Текст книги "Чем мир держится?"
Автор книги: Роман Подольный
Жанр:
Физика
сообщить о нарушении
Текущая страница: 11 (всего у книги 15 страниц)
Слава маятнику
Слабость и даже, можно сказать, беспомощность самой могучей из сил нашей Вселенной легко доказываются опытом, который каждый из нас, не задумываясь особенно над выводами, успел проделать еще в раннем детстве. Крошечный магнит, извлеченный из электродвигателя игрушечного автомобильчика, поднимает целую цепочку канцелярских скрепок, небольшой гвоздь, пол-дюжины бритвенных лезвий. Поднимает – значит, одерживает победу над притяжением целой огромной планеты! Вот ведь как!
Тем поразительнее, что мы научились различать чрезвычайно мелкие колебания этой самой слабой и самой могучей силы. Причем с помощью удивительно простых приборов. Первым из них по праву должен быть назван маятник. Что на самом деле проще его?
Но нужны были гений и наблюдательность девятнадцатилетнего Галилея, чтобы заметить, что люстра в Пизанском соборе по мере уменьшения размаха своих колебаний вовсе не тратит на каждое из них все меньше и меньше времени. Именно с этого наблюдения началась не только история маятника как точного прибора, но история подлинно научного исследования гравитации. Должно было пройти еще семь лет, прежде чем Галилей проделал свои знаменитые опыты по сбрасыванию разных предметов с Пизанской башни. И с самого начала видел он глубокую связь между законами, управляющими падением тел, и законом, управляющим качаниями маятника.
Маятник стал прибором, с помощью которого установили ускорение свободного падения. Именно маятник относительно точно – куда точнее, чем геометрические измерения меридианных дуг, – показал, насколько именно Земля сплюснута у полюсов (кстати, в Лапландии экспедиция Мопертюи немало поработала и с маятниками). Свойства маятника так тесно связаны с силой тяжести, с земным тяготением, что известный немецкий физик Макс Лауэ как-то заметил: «Маятниковые часы – это не просто ящик, который вы покупаете в магазине; маятниковые часы – это тот ящик, который вы купили в магазине вместе с самой Землей. Если вы хотите передать маятниковые часы от одного наблюдателя к другому, вы должны выдать каждому из них по Земле; конечно, это довольно накладное мероприятие».
Период колебания маятника зависит от его длины и силы тяжести. И – в принципе – только от них. Выходит, зная длину маятника (а ее можно измерить, хотя тут возникают сложности, которых здесь не стоит касаться) и период колебаний (тоже поддающийся измерению), можно определить силу тяжести в любой данной точке. При этом очень важно, что вместо того, чтобы ловить доли секунды в поисках точного промежутка времени, отданного на одно колебание, можно определить, скажем, время, за которое маятник делает тысячу, десять, сто тысяч колебаний, и разделить это время на их число – так сразу многократно повышается точность наших знаний.
Вот такие маятники и стали главными приборами на первых гравиметрических станциях, покрывших нашу планету довольно густой сетью уже с конца XIX века.
Впрочем, наиболее точно и бесспорно ускорение земного тяготения определяется самым прямым образом: наблюдением за тем, как падает пробное тело в вакууме.
Определить при помощи маятника абсолютную силу тяжести чрезвычайно трудно, ведь тут многое зависит от точного измерения его длины. Поэтому в наше время маятники предпочитают использовать для выяснения разницы между силой тяжести в двух точках. В этих двух точках один и тот же маятник будет иметь разный период колебаний, и такая разница будет зависеть от различий в силе тяжести. Надо было только выбрать на Земле место, где силу тяжести следовало принять за эталон. Поскольку впервые абсолютное значение силы тяжести на Земле было установлено в городе Потсдаме (ныне – в ГДР) в 1898–1904 годах, то именно Потсдам стал опорным пунктом для мировой гравиметрической системы.
Нынешние наземные гравиметрические измерения, по сути, относительны, они показывают прирост или падение силы тяжести в какой-то точке Земли сравнительно с исходным пунктом. (Надо оговориться: поскольку Земля вращается, то на каждое тело на ее поверхности действует, кроме силы земного притяжения, еще и центробежная сила; сила тяжести есть равнодействующая этих двух сил.)
