355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Роберт Сапольски » Биохимия старения » Текст книги (страница 2)
Биохимия старения
  • Текст добавлен: 4 июля 2017, 13:00

Текст книги "Биохимия старения"


Автор книги: Роберт Сапольски


Жанры:

   

Биология

,

сообщить о нарушении

Текущая страница: 2 (всего у книги 19 страниц)

С возрастом нарушаются практически все сенсорные функции. Уменьшается способность глаз к аккомодации, так как ухудшается функционирование мышц, меняющих структуру хрусталика, и изменяется структура коллагена хрусталика. В результате глаз не может эффективно сфокусироваться на близлежащих предметах, и расстояние до ближайшей точки ясного видения линейно возрастает. Это ведет к пресбиопии, или старческой дальнозоркости. Этот фактор контролируется генетически, так как известно, что у тех, кто преждевременно становится дальнозорким, родители также имели этот дефект. В старческом возрасте хрусталик часто мутнеет, что ведет к развитию катаракты. Острота зрения, являющаяся показателем разрешающей способности глаза, т. е. способности различать детали в контрастном изображении, также уменьшается. Увеличивается время, которое требуется глазу, чтобы увидеть предмет в темноте после экспозиции на ярком свету, что свидетельствует о снижении адаптации к темноте.

Падает чувствительность уха к звуковым волнам высокой частоты, которые воспринимаются сенсорными клетками в проксимальной части улитки. Происходит ли это из-за гибели сенсорных клеток или из-за нарушения их функции – неизвестно. В старческом возрасте уменьшается чувствительность к запаху и вкусу, так как гибнут обонятельные и вкусовые рецепторы. Нарушается также чувство равновесия, за которое ответственны полукружные каналы.

Это краткое перечисление показывает, что по окончании периода зрелости нарушаются функции практически всех органов. Графики происходящих изменений показаны на рис. 1.1. Возрастное нарушение функций не является особенностью человека, оно характерно для всех организмов. Изменения велики, и их причиной должны быть изменения на клеточном и молекулярном уровнях. Выяснение молекулярных основ этих изменений может помочь в понимании причин старения, в разработке методов замедления изменений и тем самым самого старения.


Значение проблемы старения

В начале нашего столетия основной причиной смерти людей считали инфекционные заболевания. Это были болезни дыхательных путей, туберкулез и желудочные инфекции (заболевания перечислены в порядке значимости). Таким инфекционным заболеваниям человек был подвержен в любом возрасте. С открытием антибиотиков и появлением других достижений медицинской науки эти болезни стали более или менее контролируемыми, особенно в развитых странах. Это привело к значительному увеличению средней продолжительности жизни человека – от 40 до 70 лет (рис. 1.3). Однако контроль за инфекционными болезнями не создает у человека иммунитета к старению и смерти. В последние два десятилетия основными причинами смерти людей являются заболевания сердечно-сосудистой системы, рак и сосудистые заболевания мозга (рис. 1.4). Эти болезни, по-видимому, имеют внутренние причины и называются «болезнями старческого возраста». В настоящее время инфекционные болезни практически не влияют на среднюю продолжительность жизни людей в развитых странах, где имеется доступное для всех медицинское обслуживание. Подсчитано, что если полностью ликвидировать все инфекционные заболевания, то средняя продолжительность жизни человека может увеличиться на 0,2 года. Однако если исчезнут сердечно-сосудистые заболевания, то средняя продолжительность жизни возрастет примерна на 10 лет.


