355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Рэймонд М. Смаллиан » Алиса в стране Смекалки » Текст книги (страница 9)
Алиса в стране Смекалки
  • Текст добавлен: 5 октября 2016, 23:19

Текст книги "Алиса в стране Смекалки"


Автор книги: Рэймонд М. Смаллиан



сообщить о нарушении

Текущая страница: 9 (всего у книги 12 страниц)

Глава 3

14. Гусеница и Ящерка Билль. Гусеница считает, что и она, и Ящерка Билль не в своем уме. Если бы Гусеница была в здравом уме, то мнение о том, что и она, и Ящерка Билль не в своем уме, было бы ложно. Следовательно, Гусеница (будучи в здравом уме) не могла бы придерживаться этого ложного мнения. Значит, Гусеница не в своем уме. Но коль скоро она не в своем уме, то ее представление об окружающих превратно. Следовательно, неверно, что и Гусеница, и Ящерка Билль не в своем уме. Значит, другой партнер (Ящерка Билль) должен быть в здравом рассудке.

Итак, Гусеница не в своем уме, а Ящерка Билль в здравом рассудке.

15. Кухарка и Кот. Если бы кухарка была не в своем уме, то ее мнение о том, что по крайней мере один из двух – либо она, либо Чеширский Кот – не в своем уме, было бы истинным. Но тогда мы имели бы человека, который, будучи не в своем уме, придерживается здравых суждений, что противоречит условиям задачи. Следовательно, кухарка должна быть в здравом рассудке. А поскольку она в здравом уме, то ее суждения истинны, и поэтому один из двух – либо она, либо Чеширский Кот – не в своем уме. Поскольку этот «один» не кухарка, им должен быть Чеширский Кот.

Итак, кухарка в здравом рассудке, а Чеширский Кот не в своем уме.

16. Лакей-Лещ иЛягушонок. Приведенные в условиях задачи сведения не позволяют определить, в здравом ли рассудке или не в своем уме Лакей-Лещ, но мы докажем, что Лягушонок должен быть в здравом рассудке. Будем рассуждать следующим образом.

Имеются две возможности: либо Лакей-Лещ в здравом рассудке, либо он не в своем уме. Покажем, что и в том и в другом случае Лягушонок должен быть в здравом рассудке.

Предположим, что Лакей-Лещ в здравом рассудке. Тогда он судит обо всем правильно. Значит, Лягушонок действительно во всем схож с Лакеем-Лещом. Следовательно, Лягушонок в здравом рассудке.

С другой стороны, предположим, что Лакей-Лещ не в своем уме. Тогда он обо всем судит превратно, поэтому Лягушонок совершенно несхож с Лакеем-Лещом. Так как Лакей-Лещ не в своем уме, то Лягушонок в противоположность ему должен быть в здравом рассудке.

Итак, в любом случае (в здравом ли рассудке Лакей-Лещ или не своем уме) Лягушонок должен быть в здравом уме.

А что если бы Лакей-Лещ считал Лягушонка не во всем схожим, а во всем несхожим с собой? Каким был бы тогда Лакей-Лещ – в здравом рассудке или не в своем уме?

Ответ: Лягушонок в таком случае должен был быть не в своем уме. Доказательство этого утверждения я предоставляю читателю в качестве самостоятельного упражнения.

17. Король и Королева Бубен. Никто из этой августейшей четы не может думать о себе, что он не в своем уме. Действительно, человек в здравом рассудке знает в соответствии с истиной, что он в своем уме, а безумец ошибочно полагает, что он в своем уме. Следовательно, Королева в действительности не думает, что она не в своем уме. Значит, не в своем уме Король, который считает, что Королева так думает.

Данные задачи не позволяют утверждать что-либо относительно того, в своем ли уме Королева Бубен.

18. Мартовский Заяц, Болванщик и Соня. Предположим, что Болванщик в своем уме. Тогда он обо всем судит здраво. Значит, Мартовский Заяц не думает, что все три участника безумного чаепития в своем уме. Следовательно, Мартовский Заяц должен быть в своем уме потому, что если бы он был не в своем уме, то разделял бы ложное мнение о том, что все три участника безумного чаепития в своем уме. Но тогда, Соня, считающая, что Мартовский Заяц в здравом рассудке, сама должна быть в своем уме. Значит, все три участника безумного чаепития должны быть в своем уме. Как же в таком случае мог Мартовский Заяц не признавать истинным утверждение о том, что все три участника безумного чаепития в своем уме? Полученное противоречие доказывает, что предположение о том, будто Болванщик в своем уме, ложно: в действительности Болванщик должен быть не в своем уме.

