Текст книги "Чем мир держится?"
Автор книги: Роман Подольный
Жанр:
Физика
сообщить о нарушении
Текущая страница: 1 (всего у книги 15 страниц)
Роман Подольный
ЧЕМ МИР ДЕРЖИТСЯ?
Самая слабая, самая могучая
«Героиня» этой книги – сила тяготения, она же гравитация, или, совсем длинно, сила гравитационного взаимодействия.
Тяготение удерживает Луну у Земли, Землю у Солнца, а нас с вами – на поверхности родной планеты. Тяготение стягивает звезды в пары и шаровые скопления, управляет движением комет и даже лучей света. Звездное небо, каким мы его видим, – итог многих миллиардов лет работы гравитационных сил. И если Солнечная система медленно, но верно тянется через космическое пространство по направлению к созвездию Геркулеса – можете не сомневаться, ее влечет та же самая сила.
На Земле тяготение – наш постоянный спутник.
Вот говорят, например, что вся используемая человеком энергия, кроме атомной, результат работы Солнца. Ветры дуют, потому что воздух нагревается лучами Солнца. Вода в реках течет, а не лежит глыбами льда, потому что ее греет наша дневная звезда. В деревьях, в каменном угле, в нефти запасена солнечная энергия. По ветры не дули бы, если бы расширяющийся под воздействием солнечного тепла воздух не становился легче, а сами понятия «легче» и «тяжелее» связаны с тяготением. Да и воздуха на Земле не было бы, не удерживай его гравитация. И реки текут под уклон, потому что их гонит эта наша верная помощница. И мертвые деревья скапливались на дне болот, превращаясь в каменный уголь, в числе прочего, под воздействием собственной тяжести.
Да что говорить! Вещество нашей планеты удерживается вместе в составе небольшого по космическим масштабам шарика все той же гравитацией. И она же держит звезды и соединяет их в галактики. Так что, собственно говоря, без тяготения вообще не было бы ни людей, ни деревьев, ни планет и звезд.
Тяготение, полагает большинство ученых, собрало миллиарды лет назад Землю из куда более мелких тел, подарило ей Луну, сберегает нам атмосферу. Тяготение сформировало все живое на Земле. Мы еще поговорим в специальной главе о взаимоотношениях жизни и гравитации, а пока – только один пример. Обыкновенный лесной гриб, выросший в спутнике в состоянии невесомости, «забывает» напрочь свою заданную миллионолетиями форму, обходится без шляпки, а вместо красивой, стройной, изысканно округлой ножки вырастает у него неровный угловатый столбик.
Что держит нас на этом шаре, кроме силы тяготения?
Станислав Ежи Лец
Силе тяготения в науке долго не везло. Нельзя сказать, чтобы ученые ею не занимались. Наоборот, стоит оглянуться на историю исследования этой проблемы, чтобы увидеть: почти каждый крупный физик по меньшей мере высказывал по этому поводу свои соображения, а чаще посвящал гравитации специальные работы.
Но, как пишет английский писатель и ученый Артур Кларк в книге «Черты будущего», «сила тяготения стоит как-то особняком от других сил природы. Свет, тепло, электричество, магнетизм – все можно генерировать, создать множеством различных способов, и все они обладают свойством взаимопревращения… А вот генерировать гравитацию мы совсем не умеем, и, судя по всему, она совершенно индифферентна к любым воздействиям, которые мы пытаемся на нее оказать».
Множество статей и даже книг о гравитации заявляют (и напрасно!), что тяготение – единственная сила, которую человек до сих пор не умеет использовать, подчеркивают то обстоятельство, что она выступает как противник человека чуть ли не во всех затеваемых им работах.
Но это, право же, далеко не точно. Тот факт, что все тела на Земле притягиваются нашей планетой, человечество начало использовать с незапамятных времен. Знаменитый «отец кибернетики» Норберт Винер был более прав, когда настаивал на том, что тяготение было для человека с самого начала и союзником, и врагом. В силу своей всеобщности и своего постоянства оно стало для нас самым верным среди друзей и самым непреклонным среди противников. Какой толк был бы в палке, сбивающей с дерева плоды, если бы они не падали на землю? Не будь тяготения, первобытным охотникам не понадобилось бы загонять стада оленей или быков к крутым обрывам, с которых животные в панике падали и разбивались. И мамонт проваливался в вырытую на его пути и замаскированную яму, погубленный собственным немалым весом, все той же силой тяготения, которую человек, по сути, поставил себе на службу.