Рис. 1.3. Ожидаемая продолжительность жизни в разных странах – число доживающих (ось ординат) до определенного возраста (ось абсцисс) на 100000 мужчин [1, 3]:

1 – Индия (1921–1930); 2 – Мексика (1930); 3 – Япония (1926–1930); 4 – США (1900–1902); 5 – Италия (1930–1932); 6 – США (1929–1931); 7 – США (1939–1941); 8 – Новая Зеландия (1934–1938); 9 – США (1949–1951); 10 – США (1969)


Рис. 1.4. Основные причины смерти людей в США в 1967 г. по сравнению с 1900 г. [2]

Быстрое и успешное развитие биологических и медицинских наук позволяет надеяться, что человек достигнет своей максимальной продолжительности жизни – около 100 лет. В развитых странах около 15 % населения имеют возраст более 60 лет. К 2000 году доля таких людей возрастет до 20 %; это означает, что каждый пятый человек будет старше 60 лет. Женщины составляют около 65 % той части населения, возраст которой превышает 60 лет. В развивающихся странах из-за недостатков в системе охраны здоровья, отсутствия контроля за инфекционными заболеваниями, неправильного питания и недоедания средняя продолжительность жизни остается на уровне 50 лет и только около 5 % населения имеют возраст более 60 лет. С улучшением медицинского и других видов обслуживания этот процент увеличится. На рис. 1.5 показана возрастная структура населения в Швеции и Индии. В Швеции людей в возрасте 60–64 лет столько же, сколько в возрасте 30–34 лет. В Индии же, как и в других развивающихся странах, число людей 60–64 лет гораздо меньше, чем 30-34-летних. Ожидается, что в результате успехов медицинского обслуживания и контроля за рождаемостью в развивающихся странах в недалеком будущем скорость роста населения уменьшится до нуля и возрастная структура населения станет близкой к структуре в Швеции и других развитых странах.


Рис. 1.5. Возрастная структура населения в Индии (А) и Швеции (Б) [4]

Одним из результатов прогресса биологических и медицинских наук является быстрый рост числа людей в возрасте старше 60 лет, которые более подвержены болезням, физически менее способны выполнять работу и нуждаются в уходе. Хотя за последнее столетие интерес биологов к проблемам развития, путям деления оплодотворенного яйца, дифференцировке и формированию органов и в конце концов к тому, как организм достигает половой зрелости, был велик, до 50-х годов старение и следующая за ним смерть рассматривались как неизбежный процесс и не привлекали серьезного внимания ученых. Кроме того, старых организмов любого вида мало, и это также ограничивало масштабы исследований в этой области. Однако в последние два десятилетия быстрый рост числа старых людей и связанные с ним проблемы стимулировали и сделали необходимыми исследования процесса старения, которые привлекли внимание правительств разных стран к серьезности этих проблем.


Учение о старении

Наука, изучающая различные проблемы старения, называется геронтологией (geron – старый человек). Она имеет три аспекта.

Биологический

В этом разделе геронтологии рассматриваются фундаментальные аспекты старения. Исследователи, работающие в этой области, изучают молекулярные, биохимические, биофизические, физиологические и структурные изменения, происходящие в организме после достижения половой зрелости, и ставят цель – найти причины старения. Это может в конечном счете помочь разработать средства, с помощью которых можно было бы если не предотвратить старение вообще, то отодвинуть, отсрочить момент наступления старческого возраста.

Клинический

Это направление включает изучение болезней "старческого возраста", таких, как сердечно-сосудистые, сосудистые заболевания мозга, рак, артрит, ревматизм, аутоиммунные болезни, и разработку методов их лечения. Оно называется гериатрией, и в него вовлечены главным образом исследователи, имеющие медицинское образование.

Социально-психологический

Это направление имеет дело с социальными и психологическими проблемами старых и удалившихся от дел людей. Работающие в этой области заботятся о благополучии людей, о том, как обеспечить физическую и умственную занятость и сделать счастливыми стариков в оставшийся период их жизни.

Исследования биологических аспектов старения, целью которых является отыскание причин старения, – это чрезвычайно сложная проблема. В них необходимо использование данных разных дисциплин – биологии, физиологии, биохимии, биофизики, молекулярной биологии, химии и физики, т. е. это идеальная область для сотрудничества и междисциплинарных работ. Эти работы имеют чрезвычайно важное теоретическое и прикладное значение. При изучении проблем старения могут быть решены три важные задачи.