В наших наручных часах место гири и маятника ходиков заняла пружина. В истории гравиметрии лет пятьдесят назад наступил момент, когда маятник в качестве универсального и единственного прибора для определения силы тяжести оказался потеснен гравиметром с пружиной. На конце пружины подвешен груз – вот суть прибора. Груз растягивает пружину, а уж на сколько именно – зависит от силы тяжести в данном месте. Пружина, конечно, нужна идеальная, длина ее и способность растягиваться должны как можно меньше зависеть от внешних условий, ведь измерять тут приходится миллионные доли длины пружины. Впрочем, само слово «пружина» носит здесь чрезвычайно обобщающий характер. В этом качестве используют и настоящие металлические и кварцевые пружины и упругие нити и даже сжатый газ.
Сейчас появились гравиметры, в которых используются магнитная подвеска, сверхпроводимость и другое оружие из современного арсенала физики.
Идея применения в приборе газа, как и сама идея гравиметра такого типа, принадлежит Ломоносову.
Подводит гравиметр только то, что как ни точно выверен этот прибор, а нагруженная пружина имеет свойство растягиваться.
Гравиметры, как и нынешние маятниковые приборы, измеряют относительную силу тяжести. Но при этом гравиметр в конце очередной серии измерений приходится возвращать в исходный пункт (создана целая сеть таких пунктов), по которому он выверен, и смотреть, не изменились ли показания прибора, а если изменились, то как.
Очень напоминают маятник по характеру колебаний и крутильные весы (их часто так и называют крутильным маятником), те самые, на которых взвесили и саму Землю. Роль первого весовщика, как мы знаем, сыграл Генри Кэвендиш.
Крутильные весы отличаются прямо-таки фантастической чувствительностью. Н. П. и А. Н. Грушинские отмечают: «Замечательным является тот факт, что Кэвендиш при низких технических возможностях 18 века получил результат, лишь на 1 % отличающийся от современного».
Крутильные весы Кэвендиша стали прародителем приборов, измеряющих уже не само гравитационное поле Земли в разных точках нашей планеты, а именно изменение поля при переходе от одной точки к другой. Называют такие приборы вариометрами. Первый вариометр создал венгерский физик Этвеш (тот самый, что первым с высокой точностью измерил на крутильных весах эквивалентность тяжелой и инертной масс).
Перед нами опять-таки коромысло с двумя грузами на концах, причем если на один груз действует не совсем та сила, что на другой, оно повернется вокруг оси подвеса. Насколько повернется – уже можно измерить. Хороший вариометр реагирует даже на наблюдателя, стоящего около него, то есть регистрирует неоднородность поля, возникшую от присутствия человека. Если снова вспомнить о слабости гравитации, о том, как невелика сила тяготения, создаваемая массой в шестьдесят – сто килограммов, остается только поразиться такому результату. А между тем речь ведь идет просто о «хорошем вариометре», а не о неком уникальном и сверхточном.
Этвеш же первым и применил вариометр для того, что можно назвать геологической разведкой. Впрочем, он не искал полезные ископаемые, а пытался исследовать геологические структуры.
Сегодня гравиметрическую разведку геологи используют вместе с другими физическими методами поиска. Уголь и нефть, железная, хромовая, медная руды выдают себя точным гравиметрам и вариометрам. Глубину льда в Антарктиде и Гренландии определяли гравиметрическим методом – ведь легкий лед лежит на гораздо более плотных материковых породах.
Н. П. и А. Н. Грушинские обращают особое внимание на то, что гравиметрия идет впереди других видов геологической разведки на море, как и на суше. Правда, уточнение результатов приходится часто проводить другими методами, но ведь нельзя же требовать, чтобы тот, кто идет впереди, сам же и расширял проложенную им тропу.
Наконец, в роли гравиметра выступают искусственные спутники Земли. На их траектории отражается распределение масс в теле Земли. До сих пор спутники давали в основном сведения широкого характера, с их помощью уточняли фигуру Земли, находили занимающие относительно большие территории аномалии силы тяжести. Той особой «конкретности», какую дают наземные гравиметры, спутники обеспечить не могли. На их движении сказывается слишком много привходящих обстоятельств. Но сейчас, когда уже летали первые спутники, защищенные от таких искажений, когда готовятся к запуску десятки новых свободных от сноса спутников, положение коренным образом меняется. Издали и в мелких деталях гравитационного поля Земли можно будет разобраться лучше, чем вблизи.