Открытие рычага (осмысленное Архимедом, но фактически сделанное и успешно использовавшееся за тысячелетия до него) можно считать победой если не над тяготением, то над силой тяжести, препятствующей перемещению особо тяжелых предметов. Завоевание водной стихии, начиная с сооружения первого подобия плота, было использованием закона, открытого опять-таки много тысячелетий спустя тем же Архимедом. Когда реки, озера, а потом и моря стали транспортными путями, вода начала играть для человечества роль своеобразного кэйворита каменного века.[1]1
Кэйворит – вещество, непроницаемое для тяготения, созданное в фантастическом романе Герберта Уэллса «Первые люди на Луне».
[Закрыть]
И играет эту роль до сих пор. Через всю историю архитектуры и строительства, например, проходит поиск средств, способных противостоять действующей на сооружения силе тяжести.
Можно, конечно, довести рассуждения до абсурда. Лезешь, скажем, в гору – так тоже борешься с тяготением. А спускаешься с горки – его используешь… Но, если говорить серьезно, то ворот и кабестан – вехи в борьбе с тяготением. Как лошадь под седлом или запряженная в телегу, как рельсы под поездом, как воздушный шар, как самолет наконец… Запуск первого советского спутника обозначил собой не только начало космической эры в истории человечества, но и новый рубеж в его борьбе с тяготением. А еще через четыре года первый землянин по-настоящему почувствовал, что такое невесомость.
Есть у Вадима Шефнера стихотворение «Ступени».
Завидовал кто-то птицам,
Но был не из рода Дедалов,—
Чтоб медленно вверх возноситься,
Он лестницу вырубил в скалах.
Ступени – замена полета,
Ступени – замена паденья.
Ступени – работа, работа,
Терпенье, терпенье, терпенье.
Пусть ангелы в горнем полете
Смеются над неокрыленным,—
Не богу – работе, работе
С киркой отбиваю поклоны.
Усилья, усилья, усилья,
Спина – будто натерта солью.
А вдруг это крылья, крылья
Проклевываются с болью?
Крылья у человечества прорезаются! И вправду – с болью. Но ведь рождение каждого из нас тоже принесло матери не только радость, но и боль.
Пока что путь к победам над тяготением шел не через познание природы и характеристик силы гравитации. Мы просто противопоставили силе силу. Так когда-то человек смирил силой дикую лошадь, заставил ее тянуть повозку. Но должны были пройти тысячелетия, прежде чем он оседлал давно уже служившего ему коня, сделал его не только помощником, но и другом. Придет время, мы научимся не только побеждать гравитацию, но и властвовать над ней, «потеряем» еще одного врага, а союзника обратим в верного друга. Самого могучего во Вселенной и в то же время самого слабого…
Центральный закон диалектики, по Марксу и Энгельсу, – закон единства и борьбы противоположностей. И один из самых знаменитых парадоксов Нильса Бора можно рассматривать попросту как отражение действия этого закона в природе. Великий датский физик вполне в духе своей науки так определил действительно глубокие физические истины: если они верпы, то верпы и истины, им противоположные. Вот уж, кажется, парадокс парадоксов! Но все же каждый из нас, порывшись в памяти, без особого труда найдет – хотя бы среди обрывков школьных знаний – немалое число примеров, подтверждающих мысль Бора. Один из них – история научных представлений об атоме… Две с половиной тысячи лет назад была высказана впервые глубочайшая истина о существовании мельчайшей неделимой частицы материи– атома. Сегодня мы сохраняем за атомом его имя «неделимого», но знаем, что он делится. Эти две истины противоположны друг другу и верны одновременно, но верны для разных уровней строения материи и для разных уровней познания ее.
В этой книге нам часто придется вспоминать парадоксальное определение, данное Бором действительно глубоким истинам.
Уж, наверное, не случайно самая могучая из сил Вселенной оказывается одновременно и самой слабой. Огромен и неисчерпаем мир – вширь и вглубь. Но ученые знают только четыре типа работающих в нем сил, четыре разновидности взаимодействий в мире.