1. Старение – явление универсальное, и выяснение его причин было бы фундаментальным открытием. Эта проблема чрезвычайно сложна, так же как проблема развития – еще одного универсального явления. По ряду важных вопросов биологи приходят к различным выводам. Почему у всех организмов после достижения половой зрелости происходит нарушение функций? Почему все члены одного и того же вида имеют более или менее фиксированную продолжительность жизни? Почему крысы живут три года, слон – 70 лет, а человек – 100 лет? В каком возрасте после наступления половой зрелости начинается процесс старения? Существует ли триггер, "запускающий" процесс старения? Если да, то каким образом это происходит? Запрограммирован ли этот процесс, как запрограммировано развитие? Вот те вопросы, которые привели любознательных биологов к конфронтации и на которые необходимо ответить.

2. Ответы на поставленные выше вопросы могут помочь созданию научных методов, с помощью которых удалось бы отсрочить или предотвратить начало процесса старения, т. е. проконтролировать процесс старения. Это способствовало бы увеличению периода активной и энергичной жизни с 20–40 лет до, скажем, 20–60 лет или более, а также значительному удлинению периода плодотворной деятельности людей, причем немаловажную роль играет то, что при этом они получали бы моральное удовлетворение. Нужно не просто увеличить число проживаемых лет, а обеспечить людям лучшее здоровье. Другими словами, необходимо "добавить больше жизни к годам, а не больше лет к жизни" ("add life into years and not years into life"), как звучит девиз Американской ассоциации геронтологов. Существует древнегреческая легенда, в которой рассказывается" как Титон попросил и получил бессмертие. Однако он забыл попросить избавить его от старости и поэтому не умирал, но со временем все больше и больше дряхлел.

Продление активного периода жизни автоматически означало бы увеличение средней продолжительности жизни. При этом каждый индивидуум мог бы иметь надежду прожить максимальный срок – около 100 лет, с более коротким периодом старения. Смерть организма наступит в какой-то момент даже в том случае, если все болезни старческого возраста будут взяты под контроль, так как живая система, как и любая другая, подчиняется законам природы. С течением времени она стремится к более вероятному и равновесному состоянию с большей энтропией, и в результате этого происходит постепенное разрушение и смерть. Можно надеяться, что после того, как будут найдены причины старения, период старости, который сейчас занимает примерно 10 лет после 60, станет короче, даже если средняя продолжительность жизни благодаря контролю за процессом старения подойдет к 100 годам.

3. Ожидают также, что с увеличением периода активной жизни отодвинется срок появления старческих болезней, таких, как сердечно-сосудистые заболевания и сосудистые заболевания мозга, рак, артрит и т. д., которыми заболевают обычно в возрасте 40–50 лет, когда человек находится в расцвете своей деятельности. Такой сдвиг имел бы огромное значение, так как общество использовало бы опыт этих людей в течение более длительного периода времени. На решение проблем, связанных с перечисленными заболеваниями, тратится сейчас много средств и времени. Например, Национальный институт здоровья в США в 1973 г. израсходовал на исследования в области рака около 2 долл. на человека, а на геронтологические исследования – только 2 цента. Если же будут найдены способы продлить период зрелости, время наступления болезней будет отодвинуто и, таким образом, будут сэкономлены большие средства.

За последние два десятилетия число ученых, занимающихся исследованиями в области старения, сильно возросло. Для объяснения процесса старения было предложено несколько теорий и моделей, которые можно разделить на две категории.

Первая категория – это теории, которые объясняют старение, основываясь на изменениях, происходящих на уровне генома. Эти теории, следовательно, предполагают, что старение происходит из-за изменений в первичных центрах организма, т. е. в генах.