Так как Болванщик должен быть не в своем уме, он судит обо всем превратно, и поэтому Мартовский Заяц думает, что все три участника безумного чаепития в здравом рассудке. Разумеется, Мартовский Заяц заблуждается (так как Болванщик не в своем уме), поэтому Мартовский Заяц также не в своем уме. Но тогда и Соня, считающая, что Мартовский Заяц в здравом рассудке, также не в своем уме.

Итак, все трое участников безумного чаепития не в своем уме (что, впрочем, не слишком удивительно!).

19. Грифон, Черепаха Квази и Омар. Прежде всего Грифон и Черепаха Квази должны быть «одинаковыми», то есть либо оба не в своем уме, либо оба в здравом рассудке, так как Черепаха Квази считает, что Грифон в своем уме. Если Черепаха Квази в здравом рассудке, то это означает, что Грифон в своем уме. Если же Черепаха Квази не в своем уме, то он судит обо всем превратно. Значит, Грифон в действительности не в здравом рассудке, а безумен. Таким образом, Грифок и Черепаха Квази оба не в своем уме.

Докажем теперь, что Омар не в своем уме. Будем рассуждать от противного: предположим, что он в своем уме. Тогда Омар обо всем судит здраво и, следовательно, Грифон действительно считает, что ровно один из троих (Грифон, Черепаха Квази и Омар) в своем уме. Но это невозможно, так как если Грифон в своем уме, то Черепаха Квази (равно как и Омар) в своем уме, поэтому утверждение о том, что ровно один из них в своем уме, ложно (так как в своем уме все трое). Следовательно, Грифон, будучи в здравом рассудке, так думать не мог. С другой стороны, если Грифон в своем уме, то утверждение о том, что ровно один из троих (а именно Омар, так как Черепаха Квази не в своем уме) в здравом рассудке, истинно. Но существо, которое не в своем уме, не может мыслить истинными суждениями. Следовательно, предположение о том, что Омар в своем уме, приводит к противоречию. Значит, Омар не может быть в здравом рассудке: он должен быть не в своем уме.

Итак, мы знаем, что Омар не в здравом рассудке. Значит, в действительности неверно, будто Грифон считает, что разумен ровно один из троих (Грифон, Черепаха Квази и Омар). Если Грифон не в своем уме, то Черепаха Квази также не в своем уме, и, таким образом, все трое не в своем уме. Следовательно, утверждение о том, что не в своем уме ровно один из троих, ложно. Это означает, что Грифон, будучи не в своем уме, должен принимать за истинные все ложные утверждения, в частности утверждение о том, что ровно один из троих в здравом рассудке, хотя, как мы уже доказали, он так не думает. Полученное противоречие показывает, что Грифон не может быть не в своем уме. Следовательно, Грифон в здравом рассудке и Черепаха Квази (будучи таким же безумным или здравомыслящим), как Грифон, должен быть в своем уме.

Ответ: Омар не в своем уме, Грифон и Черепаха Квази оба в здравом рассудке.

20. Король и Королева Червей. Королева Пик думает, что Король Пик думает, что она не в своем уме. Если она в здравом рассудке, то Король действительно думает, что она не в своем уме, а это означает, что не в своем уме должен быть Король. Если же Королева не в своем уме, то Король в действительности не думает, что она не в своем уме, а если бы он был в здравом рассудке, то думал бы. Поэтому и в этом случае Король не в своем уме. Итак, в любом случае Король должен быть не в своем уме. Что же касается Королевы Пик, то она может быть и в здравом рассудке, и не в своем уме.

21. Король и Королева Треф. Не может быть, чтобы Король (Треф) думал, что Королева (Треф) думает, что Король думает, что Королева не в своем уме. Действительно, предположим, что Король так думает. Тогда Королева думает, что Король думает, что она не в своем уме. Но, как было показано в предыдущей задаче, это означает, что не в своем уме Король. Таким образом, если Король в своем уме, то он не в своем уме. Следовательно, Король не может быть в своем уме – Король безумен. Значит, он превратно судит обо всем и Королева в действительности не думает, что Король думает, что она не в своем уме. Но Королева либо в своем уме, либо безумна. Если она в своем уме, то здраво судит обо всем. Значит, верно, что Король не думает, что она не в своем уме, поэтому Король думает, что Королева в здравом рассудке. Но тогда Король мыслит здраво, и мы опять приходим к противоречию: безумный Король мыслит в соответствии с истиной. С другой стороны, если Королева не в своем уме, то она судит обо всем превратно, поэтому Король в действительности думает, что она не в своем уме. Тем самым Король должен был бы быть в здравом рассудке, между тем как он не в своем уме. Итак, и в одном и в другом случае мы приходим к противоречию.