Самую могучую из этих разновидностей так и зовут сильной – говорят о «сильных взаимодействиях». Их сфера действия – элементарные частицы, атомное ядро. «Сильные силы» связывают его частицы воедино. Следующее по мощи взаимодействие – электромагнитное. Оно возникает между телами, несущими электрический заряд. Следующая ступенька вниз – и мы приходим к силам, проявляющимся в некоторых реакциях между элементарными частицами. Так они слабы, что их и назвали слабыми взаимодействиями. Гравитационное взаимодействие– несравненно слабее и этих сил, даже по названию слабых.
Вот два протона в атомном ядре. Между ними должны действовать все четыре вида мировых сил. Ядерные силы – раз (в ядре же эти протоны); электромагнитные – два (эти протоны несут положительный электромагнитный заряд); слабые (протоны же элементарные частицы) и, наконец, гравитационные – протоны, как все тела, имеют массу и притягиваются друг к другу по закону всемирного тяготения. Так вот сильное взаимодействие между протонами примерно в сто раз превышает по мощи электромагнитное. То, в свою очередь, сильнее слабого взаимодействия… в сто миллиардов раз. Но гравитационное «хуже» и слабого-то еще в десять триллионов триллионов (или в десять миллиардов квадрильонов) раз. Ради краткости это записывают так– 1025. А уж между сильным и гравитационным взаимодействиями разрыв примерно в десять в тридцать восьмой степени раз – сильное мощнее в его квинтильонов квинтильонов раз.
Масса Земли равна примерно шести, помноженному на десять в двадцать седьмой степени граммов. Если для простоты расчета убрать множитель шесть, то получается, что Земля во столько же раз тяжелее миллиардной доли грамма, во сколько раз электромагнитные силы взаимодействия между протонами мощнее сил тяготения между ними же.
Еще более впечатляющую картину дает сравнение сил взаимодействия между двумя электронами (электромагнитный заряд у каждого из них по абсолютной величине тот же, что у протона, зато масса почти в две тысячи раз меньше массы протона). Здесь электромагнитные силы уже десять в сорок третьей степени раз больше гравитационных – как раз во столько же раз, во сколько раз Земля тяжелее одной десятиквадрильонной доли грамма.
Нет в нашем мире силы слабее, чем гравитация!
Но проигрывая в этом, гравитация– берет свое и на планете и во Вселенной благодаря другим своим качествам. Сильные взаимодействия сверхмогучи, но место действия у них очень ограниченное – атомное ядро.
У электромагнитных сил область приложения куда шире. Но и они по масштабам своего действия далеко уступают гравитации. Ведь частицы и тела могут иметь как положительные, так и отрицательные заряды, могут быть и нейтральными. В космических телах и масштабах эти заряды, естественно, складываются и почти целиком– по воздействию на окружение космического тела – «взаимоуничтожаются».
О слабых взаимодействиях, проявляющихся лишь на уровне элементарных частиц, и говорить нечего. Слишком узко поле их действия.
А слабой гравитации подвластно все – от света до звезд, и расстояние даже межзвездное для нее не преграда. Гравитационные заряды всегда «складываются». Мы не знаем вещества, которое бы не несло «гравитационного заряда». О гравитации порой говорят как о всеобщем свойстве материи. Это универсальная, самая «тотальная» из известных человеку сил природы.
А может, мы поспешили, назвав ее всеобщей, если она значительна только в макро– и мегамире, то есть в мире больших и гигантских величин? Пожалуй, нет, не поспешили. Да, в молекуле, атоме, атомном ядре гравитация не играет никакой роли. Слишком велики межатомные и даже межнуклонные расстояния при сверхничтожных размерах масс атомов и элементарных частиц. Но по мере нашего проникновения в глубь материн мы, быть может, выйдем к таким структурным частям элементарных частиц, расстояния между которыми окажутся настолько ничтожны (по сравнению с их массами), что гравитация вновь заявит здесь о себе во весь голос.
Мало того. Все остальные взаимодействия могут носить двоякий характер. Тела, несущие электромагнитные заряды одного знака, отталкиваются, тела с зарядами противоположного знака притягиваются. В атомном ядре на одном расстоянии сильное взаимодействие проявляется в притяжении нуклонов (протонов и нейтронов) друг к другу, на более близком расстоянии – во взаимоотталкивании я дер пых частиц. Слабое взаимодействие тоже может происходить по-разному…
А вот гравитация, тяготение, всегда проявляется только в притяжении тел, она в этом отношении демонстрирует завиднейшее постоянство. Есть, правда, гипотезы о том, что просто мы имели до сих пор всегда дело только с положительным гравитационным зарядом тел, а возможна, так сказать, отрицательная масса, с другими гравитационными свойствами. В своем месте мы еще о таких гипотезах поговорим, но пока что останемся на твердой почве достоверно известных фактов.