Ко второй категории относятся теории, согласно которым старение происходит из-за изменений во вторичных продуктах, детерминируемых генами, – в ферментах, коллагене, гормонах – и из-за разрушения различных клеточных структур, например мембран, лизосом, митохондрий, или из-за таких изменений, как изменение гомеостаза и механизмов защиты. Очевидно, что эти изменения по своей природе вторичны, так как любое изменение в структуре или регуляции должно иметь первоначальную причину в изменении функции генома, ответственного за синтез различных компонентов.

Были проведены исследования на уровне организмов разной сложности, включая человека, других млекопитающих, насекомых, нематод и простейших. Для ответа на специальные вопросы использовали срезы тканей и культуры клеток. Каждая модель способствует пониманию проблемы старения и в то же время имеет свои недостатки. Например, если в организм вводят какие-либо вещества, а затем для изучения берут отдельные органы, то обычно неизвестно, одинаково ли проникают эти вещества в соответствующие органы в разном возрасте. Использование срезов тканей и культуры клеток имеет свои недостатки: когда изучают действие химических веществ на ткани, взятые в разном возрасте, нельзя учесть оказываемое in vivo влияние на эти клетки других органов и циркулирующих в организме жидкостей.


Литература

1. Comfort A. Ageing: The Biology of Senescence, Holt, Rinehart and Winston, San Francisco (1964).

2. Donabedian A., Axelford S. J., Swearingen C., Jameson J. In: Medical Care Chart Book (5th edn.), Ann. Arbor., Michigan: Bureau of Public Health Economics, University of Michigan, School of Public Health (1972).

3. Golenpaul D. Information Please Almanac, Atlas and Yearbook, Dan Golenpaul Associates, New York (1973).

4. Leaf A. Sci. Amer., 229, 45–52 (1973).

5. Muiesan G., Sorbini C. A., Grassi V. Bull. Physio-Pathol. Respir., 7, 973-1007 (1971).

6. Shock N. W. In: Program and Papers of the Conference on Gerontology, pp. 123–140, Duke University (1959).

Дополнительная литература

Ниже приводится список книг и журналов, содержащих материалы о старении. Некоторые исследователи публикуют работы по старению в биохимических и физиологических журналах общего профиля.

Книги

Behnke J. A. (Ed.). The Biology of Aging, Plenum Press, New York (1978).

Birren J. E. (Ed.). Handbook of Aging and the Individual, University of Chacago Press, Chicago (1959).

Comfort A. Ageing: The Biology of Senescence, Holt, Rinehart and Winston, San Francisco (1964). [Имеется перевод: Комфорт А. Биология старения. – М.: «Мир», 1967.]

Cristofalo V. J., Roberts J., Adelman R. C. (Eds.) Explorations in Aging, Plenum Press, New York and London (1974).

Cutler R. C. (Ed.). In: Cellular Aging, Part I and II, Interdisc. Topics in Gerontology, Vols 9 and 10, S. Karger, Basel (1976).

Emerson G. M. (Ed.). Aging, Dowden, Hutchinson and Ross, Stroudsburg (1977).

Finch C. E., Hayflick L. In: Handbook of the Biology of Aging, Van Nostrand, New York (1977).

Gershon S., Terry R. (Eds.) Neurobiology of Aging, Raven Press, New York (1976).

Gutman E., Hanzlikova V. Age Changes in the Neuromuscular System, Scientechnica, Bristol (1972).

Holeckova E., Cristofalo V. J. (Eds.). Aging in Cell and Tissue Culture, Plenum Press, New York (1970).

Kohn R. R. Principles of Mammalian Ageing, Prentice-Hall, Englewood Cliffs (1971).

Lamb M. J. Biology of Ageing, John Wiley and Sons, New York (1977). [Имеется перевод: Лэмб М. Биология старения. – М.: «Мир», 1980.]

Lints F. A. In: Genetics of Ageing, Interdisc. Topics in Gerontology, Vol. 14, S. Karger, Basel (1978).

Rockstein M. (Ed.). Theoretical Aspects of Ageing, Academic Press, New York and London (1974).

Schneider E. L. (Ed.). Genetics of Aging, Plenum Press, New York (1978). Shock N. W. Biological Aspects of Aging, Columbia University Press, New York (1962).