А что же маятник? Он еще послужит. И, строго говоря, искусственный спутник Земли – тоже ведь в определенном смысле маятник. Равномерное круговое движение спутника и колебания маятника описываются одними и теми же уравнениями. Логическое сближение маятника и спутника – отнюдь не просто сравнение, аналогия. Сходство здесь весьма глубокое: и космический гравиметр, и. маятниковый наземный гравиметр работают по одному принципу.
На весах жизни
Все живое делят обычно на два грандиозных разряда, отделяя растения от животных. Но можно предложить еще один способ деления – по тому, чувствует ли живое существо свою массу. И тогда весь мир сразу окажется разорван на тех, кто растет и живет в воде, и тех, кому принадлежит суша. К промежуточной группе можно отнести, пожалуй, амфибий, тюленей, некоторых насекомых и морских черепах, водяных змей, крокодилов, выдр… Перечислять долго, но принцип выбора понятен. Пингвина, скажем, тоже стоит причислить к этой категории, потому что он добывает пищу под водой. А вот большинство птиц – создания с «постоянным весом». Это, говоря языком техники, аппараты тяжелее воздуха.
Все, что живет на суше, постоянно ощущает свою массу. Водные животные тут оказываются в несравненно более выгодном положении. Вон кит. Позвоночное, теплокровное животное. Самое огромное живое существо, которое когда-либо обитало на нашей планете. И никто не удивляется, что хотя кит млекопитающее, но гигантом стал в море. Самый крупный из современных сухопутных животных, слон, уступает ему по массе в десяток-другой раз.
Удельный вес человека почти равен удельному весу воды. Готовя человека к полетам в космос, ученые имитируют состояние невесомости, погружая подопытного (в акваланге) в бак с водой, в котором заранее растворено ровно столько солей, сколько нужно, чтобы ее удельный вес точно совпал с удельным весом человеческого тела Конечно, это не победа над гравитацией в точном смысле слова… Однако массы своей человек в воде, как и кит в воде, не ощущает. Кит – представитель водной жизни, человек – сухопутной. Киту – легче.
На сравнении жителей суши и жителей моря довольно легко увидеть некоторые весьма весомые преимущества водной среды. Прежде всего энергетические. На суше приходится бороться с собственной массой. В воде за тебя работает закон Архимеда. Недаром до сих пор при всех достижениях автомобилистов и железнодорожников, не говоря уже об авиации, самыми дешевыми остаются водные перевозки грузов. И паровой двигатель был поставлен сначала на корабль, а уже потом на повозку, поскольку тут требовалось потратить меньше энергии на единицу расстояния. И все из-за закона Архимеда, а закон Архимеда, как известно, действует постольку, поскольку на воду действует земное притяжение.
До глубокой мысли надо подняться.
Станислав Ежи Лец
Жизнь на Земле, как полагают биологи (во всяком случае огромное их большинство), возникла в океане и лишь потом перебралась и на сушу, сумев приспособиться к новым условиям, среди которых немаловажное значение имел вес. Но снова и снова виды живых существ, сформировавшиеся на суше, возвращались в воду. Однако за это приходится расплачиваться. Оказавшийся на отмели во время отлива кит не всегда может дождаться прилива. Он буквально оказывается полураздавленным собственной массой. Его мышцы еле-еле способны раздвинуть ребра, освобождая место расширяющимся при каждом вдохе легким. Не только мышцы, скелет, кровь, все жизненно важные системы китообразных приспособились за время долгой эволюции в водной среде к практическому отсутствию веса.
Экспедиция знаменитого исследователя морских глубин Кусто как-то наткнулась на застрявшего на мели китенка. Его понадобилось для лечения и перевозки поднять на борт. Но «поднять кита из воды – дело мудреное. Даже новорожденный китенок может сломаться от собственного веса без равномерной опоры». Пришлось сделать что-то вроде гамака и подвести под туловище животного. Именно исследование существ, живущих в воде, стало ключом к пониманию роли земного притяжения для жизни. Судя по всему, выходящим на сушу морским животным пришлось когда-то перестроить свой организм для «борьбы» с собственной массой не в меньшей, даже в гораздо большей степени, чем для перехода на новую, легочную форму дыхания. Последнее коснулось прежде всего перестройки дыхательного аппарата и до некоторой степени механизма кровообращения, первое – всего организма. Профессор П. А. Коржуев пишет в книге «Эволюция, гравитация, невесомость»: «Эволюция наземных животных представляет в основном эволюцию приспособлений, направленных на преодоление сил гравитации».