По крайней мере две с половиной тысячи лет человек сознательно стремится понять эту силу, определить ее, осмыслить, истолковать я использовать. Его борьба за познание природы тяготения необычайно поучительна. И не только сама по себе. Проблема тяготения стала ключом к раскрытию свойств движения, пространства, времени.
Каждый закон, открытый наукой, может рассматриваться как представитель всех законов природы. История каждого открытия, сделанного человеком, – зеркало, в котором отражаются не только свойства мира, но и свойства человечества.
Законы гравитации выступают в качестве своеобразного эталона среди физических законов, образца, с которым можно сравнивать, на который можно равняться.
Недаром ведь ньютоновский закон всемирного тяготения был назван величайшим обобщением, достигнутым человеческим разумом. Американский физик Ричард Фейнман в цикле лекций, который переведен и издан у нас в стране под названием «Характер физических законов», в качестве постоянного и характерного примера использует именно закон Ньютона – «может быть, потому, что этот великий закон был открыт одним из первых и имеет любопытную… историю. Вы скажете (продолжает Фейнман): „Да, но это старая история, а мне хотелось бы услышать что-нибудь о более современной науке“. Может быть, более новой, но не более современной. Современная наука лежит в том же самом русле, что и закон всемирного тяготения».
Можно добавить и. по-видимому, Фейнман не стал бы возражать против такого добавления, что именно закон Ньютона и стал началом этого русла, он был истоком реки, проложившей русло, в котором с тех пор развивается наука. Потому, в частности, что с ним в науку по-настоящему твердо и навсегда вошло число.
История проблемы – эти два слова образуют одно понятие, у которого есть, как полагается каждому уважаемому понятию, две стороны: в данном случае эти стороны можно определить как «физическую» и «историческую».
Понимание – пусть на популярном уровне – физической стороны дела открывает нам ни более ни менее как устройство Вселенной, «план мироздания», как сказали бы в прошлом веке. Понимание движения науки, ее исторического развития дает нам представление и о законах такого развития и о людях, которые законы открывали. А этого из учебника, как правило, не узнаешь: туда попадают одни только формулы в сопровождении лишь имен тех, кто их впервые написал.
Путь к одному открытию можно рассматривать как модель пути к любому другому открытию. Можно ли руководствоваться такой моделью, когда ты ищешь пути к новым открытиям?
Алгоритма, строгого набора правил перехода от старого открытия к новому, еще никто не создал, хотя сотни людей, занимающихся так называемым науковедением, в конечном счете, по-видимому, ищут именно такой алгоритм. Но во всяком случае история науки издавна оказалась хотя бы в одном отношении в более выгодной позиции, чем просто история: если кому-то могло показаться, что история ничему не учит, то об истории науки и самый отпетый скептик этого не осмелится сказать.
Владимир Ильич Ленин писал: «Весь дух марксизма, вся его система требует, чтобы каждое положение рассматривать лишь (а) исторически; (β) лишь в связи с другими; (γ) лишь в связи с конкретным опытом истории».
Мы пройдем в книге по пути, которым развивалась идея тяготения, и будем более или менее внимательно приглядываться к наиболее заметным вехам и памятникам по сторонам этого пути.
Рассказ о жизни замечательной идеи тяготения разбит на три части. Первая – «Вчера» – посвящена ее истории до появления общей теории относительности. Вторая – «Сегодня» – говорит о современной ситуации в науке о гравитации. Третья – «Завтра или никогда» – разнородна. В ней есть главы об открытиях, в неизбежности которых ученые уверены, есть попытки заглянуть в будущее науки, есть изложение идей, в чьей реальности большинство физиков сомневается.
Разумеется, такое деление книги весьма условно. История науки – часть ее, она проникает в сегодня так же, как и в завтра.
Идеи древних греков порою живо обсуждаются и сейчас на семинарах в физических институтах, предположения, выдвинутые сотни лет назад, могут обернуться реальностью в будущих экспериментах.
Путь познания неделим.
Вчера
Догадки. Аристотель и многие другие
«Лицом к лицу лица не увидать», – сказал поэт.