Strehler B. L. In: Time, Cells and Aging (2nd Edn.), Academic Press, New York and London (1977).

Timiras P. S. In: Developmental Physiology and Aging, MacMillan, New York (1972).

Walford R. L. In: The Immunological Theory of Aging, Williams and Wilkins, Baltimore (1969).

Журналы

Advances in Gerontological Research, Vol. 1–4 (B. L. Strehler, Ed.), Academic Press, New York and London.

Experimental Gerontology, Pergamon Press, Oxford.

Geriatrics, Lancet Publications, New York.

Gerontology, S. Karger, Basel, Switzerland.

Journal of Gerontology, Gerontological Society of America, Washington, D. C.

Mechanisms of Ageing and Development, Elsevier-Sequoia, The Netherlands.

Глава 2. Хроматин: структура и функции

Введение

Вся биологическая информация в живых организмах заключена в генетическом материале, т. е. в ДНК. Поэтому любое повреждение структуры и нарушение функций генетического материала может привести к изменениям структуры и функций организма. В процессе развития многоклеточных организмов в генетическом материале наблюдаются функциональные изменения двух типов. Во-первых, несмотря на то что все клетки образуются из единственной зиготы, на ранних стадиях развития происходит их дифференцировка, вследствие чего определенные клетки производят специфические белки, которые не продуцируются другими клетками. Вот несколько примеров такой специфичности: гемоглобин образуется в эритроцитах, иммуноглобулины – в лимфоцитах, инсулин – в β-клетках островков Лангерганса, казеин – в молочной железе и т. п. Эти белки закодированы в специфических генах, которые присутствуют в клетках всех типов. Однако в результате дифференцировки эти гены активны только в специфических клетках и неактивны в других. В противоположность этому гены гистонов, негистоновых хромосомных белков, ферментов гликолиза и т. п. активны во всех видах клеток, благодаря чему эти белки имеются во всех клетках.

Во-вторых, хотя на ранних стадиях развития репликация ДНК, а затем деление клеток происходят во всех клетках, после некоторого периода увеличения числа клеток и развития организма на определенных стадиях дифференцировки в клетках некоторых типов синтез ДНК и деление клеток прекращаются. В качестве примера можно привести нейроны, а также клетки скелетной и сердечной мышцы позвоночных, которые перестают делиться вскоре после рождения, т. е. становятся постмитотическими. Некоторые из них по окончании периода развития стареют и умирают, но большая часть продолжает функционировать в течение всей жизни. Так, в клетках костного мозга, эпителия и т. п. синтез ДНК и деление продолжаются на протяжении всей жизни, т. е. эти клетки остаются премитотическими.

Каково же значение этих двух функциональных изменений в ДНК для организма и для процесса старения? Все многоклеточные организмы начинают стареть после достижения половой зрелости. Являются ли причиной старения дифференцировка и (или) постмитотическая природа клеток? Будет ли предотвращено старение, если остановить одно или оба изменения ДНК? Являются ли эти функциональные изменения ДНК необратимыми? Известно, что ДНК в клетках не находится в изолированном состоянии. Она связана в комплекс с белками двух типов: гистонами и негистоновыми хромосомными белками (НГБ), которые вместе с ДНК образуют надмолекулярный комплекс, называемый хроматином и представляющий собой генетический аппарат эукариотов. Три компонента присутствуют в комплексе приблизительно в равных пропорциях. Здесь же обнаружена и РНК, однако полагают, что она является продуктом транскрипции ДНК, а не структурным компонентом. Функция ДНК известна, роль же белков в функционировании хроматина определена недостаточно. Изменяются ли они в течение жизни? Для того чтобы выяснить, вносят ли вклад в процесс старения изменения в одном или нескольких компонентах хроматина, необходимо установить его химический состав и структуру. Структура и функции хроматина описаны в нескольких обзорах [12, 57, 74, 112, 116, 199,354].