Оно доказывает просто невозможность такого положения, при котором Король думает, что Королева думает, что она не в своем уме. Таким образом, если бы Герцогиня задала Алисе логическую задачу, то это, несомненно, свидетельствовало бы о том, что Герцогиня не в своем уме. Но в действительности Герцогиня не задавала Алисе такой задачи. Она лишь спросила у Алисы:

– А что бы ты сказала, если бы я сообщила тебе, что…

22. Королева Червей. Все, что мы доказали в предыдущей задаче, применимо не только к Королю и Королеве Треф, но и к Королю и Королеве Червей. Действительно, невозможно, чтобы Король Червей думал, что Королева Червей думает, что Король Червей думает, что она не в своем уме. Так как Королева Червей действительно думает, что Король так думает, то она не в своем уме. Что же касается Короля, то данные задачи не позволяют определить, в своем ли он уме.

23. Додо, Попугайчик Лори и Орленок. Так как Лори думает, что Додо не в своем уме, то Лори и Додо совсем несхожи (если Лори в здравом рассудке, то Додо не в своем уме; если Лори не в своем уме, то Додо в действительности не безумец, а пребывает в здравом рассудке). Так как Орленок думает, что Додо в здравом рассудке, то Орленок совсем несхож с Лори (который думает, что Додо не в своем уме). Следовательно, Орленок схож с Лори. (То же самое можно доказать иначе: если Орленок в своем уме, то Додо в действительности в здравом рассудке, а если Орленок не в своем уме, то Додо в действительности не в здравом рассудке, а не в своем уме.) Следовательно, Орленок и Додо схожи между собой, а Лори несхож с ними обоими. Так как Лори несхож с Орленком, то Лори должен думать, что Орленок не в своем уме. Значит, Додо судит здраво, поэтому Додо в своем уме.

24. Валет Червей. Докажем, что если Семерка не в своем уме, то Шестерка должен быть в здравом рассудке и, следовательно, Валет Червей здраво рассудил, думая, что Шестерка и Семерка не могут быть оба не в своем уме.

Предположим, что не в своем уме Семерка. Тогда то, что Семерка думает о Пятерке, ложно, поэтому Пятерка в здравом рассудке. Следовательно, Пятерка судит обо всем здраво, поэтому Туз и Четверка либо оба не в своем уме, либо оба в здравом рассудке. Но Туз и Четверка не могут быть оба не в своем уме. (Если бы Четверка был не в своем уме, то он судил бы обо всем превратно. Тогда Тройка и Двойка были бы оба не в своем уме, между тем как безумие Тройки означало бы, что Туз скорее в здравом разуме, чем не в своем уме. Следовательно, если Четверка не в своем уме, то Туз должен быть в здравом рассудке, поэтому Туз и Четверка не могут быть оба не в своем уме.) Таким образом, Туз и Четверка оба в здравом рассудке. А так как Четверка в здравом рассудке, Тройка и Двойка не могут быть оба не в своем уме – по крайней мере один из них в здравом рассудке. Но Тройка не может быть в здравом рассудке, так как он думает, что Туз не в своем уме. Следовательно, в здравом рассудке должен быть Двойка. Значит, Туз и Двойка оба в здравом уме. Стало быть, Шестерка судит здраво, поэтому он должен быть в здравом уме.

Итак, мы доказали, что если Семерка не в своем уме, то Шестерка должен быть в здравом рассудке. Следовательно, не может быть, чтобы Семерка и Шестерка оба были не в своем уме. Так как Валет думает, что они не могут быть оба не в своем уме, сам Валет должен быть в здравом рассудке.

25. Оценка Грифона. В задаче 15 мы доказали, что кухарка в здравом уме. Следовательно, если то, о чем поведала Герцогиня Алисе, было правильно, кухарка была бы в здравом уме. Но Герцогиня сообщает Алисе, что кухарка считает, что она, Герцогиня, не в своем уме. Следовательно, Герцогиня должна была бы быть не в своем уме (поскольку кухарка, будучи в здравом уме, считает, что Герцогиня не в своем уме). Значит, если бы то, о чем Герцогиня рассказала Алисе, было истинно, то Герцогиня должна была бы быть не в своем уме, но тогда ее рассказ не соответствовал бы истине. Таким образом, если бы то, о чем поведала Герцогиня Алисе, было верно, то мы пришли бы к противоречию. Следовательно, то, о чем рассказала Герцогиня, неверно.