И эту мысль профессора Коржуева отнюдь нельзя назвать тривиальной, хотя может показаться, что данный факт очевиден. Как ни странно, сравнительно немногие мыслители обращали внимание на эту сторону эволюции.
Константин Эдуардович Циолковский специально рассмотрел еще в 1882 году проблему соотношения размеров обитаемой планеты и размеров ее обитателей. Он писал: «Будь иная сила тяжести на нашей планете, и размер наиболее совершенных людей, как, впрочем, и всех других существ, изменился бы».
Англичанин Крукс в 1897 году констатировал, что форма животных определена силой земного тяготения, исключения относятся только к водным животным. Стоит, впрочем, добавить, что если не о заданности размеров живых существ тяготением, то о верхнем пределе, который поставила тяжесть этим размерам, очень убедительно говорил еще Галилей: «…природа не может произвести деревьев несоразмерной величины, так как ветви их, отягощенные собственным чрезвычайным весом, в конце концом сломались бы. Равным образом невозможно представить себе костяка человека, лошади или другого существа слишком большой величины, который бы держался и соответствовал своему назначению, достигнуть чрезвычайной величины животные могли бы только в том случае, если бы вещество их костей было значительно прочнее и крепче, нежели обычные, или же если бы кости их изменились, соразмерно увеличившись в толщину, отчего животные по строению н виду производили бы впечатление чрезвычайной толщины. Это, возможно, уже было подмечено тем проницательнейшим поэтом, который, описывая великана, говорит: нельзя было сказать, насколько он был высок, так все в нем было непомерно толсто».
А дальше Галилей объясняет огромные размеры кита вполне научно даже с современной точки зрения (хоть и называет его, увы, рыбой).
В 1960 году в нашей стране была издана книга биолога В. Я. Бровара «Сила тяжести и морфология животных».
Ее главная идея: «…всякое живее существо взаимодействует с силовым полем. С момента возникновения и на всем протяжении своего онтогенетического[19]19
Онтогенез – развитие конкретного организма, в отличие от филогенеза – развития вида, рода, семейства и т. д.
[Закрыть] развития, связанного с изменением внешней формы и положения частей внутри целого, организм находится под влиянием тяготения».
Сейчас широко разрабатывает проблемы влияния гравитации на конкретные органы и системы организма профессор П. А. Коржуев. Новый подход позволяет, по мнению ученого, понять наконец ряд фактов эволюции – фактов, которые до сих пор не получали убедительного объяснения. Чтобы осмыслить их, полагает Коржуев, прежде всего надо анализировать работу костно-мышечной системы, «так как скелет и мускулатура – наиболее эффективные механизмы преодоления сил гравитации». Мускулатуру для преодоления этих сил нужно обеспечить достаточным количеством энергии, и организму пришлось совершенствовать ее выработку в процессе эволюции.
Производство энергии в организме тесно связано с кровоснабжением органов – ведь именно кровь доставляет в ткани необходимый им кислород. У рыб кровь образуется прежде всего в селезенке и почках. Уже у амфибий появился новый кровотворный орган – костный мозг, причем, собственно, в качестве кровотворного органа выступает скелет в целом, трубчатые кости вместе с заключенным в них костным мозгом.
Эволюция отказалась от усиления кровотворной деятельности старых органов, изготовляющих кровь, – почек и селезенки. «Биологически целесообразно было перемещение очагов кроветворения в те структуры, которые воспринимают всю мощь воздействия сил гравитации в наземных условиях. Такой структурой является скелет. Весь скелет или его отделы… воспринимая нагрузку, автоматически могут регулировать деятельность очагов синтеза гемоглобина».
Профессор Коржуев сравнил отношение массы скелета к массе тела у разных животных и массовое соотношение между собой различных частей самих скелетов у разных же животных. Результат оказался чрезвычайно любопытен. Самый легкий скелет, естественно, у рыб. Самый тяжелый (в среднем) у птиц и млекопитающих, хотя отдельные виды этих классов «сумели» сильно облегчить себя – до рыбьего уровня. Однако это относится, вопреки общепринятым представлениям, отнюдь не к летунам. Среди птиц своеобразный рекорд понижения массы скелета поставила малоподвижная пекинская утка, существо домашнее. У нее скелет по массе составляет только десять процентов массы тела. У ее дикой родственницы кряквы доля скелета в массе тела поднимается уже до одиннадцати и двух десятых процента. А у крачки обыкновенной – почти до восемнадцати процентов.