Гистоны

Гистоны – белки с малой молекулярной массой – обнаружены в хроматине всех эукариотов. Их впервые открыли в 1943 г. Стедман и Стедман [330]. Эти белки имеют основной характер и положительно заряжены при физиологических значениях рН, поскольку они богаты лизиновыми и аргининовыми остатками. Они не содержат триптофана и присутствуют в клетках в отношении 1:1 с ДНК. Имеется пять основных типов гистонов: Н1, H2A, H2B, Н3 и Н4, которые различаются по величине соотношения лизина и аргинина. Их легко разделить с помощью электрофореза в полиакриламидном геле (рис. 2.1). Некоторые характеристики гистонов из тимуса теленка приведены в табл. 2.1.

Таблица 2.1. Параметры гистонов из тимуса теленка



Рис. 2.1. Электрофореграмма гистонов в полиакриламидном геле

Важное свойство всех гистонов состоит в том, что их положительно заряженные лизиновые и аргининовые остатки образуют кластеры в особых областях полипептидной цепи. Этим и объясняется наличие во вторичной структуре гистонов вытянутых β-структур. Очевидно, эти положительно заряженные β-структуры связываются с отрицательно заряженными фосфатными группами ДНК сильнее, чем с другими группами. Нейтрализация положительных зарядов в гистонах должна приводить к их отделению от ДНК. Из табл. 2.1 видно, что гистоны H2A, H2B, Н3 и Н4, находящиеся внутри нуклеосом, имеют больше вытянутых β-структур, чем гистон Н1, расположенный между нуклеосомами.

Прокариоты не имеют гистонов. Появление гистонов совпало с возникновением ясно выраженных ядер, хромосом и процесса дифференцировки. Гистоны подавляют синтез РНК [167] и ДНК [142] in vitro. При полном или частичном удалении гистонов из хроматина сильно увеличивается его матричная активность. Однако маловероятно, чтобы гистоны контролировали или регулировали транскрипцию генов, так как: а) имеется только пять основных видов гистонов, тогда как геном эукариотов содержит несколько тысяч генов; б) количество гистонов обычно постоянно в клетках всех типов и во всех периодах жизни; в) количество гистонов одинаково в метаболически активных и метаболически неактивных клетках. Следовательно, можно предположить, что гистоны включены в структуру и организацию хроматина и действуют как общие репрессоры его активности.

Гистон Н1

Гистон Н1 очень богат лизином – около 25 % входящих в его состав аминокислотных остатков составляет лизин. Он отделяется от ДНК гораздо легче других гистонов. Этому гистону свойствен полиморфизм, т. е. в одной ткани может быть несколько видов гистона Н1 с различными последовательностями аминокислот. В тимусе и печени крыс обнаружены пять изогистонов Н1. Относительное содержание изогистонов Н1 в разных тканях одного и того же организма различно [58, 114, 189, 190] и изменяется в течение клеточного цикла [160]. Показано, что различные подфракции гистона Н1 морского ежа синтезируются на разных стадиях развития яйца. В некоторых яйцах одна фракция гистона Н1 заменяется на другую во время перехода от бластулы к гаструле; в других это изменение происходит во время вылупления. Разные фракции гистона Н1 из тимуса кролика дают различные спектры кругового дихроизма с ДНК фага Т7 [370]. Отсюда следует, что различные подфракции гистона Н1 имеют различные функции [8, 307].

При изучении последовательности аминокислот подфракций гистона Н1 было показано, что в отличие от остальных четырех гистонов он имеет основной концевой COOH-участок. Концевая NH2-область (1-40) также имеет основной характер (24–39). В концевой NH2-области изогистонов Н1 найдено большое число аминокислотных замен. Эти замены, по-видимому, определяют функциональные различия изогистонов Н1 во взаимодействии с НГБ и эффекторами, а также в связывании с ДНК. Концевая NH2-область представляет собой неупорядоченную спираль. Центральный участок [(39±4)-(116±4)] кроме большого числа аминокислот кислотного характера и двух ароматических аминокислот содержит неполярные аминокислоты. Этот участок способен к образованию вторичной глобулярной структуры. Он в основном инвариантен и весьма консервативен, т. е. все гистоны Н1 различных организмов имеют в этой области практически одну и ту же последовательность аминокислот. По-видимому, она играет существенную роль в структуре хроматина.

