекаться, даже когда речь идет о разных науках, а тут ведь перед нами разные линии движения вперед внутри одной физики.
Было бы, наверное, любопытно, хоть шутки ради, и вправду подойти к физике с этой точки зрения – как к искривленному пространству, вычислить «радиус кривизны», благодаря которой различные направления встречаются, обогащая друг друга, как встречались два «плоскостных» физика, двигавшихся по глобусу из разных точек экватора по разным меридианам. И тут тоже уместно назвать сблизившую их силу тяготением. Причина такого тяготения в данном случае понятна. В ее основе лежит единство мира. Одну и ту же материю, одно и то же пространство исследуют, если отвлечься от масштабов, все физики, чем бы конкретно они ни занимались. Математика, как отметил еще Галилей, это язык природы. И если вся она говорит на одном и том же языке (в отличие от человечества, между прочим), то ведь так ее куда легче понять.
Законы электромагнетизма открывали, беря за образец закон всемирного тяготения Ньютона. Кулон перенес закон «обратных квадратов» на взаимодействие электрических зарядов и оказался прав. Постепенно возникла стройная теория электромагнитного взаимодействия, вершиной и завершением которой стали знаменитые уравнения Максвелла. Эта теория появилась намного раньше новой теории гравитации, немалую роль тут сыграла огромная – сравнительно с гравитационным взаимодействием – величина электромагнитных сил.
Кроме того, электромагнитные силы не имеют того универсального характера, что силы гравитации. Теории тяготения предстояло быть несравненно более широкой.
И чем дальше углубляются физики разных областей в изучение своих объектов, тем очевиднее становится, что у них много общего и кроме языка.
Не раз и не два уже случалось, что достижения ученых-теоретиков, занимающихся плазмой, светом, радиоволнами и даже жидкостями, оказывались использованными в развитии представлений о том, что происходит в поле тяготения. И наоборот, гравитационный теоретический аппарат, созданный Эйнштейном, его товарищами по работе и продолжателями, оказался весьма полезен в других районах и точках физики. «Гравитационщики», имеющие дело с самой слабой и одновременно самой могучей силой Вселенной, создали не только изощренные методы расчетов и мысленных экспериментов для космологии и астрономии, но и самую, пожалуй' точную сегодня технику земного эксперимента.
Однако все конкретные примеры выглядят до некоторой степени частными на фоне общей встречи двух самых мощных достижений физики XX века – теории гравитации и квантовой механики.
Физики-экспериментаторы и теоретики ждут чрезвычайно многого от мало-помалу создающейся, хотя далеко еще не сформировавшейся квантовой теории гравитации. Уже в самом ее названии отражен синтез обеих ведущих областей физики.
Теория гравитации имеет дело с огромными массами и расстояниями, измеряемыми световыми годами; квантовая механика заведомо занимается эффектами, возникающими на самом нижнем этаже материи – в микромире. У них, однако, нашлись и точки пересечения, которые в принципе можно было предвидеть еще двадцать лет назад, и, что еще важнее, общие сферы деятельности.
Мы много говорили об эволюции звезд. При этом не могли не обратить внимания на следующий факт: чем больше масса звезды, чем сильнее ее тяготение, тем очевиднее ее неустойчивость как системы. Но эта неустойчивость, подчеркивает видный советский физик доктор физико-математических наук Я. А. Смородинский, предсказывается на основе теории элементарных частиц, формул квантовой механики.
Открытие пульсаров с такой точки зрения было подтверждением того, что формулы квантовой механики применимы и к звездам. О свойствах гигантских тел мы узнаем на основе изучения тел сверхмалых.
В физике элементарных частиц выделяют две фундаментальные постоянные – скорость света и постоянную Планка. Постоянную Планка иначе называют квантом действия. Она характеризует наименьшие возможные порции, на которые может уменьшаться или увеличиваться любая энергия и равна примерно 6,62610-27 эрга на секунду. Скорость света отличается от всех прочих скоростей тем, что она – одна-единственная – одинакова для всех наблюдателей во всех возможных системах отсчета. Квант действия тоже один для любых физических систем. Как полагают ученые, если бы удалось найти для физики элементарных частиц еще одну – третью – столь же фундаментальную постоянную, то из этих трех величин можно было построить все остальные величины этого раздела физики. Так, через три точки можно провести одну и только одну окружность. Две точки, как и две фундаментальные постоянные, оставляют слишком большую свободу выбора.
В общей теории относительности положение сходное: тоже есть две универсальные постоянные – одна из них та же скорость света, другая – гравитационная константа. Опять-таки одной «точки опоры» не хватает. Обеим теориям недостает того, что можно назвать масштабной единицей: для массы, либо для расстояния, либо для времени. Найдись «естественный» масштаб для любой из этих трех величин, он мог бы быть использован, после преобразований, и для двух других.
Не раз физики пытались вводить масштабные единицы в свою теорию. Еще в 1938 году знаменитый немецкий физик Вернер Гейзенберг, один из отцов квантовой механики, предложил считать квантом пространства, наименьшей возможной длиной, размер электрона десять в минус тринадцатой степени сантиметра! Предложение выглядело естественным. Мы ведь не знаем, например, заряда, меньшего, чем заряд электрона, да и частицы не должны обладать способностью умещаться на отрезке, меньшем, чем электрон. Но затем выяснилось, что в микромире возможны и меньшие длины. (Сейчас на ускорителях удается исследовать строение нуклонов – частиц атомного ядра – до длин примерно в десять в минус пятнадцатой степени сантиметра. И это далеко нс предел.) Между тем естественных, данных нам природой тел, чьи размеры могли бы стать эталонными, не удается встретить и при таком углублении в элементарную частицу.
Аналогично этому пытались найти среди космических тел такое, массу которого можно было бы принять за эталон, – тоже не получилось.
Итак, ни общая теория относительности, ни квантовая механика по отдельности не смогли найти эталона длины, массы или времени. А вместе они, похоже, такой универсальный размер дают.
Его назвали длиной Планка, равна она десяти в минус тридцать третьей степени сантиметра; меньшие, чем длина Планка, отрезки, как полагают многие ученые, невозможны.
Перед нами – квант пространства. Казалось бы, величина из микромира, где гравитация слишком мала, чтобы себя проявлять. Тем не менее в формулу, по которой вычислили этот квант пространства, входят и гравитационная постоянная, и постоянная Планка, и скорость света.
Тут, видимо, пришло время напомнить, что на поразительное единство и взаимосвязанность законов природы, действующих в разных ее областях, обращали внимание многие мыслители. Максвелла поражало сходство уравнений, описывающих электромагнитные колебания и колебания обыкновенного маятника.
Владимир Ильич Ленин видел проявление единства природы в том, что дифференциальные уравнения, относящиеся к различным областям явлений, поразительно аналогичны.
То обстоятельство, что крайности сходятся, что звезды исследуют порой, образно говоря, в камере Вильсона, а на электроны наводят телескоп, что, исследуя атомное ядро, мы можем кое-что узнать не только о частицах, которые там есть, но и о тех, которых там нет, – все это имеет, безусловно, глубокий философский смысл. Картина мира – мозаика, в которую каждый раздел науки дал свои кусочки смальты. Но свойства любого кусочка зависят от свойств остальных и в чем-то, в свою очередь, определяют их свойства.