Скелет малоподвижной морской свинки дает пять с половиной процентов массы тела (абсолютный нижний рекорд в таблице Коржуева), зато у летучих мышей доля скелета поднимается до семнадцати, девятнадцати и двадцати двух процентов общей массы.
Мы привыкли считать, что скелет птиц облегчается благодаря утоньшению стенок трубчатых костей и другим способам, изобретенным природой. С одной стороны, это верно, но облегчение, как видим, не абсолютно. Чтобы летать, нужен мощный скелет.
Мы знаем, какие отличные прыгуны лягушки. Так вот, у травяной лягушки задние конечности дают почти половину массы скелета, шестьдесят четыре процента всей мускулатуры связано у травяной лягушки с задними конечностями – вот что делает ее такой подвижной.
У хорошо летающих птиц на кости крыльев приходится почти половина массы скелета. А у летучих мышей даже более половины общей массы скелета.
«Таким образом, осуществление полета у птиц и млекопитающих потребовало такой же глубочайшей перестройки организма, как и у бесхвостых амфибий, впервые сделавших попытку преодолеть силы гравитации. Примерно половина веса скелета и три четверти веса всей мускулатуры – вот какая цена заплачена за возможность преодолеть силы гравитации на миг и на более длительное парение в воздухе. Нужна была в буквальном смысле слова переплавка организма, фундаментальное перераспределение всех его ресурсов для решения только одной задачи – вырваться из оков земного тяготения».
Если же сравнить отношение массы сердца к массе тела у рыб, амфибий, рептилий и млекопитающих, то картина выглядит в целом еще более впечатляющей. В среднем масса сердца у рыб составляет едва лишь тысячную долю массы тела, у бесхвостых амфибий (лягушек, жаб) – вчетверо большую, у птиц – от одной трехсотой массы тела у фазана до почти тридцатой доли массы тела у колибри; у млекопитающих – от одной триста семидесятой доли массы тела у домашнего кролика и до одной семидесятой – у летучей мыши. Чем больше энергетические затраты, тем более крупное требуется сердце. А энергетические траты уходят прежде всего на борьбу с гравитацией.
При переходе млекопитающих к водному образу жизни идет обратный процесс. Снижается масса скелета, который теперь испытывает меньшую нагрузку. У дельфина, например, она составляет лишь пять-семь процентов массы тела.
Приспособление к гравитации, по Коржуеву, сыграло свою роль и в изменении состава крови наземных живых существ, и во многом другом.
Человек прошел по пути биологической борьбы с гравитацией еще дальше, чем большинство млекопитающих. Мы твердо стоим на двух ногах, обходимся двумя точками опоры. Но это означает, что в нашем теле произошло резкое перераспределение напряжений, связанных с тяжестью – по сравнению с четвероногими животными. Это сказалось на форме костей ног, принявших двойную тяжесть, на костях рук, освобожденных от обязанности служить опорой. Таз женщины, который теперь должен служить опорой плоду, изменил свою старую форму, применяясь к новой функции. Разумеется, все это происходило на протяжении очень длительного времени и, вероятно, происходит и по сию пору. Видно, прав врач и писатель В. Вересаев: «…органы человека и их размещение до сих пор еще не приспособились к вертикальному положению человека. Нужно себе ясно представить, как резко при таком положении должны были измениться направления и сила давления на различные органы, и тогда легко будет понять, что приспособиться к своему новому положению органам вовсе не так легко». Немалое число болезней связывают медики с такой «недоприспособленностью».
Многое в обмене веществ, пищеварении, дыхании, кровообращении обеспечивается у нас специальными физиологическими механизмами. Но в ряде случаев организм «просто» использует даровую силу земного тяготения. Кровь на некоторых участках артерий и вен идет, так сказать, самотеком… Живое существо экономит свою энергию, обходится без лишних морфологических и физиологических механизмов. Это хорошо. Но человек вышел в космос. И тут-то перед ним, сверх прочего, во всей своей важности встала проблема того, до какой степени он приспособлен к земному гравитационному полю. Встала потому, что человечество начало – пусть пока в лице немногочисленных своих представителей – выходить из-под влияния этого поля.