Концевая COOH-область является сильно основной из-за наличия большого числа лизиновых остатков и весьма консервативна внутри одного вида. Поэтому она может играть общую роль во всех гистонах Н1. Она также представляет собой неупорядоченную спираль. Эта область в основном ответственна за связывание с ДНК. Предполагают, что основные области гистона Н1 связываются с ДНК, а неполярная и глобулярная центральная область взаимодействует с другими молекулами [77, 89, 154]. Стафилококковая дезоксирибонуклеаза специфически расщепляет хроматин между нуклеосомами, в результате чего образуются фрагменты ДНК, связывающие две соседние нуклеосомы. Показано, что гистон Н1 соединяется приблизительно с 30–60 парами оснований этих фрагментов ДНК, т. е., по-видимому, гистон Н1 не участвует в образовании структуры нуклеосомы, а располагается в областях между нуклеосомами. Положительный заряд гистона Н1 выше, чем у других гистонов. Он первым вытесняется из хроматина кислотой или щелочью и в большей степени подвержен разрушению протеазами, когда еще находится в связанном состоянии в комплексе хроматина [26, 263]. Если гистон Н1 добавить к хроматину с недостаточным содержанием этого гистона, то хроматин сжимается [46, 47]. Если же гистон Н1 смешать с двухцепочечной ДНК, то образуются структуры, имеющие форму бублика (тора) [166]; другие гистоны в подобных условиях участвуют в образовании глобул, похожих на нуклеосомы. Таким образом, гистон Н1, вероятно, участвует в образовании структур хроматина высшего порядка, а именно способствует закручиванию нитей нуклеосом в сверхспиральный виток с диаметром ~20 нм [47]. Аналогичные структуры образует с ДНК гистон Н5. Вероятно, различные подфракции гистона Н1 могут быть связаны с различными межнуклеосомными (линкерными) областями хроматина и участвуют в образовании разных сверхспиралей. В интерфазном хроматине ДНК свернута в несколько тысяч раз, благодаря чему она умещается по длине метафазной хромосомы. Определенную роль в этой конденсации ДНК может играть гистон Н1.

Гистон Н1 отличается от остальных гистонов быстрым обменом в культуре клеток [16]. В то время как синтез остальных четырех гистонов связан с синтезом ДНК и происходит только в S-фазе, синтез Н1 в клетках штаммов Friend и HeLa может происходить и в отсутствие синтеза ДНК, т. е. в G1-фазе [385]. В клетках ВНК синтез гистона Н1 также частично происходит в G1-фазе,[343].

Таблица 2.2. Сравнение свойств гистона Н1 и нуклеосомных гистонов


Гистоны Н2А, Н2В, Н3 и Н4

В процессе расщепления хроматина стафилококковой дезоксирибонуклеазой образуются глобулярные структуры, называемые нуклеосомами. Анализ нуклеосом показывает, что четыре гистона – Н2А, Н2В, Н3 и Н4 – присутствуют только в них. В ходе эволюции их структуры оказались гораздо более консервативными, чем структура гистона Н1, причем структуры гистонов Н3 и Н4 более консервативны, чем структуры гистонов Н2А и Н2В. Гистон Н3 содержит цистеин в положении 110, который сохранялся в течение всей эволюции. Показано, что гистон Н3 димеризуется путем образования дисульфидного мостика [280]. Он фосфорилируется при переходе из G2-фазы в М-фазу и быстро дефосфорилируется в течение фазы G1. Таким образом, фосфорилирование предшествует образованию дисульфидного мостика.