Человечество же всегда стояло лицом к лицу с тяготением. Оно было слишком близко, обыденно, повседневно. К нему настолько привыкли, что не замечали.
Оказалось легче и проще догадаться, что Земля – шар (кстати, одним из веских доводов против этого в течение двух тысяч лет считался вопрос, почему с Земли тогда не падают люди, живущие на «нижней стороне» такого шара?), чем обнаружить земное притяжение.
Мы восхищаемся гением древних греков, но как странно звучит сегодня предположение вёликого Платона о том, будто твердые тела падают на землю, а вода из облаков вливается в ручьи, реки и моря потому, что «подобное стремится к подобному». И все-таки это великолепная догадка, поскольку Платон сформулировал мысль о взаимном притяжении тел, пусть и видел он это притяжение не там и трактовал его неверно.
Сначала неизбежно идут: мысль, фантазия, сказка. За ними шествует научный расчет. И уже в конце концов исполнение венчает мысль.
Константин Циолковский
На первый взгляд кажется чрезвычайно огорчительной история взаимоотношений с тяготением величайшего ученого древности Аристотеля. Создастся впечатление, что этот творец двадцати наук – от логики до метеорологии, мудрейший из мудрых, человек, которого обычно включают в список десяти ученых, больше всего сделавших для человечества, тут ошибался чуть ли нс на каждом шагу, словно не мог разобраться в элементарных вещах. Вот, например, одна цитата: «Падение массы золота, или свинца, или какого-нибудь другого тела происходит тем быстрее, чем больше его размер». Это утверждение Аристотеля, как и некоторые другие, принималось потомками на веру две тысячи лет!
Что это – абсолютное отсутствие наблюдательности у гения? Конечно, нет. Не случайно же такое «отсутствие наблюдательности» проявляли ученые на протяжении еще девятнадцати веков. И совсем не только потому, что они находились в рабском подчинении авторитету Аристотеля – подчинении, заведомо отвергавшем всякую проверку утверждений древнего философа. Ведь его выводы проверяли, и кто! – например, сам Леонардо да Винчи. Великий художник и ученый бросал тела разного веса и пришел к тому же итогу: скорость падения зависит от веса тела.
В чем же здесь дело? Тут нужно искать причины прежде всего исторического характера. Древние еще не умели, по-видимому, вкладывать точный количественный смысл в понятия «быстрее» и «медленнее». Тяжелые тела действительно падали быстрее легких, а насколько именно – поди измерь… Число стало главным героем научных сражений лишь с приходом в науку Ньютона. Ведь даже Галилей далеко не всегда придавал численным определениям должное значение.
И все-таки Аристотель, даже допуская одну из самых поразительных своих «ошибок», мимоходом, обосновывая неверный вывод, знакомит нас с одним из своих самых поразительных научных прозрений. Он считал, что разная скорость падения тел объясняется их разной тяжестью и сопротивлением среды, в которой происходит падение. В пустоте все тела – тяжелые и легкие – падали бы одинаково быстро. Для Аристотеля это блестящее обобщение – тот самый прием, который в геометрии называется приведением к абсурду. Ведь пустоты, по мнению философа, в природе не только нет, по и быть не может. Природа боится пустоты. Значит, не могут тела тяжелые и легкие падать с одной и той же скоростью…
Словом, на ошибках ученых прошлого можно изучать не только и даже не столько психологические тонкости индивидуального познания, но и исторические особенности мышления целых эпох.
Одной из важнейших дат в истории физики считается по нраву 365 год до н. э. В этом году девятнадцатилетний Аристотель – впервые в мире – отметил, что свободное падение тел представляет собой ускоренное движение.
Касаясь причины того, почему предметы падают на землю, а пар поднимается к небу, Аристотель с его стремлением к «устроению» строгого и точного миропорядка давал (вслед за Платоном) этому простое объяснение. В мироздании всему отведено свое место. Планетам – круговые орбиты. А тяжелым телам – центр мира. И если что-то даже находится «не на своем месте», то оно во всяком случае стремится его занять.
Аристотель не был первым, кто задумался над тем, почему тяжелые тела падают на землю. Но его фигура олицетворяет для нас науку Древней Греции, его догадки, достижения и ошибки характерны для целой эпохи. Поэтому разговор о том, как началась наука о тяготении, естественно все-таки начать с рассказа об этом ученом.