Очищенные гистоны Н3 и Н4 образуют в растворе тетрамеры, в формировании которых принимают участие концевые COOH-участки цепи. В опытах по реконструкции с использованием частично расщепленных гистонов Н3 и Н4 показано, что первые от NH2-конца 41 и 37 остатков гистона Н3 и гистона Н4 соответственно несущественны для образования тетрамеров. Удаление 45 и 18 остатков с COOH-конца этих гистонов препятствует образованию тетрамеров. Областями, ответственными за образование тетрамеров, являются остатки 42-120 гистона Н3 и 38-102 гистона Н4 [43, 371]. Что касается гистона Н2В, то его центральная область, по-видимому, необходима для взаимодействия гистон – гистон [197].

Гистон Н5

Кроме гистонов пяти типов, которые присутствуют во всех клетках и тканях, имеющие ядро эритроциты низших позвоночных, рыб, амфибий, рептилий и птиц содержат другой гистон, Н5, который во многом похож на гистон Н1. Он был впервые обнаружен в эритроцитах цыпленка в 1961 г. [266], и позднее его существование было подтверждено [159]. Гистон Н5 содержит приблизительно 197 аминокислотных остатков, дает полосу рядом с гистоном Н1 при электрофорезе в полиакриламидном геле и имеет молекулярную массу ~23000. Ему свойствен молекулярный полиморфизм, а расположен он между нуклеосомами. Гистон Н5 связан с А-Т-областью ДНК и, так же как гистон Н1, оказывает стабилизирующее влияние на хроматин. Он тоже богат лизином, который составляет 23 % его аминокислотных остатков. С помощью метода ЯМР установлено, однако, что он отличается от гистона Н1, и, возможно, его эволюция происходила самостоятельно [78]. Лизиновые остатки гистона Н5 ацетилированы в большей степени, чем у гистона Н1, но не так сильно фосфорилированы. Он содержит большое число сериновых остатков (21), и у него, в отличие от гистона Н1, не наблюдается специфического образования кластеров из основных аминокислот на NH2-конце. В противоположность гистону Н1 его NH2-конец имеет структуру глобулы.

Информационная РНК (мРНК) гистона Н5 не содержит полиадениловой кислоты на 3′-конце, как это имеет место в случае других гистонов. У птиц на ранних стадиях развития клеток эритроидного ряда содержится мало гистона Н5. По мере развития этих клеток его количество увеличивается и, как следствие, уменьшается транскрипционная активность хроматина, хотя содержание РНК – нуклеотидилтрансферазы не меняется. В неделящихся зрелых эритроцитах синтез гистона Н5 продолжается даже тогда, когда другие пять гистонов уже не синтезируются [336]. Если гистон Н5 удалить из хроматина, то подавление транскрипционной активности ослабляется. Его синтез не координирован с синтезом других гистонов и не синхронизирован с синтезом ДНК: он синтезируется после других гистонов. Поскольку на ранних стадиях развития эритроцитов гистон Н5 отсутствует и появляется только на стадии эритробласта, когда он постепенно накапливается и подавляет при этом транскрипционную активность, было высказано предположение, что подавление происходит в результате конденсации хроматина, ведущей к его инактивации. Если ввести гистон Н5 не в эритроциты, а в другие клетки, то транскрипция также подавляется. Другое важное обстоятельство заключается в том, что вновь синтезированный гистон Н5 в развивающихся клетках эритроидного ряда фосфорилирован, а впоследствии, в ходе созревания клеток и ослабления транскрипции, дефосфорилируется. Таким образом, гистон Н5 играет, по-видимому, важную роль в поддержании сильно репрессированного состояния хроматина в имеющих ядра эритроцитах [35, 49, 168, 336]. Интересно отметить, что экспрессия гена гистона Н5 происходит только в клетках эритроидного ряда на специфической стадии, но как начинается его экспрессия и как она запрограммирована – неизвестно.


    Ваша оценка произведения:

Популярные книги за неделю