Аристотель считался прямым потомком бога. Асклепий, бог исцелитель, покровитель медицины и врачей, хранитель здоровья – отличный божественный предок. В длинной линии поименно перечисляемых его потомков – Аристотель. Но вопреки традиции врачом Аристотель не стал, хотя его прадед, дед и отец занимали почетные и доходные должности придворных врачей македонских владык. Он получил признание еще при жизни, более того – в относительно молодые годы, и получил полной мерой. Филипп Македонский, недавний пациент и покровитель отца Аристотеля, пригласил ученого, которому тогда было сорок с небольшим, в учители к своему сыну Александру. И написал, мол, не тем он счастлив, что есть у него сын Александр, а тем, что может этот сын учиться у Аристотеля. Плата за уроки была поистине царской. Восстановил македонский царь Стагиру, родной город Аристотеля, взятый незадолго до того штурмом и разрушенный, и собрал в него прежних жителей, большую часть которых пришлось для этого выкупить из рабства.
Но главным занятием Аристотеля было не обучение царевичей, а создание новых наук. Можно даже сказать: Науки – с большой буквы.
Не мог он не высказаться и о тяготении. И о движении тоже (а мы увидим дальше, как тесно связаны природой эти два понятия), Аристотель полагал, что тело движется, пока на него влияет какая-то сила. Перестанет она действовать – тело остановится. Как просто! Но не надо сразу смеяться. Хорошо нам – после Галилея и Ньютона. Альберт Эйнштейн не осуждал гениального грека. В книге «Эволюция физики», написанной совместно Эйнштейном и Инфельдом, так я говорится, что это положение Аристотеля, по существу, отвечает обычному житейскому опыту.
Закон инерции, кажущийся нам сейчас очевидным, нельзя было, с точки зрения авторов «Эволюции физики», просто и прямо вывести из реальных обыденных событий. Тут требовалась высокая степень абстрактного мышления. Чтобы достигнуть ее, человечеству пришлось дожидаться появления сначала Галилея, а потом Ньютона. А для IV века до н. э. то, что можно назвать «Законом Аристотеля», было, выходит, вполне допустимым обобщением. Неверным? Да нет, верным – по крайней мере на первый взгляд, даже на первый взгляд настоящего ученого – кто посмеет сказать, что Аристотель им не был?
Греки ведь не знали быстродвижущихся тел, если не считать, конечно, стрелы, пущенной из лука, или камня, брошенного пращой. А кроме того, как уже говорилось, у греков не было точного количественного подхода к скорости.
Аристотель видел, что колесница останавливается, когда останавливается впряженный в нее конь. И подталкиваемый камень перестает двигаться, стоит рабу присесть отдохнуть. Он сделал обобщение, вывел закон– и хорошо еще, что этот закон, раз он неправильный, был так «легко» опровергнут через две тысячи лет.
Сперва собирать факты, и только после этого связывать их мыслью.
Аристотель
Аристотель стоял на рубеже двух эпох. Он замыкал цепь великих древнегреческих угадывателей тайн природы. Он открывал блестящий ряд ученых, которые не только делали открытия, по и систематизировали знания, накопленные наукой до них, искали и находили новые пути к истине. Демокрит и Эмпедокл до него, Евклид и Архимед после него – эти имена хорошо характеризуют место Аристотеля в античной науке. Он был первым великим систематизатором в истории науки и тем самым, как бы странно это ни казалось на первый взгляд, положил конец великим догадкам древних греков.
Галилей разрушил аристотелево представление о движении и падении тел. Ньютон окончательно разделался с идеей о стремлении тяжелых тел к «центру Вселенной». Можно было бы перечислять и перечислять имена физиков, биологов, медиков, опровергнувших то или иное утверждение древнего философа, но каков же был вклад в науку человека, для одного лишь исправления ошибок которого потребовались усилия стольких гениев!
Смерть воспитанника Аристотеля – великого завоевателя Александра Македонского обернулась для воспитателя трагедиен. Освободившиеся от страха перед грозным тираном афиняне видели в Аристотеле прежде всего его приближенного. Философу пришлось бежать из Афин, чтобы, по собственному выражению, избавить город от нового прегрешения перед философией – первым прегрешением Афин перед ней было осуждение на смерть Сократа.
А вскоре ученый умер… Возможно, утопился. Возможно, потому, что не смог пережить гонений. Его смерть родила прекрасную легенду.
…Блистательный военный поход Александра Македонского был одновременно самой грандиозной научной экспедицией. По рассказу древнеримского историка Плиния, несколько тысяч людей при армии Македонца специально занимались поиском животных, поскольку учитель Александра Аристотель как раз в это время работал над своей «Историей животных». Жадно встречал Аристотель известия, приносимые возвращавшимися из походов греками, сообщения о странных камнях, растениях, животных, необычных природных явлениях. Много интересного узнавал великий ученый, но самые поразительные новости принесли воины, побывавшие на побережье Индийского океана. Они свидетельствовали, что там дважды в сутки морская вода поднимается на много локтей и идет на сушу, чтобы через несколько часов отступить. Иначе говоря, Аристотелю описали приливы и отливы.
В Средиземном море приливы и отливы настолько незначительны, что греки на них попросту не обращали внимания, не замечали их – может быть, еще и потому, что привыкли. Поэтому индийские новости потрясли Аристотеля. Как и подобало настоящему ученому, Аристотель стал искать причину, по которой происходят приливы и отливы. Не смог найти ее. И от отчаяния якобы бросился в море.
Уж такая-то легенда говорит о характере своего героя больше, чем многие правдивые истории. Счастлив ученый, предполагаемое самоубийство которого современники приписывали не личным несчастьям и не политическим гонениям, а великой страсти к науке.
Древние называли морские приливы «могилой человеческого любопытства». Кто первый понял, точнее сказать– подметил, что приливы как-то связаны с Луною, точно неизвестно. Для римлян I века до н. э. это была уже настолько тривиальная истина, что Юлий Цезарь мимоходом поминает о ней в своих «Записках о Галльской войне». А понять было нелегко, потому что даже семнадцать веков спустя Галилей считал идею о Луне, управляющей приливами, глупейшим предрассудком. Впрочем, и противник Галилея в этом вопросе, Кеплер, мог ссылаться для объяснения только на особую власть Луны над водой.
Замечательно утверждение историка Плутарха: «Луна упала бы на землю как камень, чуть только уничтожилась бы сила ее полета». Под такой фразой подпишется любой физик нашего времени.
И все-таки преувеличивать значение даже столь блестящих догадок не стоит.
Древняя Греция была богата мыслителями, каждый из которых оставил после себя множество идей.
Среди тысяч противоречащих друг другу формулировок не могут не найтись совпадающие с теми, к которым пришла современная наука. А на те, что не совпадают, мы просто не обращаем внимания – ведь это неинтересно. Было бы чрезвычайно любопытно провести детальный анализ, чтобы более или менее точно определить, какая доля догадок древних греков основывается на том, что можно назвать научным предвидением, а какая представляет собой просто «случайные попадания».
А порою мы вкладываем в отрывочные фразы гениев прошлого смысл, который поразил бы самих авторов этих фраз.
В средние века догадки становятся, в общем, определеннее и точнее.
Шотландец Иоанн Скот Эригена в IX веке полагал, что по мере удаления от Земли тяжелые тела должны становиться легче.
Англичанин Аделяр из старинного города Бата тремя веками позже прямо написал, что если в Земле вырыть колодец огромной глубины и бросить в него камень, то в центре Земли камень остановится и дальше не полетит. Вот для сравнения цитата из «Занимательной физики» Я. И. Перельмана: «…с углублением в землю тела не увеличиваются в весе, а напротив, уменьшаются. Объясняется это тем, что в таком случае притягивающие частицы земли расположены уже не по одну сторону тела, а по разные его стороны… Достигнув центра Земли, тело совсем утратит вес, сделается невесомым, так как окружающие частицы влекут его там во все стороны с одинаковой силой».
Насколько мы можем судить, Аделяр тут исходит из общих представлений древних о шаре как идеальной и исключительной геометрической форме.
Роджер Бэкон, самая, быть может, поразительная личность в истории европейской науки, во всяком случае между античностью и Возрождением, объяснил падение тел силой притяжения, направленной к центру Земли. Как просто и ясно это положение сегодня! Но тогда для такой четкой формулировки понадобился гениальный ум, кроме всего прочего, предвидевший такие открытия будущего, как колесницы, движущиеся без лошадей, корабли, не нуждающиеся в гребцах и парусах, наконец летательные машины.