Заметим, кстати, что приведенное выше рассуждение отнюдь не предназначается для доказательства безумия Герцогини: у нас кет причин думать, что Герцогиня не в своем уме. Мы доказали лишь, что если бы ее история была правдива, то Герцогиня должна была бы быть не в своем уме. Следовательно, рассказанная Герцогиней история не соответствует истинному положению вещей. Но это отнюдь не означает, что Герцогиня обо всем судит превратно. Мы доказали лишь то, что кое о чем она судит превратно!

Глава 4

26. Сколько кренделей у каждого? Назовем одной порцией все крендельки, которые достались Соне, сколько бы их ни было. Тогда Соне досталась 1 порция. Мартовскому Зайцу досталось вдвое больше крендельков, чем Соне (потому что Соню Болванщик посадил на такое место, где крендельков было вдвое меньше, чем у Мартовского Зайца), то есть Мартовскому Зайцу досталось 2 порции. Сам Болванщик сел на такое место, где крендельков было втрое больше, чем у Мартовского Зайца, поэтому Болванщику досталось 6 порций. Так как у Болванщика оказалось 6 порций, а у Сони только 1 порция, Болванщику досталось на 5 порций больше, чем Соне. Кроме того, известно, что у Болванщика оказалось на 20 кренделей больше, чем у Сони. Следовательно, 5 порций крендельков соответствует 20 кренделькам и 1 порцию составляют 4 кренделька. Таким образом, Соне досталось 4 кренделька, Мартовскому Зайцу – 8 крендельков и Болванщику – 24 кренделька, то есть на 20 крендельков больше, чем Соне.

27. Возмездие. После того как Мартовский Заяц съел 5/16 кренделей, на тарелке осталось 11/16. Соня съела 7/11 оставшихся кренделей, то есть 7/11 от 11/16. Так как 7/11 × 11/16 = 7/16, Соня съела 7/16 всех кренделей. Вместе с Мартовским Зайцем, съевшим 5/16 всех кренделей, они съели вдвоем 7/16 + /16 = 12/16, то есть 12/16 всех кренделей. Болванщику они оставили 4/16, или 1/4, кренделей. Поскольку Болванщику досталось 8 кренделей, эти 8 кренделей составляют 1/4 всех кренделей. Следовательно, всего было 32 кренделя. От 32 кренделей Vie составляет 2 кренделя, а 5/16 – 10 кренделей. Следовательно, Мартовский Заяц съел 10 кренделей, после чего на тарелке осталось 22 кренделя. Затем Соня съела 7/11 от 22 оставшихся кренделей, что составляет 14 кренделей (так как 1/11 от 22 кренделей равна 2 кренделям, а 7/11 – 14 кренделям). На тарелке осталось 8 кренделей для Болванщика, так что все сходится.

28. Сколько фаворитов? Эта задача, обычно решаемая с помощью алгебры, очень проста, если подойти к ней следующим образом. Раздадим сначала по 3 кренделя каждому из 30 гостей Королевы. У нас останется 10 кренделей. При этом все нефавориты получат все крендели, которые им причитаются, а каждому из фаворитов еще предстоит получить по 1 кренделю. Следовательно, все оставшиеся крендели предназначаются фаворитам – по 1 кренделю каждому фавориту. Значит, фаворитов должно быть 10.

Проверка. Каждый из 10 фаворитов должен получить по 4 кренделя, что составляет 40 кренделей на всех фаворитов. Каждый из остальных 20 гостей получит по 3 кренделя, что составляет еще 60 кренделей. 40 + 60 = 100. Следовательно, наше решение правильно.

29. Крендели и крендельки. Так как каждый крендель стоит столько, сколько один кренделек, то 7 кренделей стоят столько же, сколько 21 кренделек, а 7 кренделей и 4 кренделька – столько же, сколько 25 крендельков. С другой стороны, 4 кренделя и 7 крендельков стоят столько, сколько 19 крендельков (так как 4 кренделя стоят столько же, сколько 12 крендельков). Таким образом, разность в стоимости 25 и 19 крендельков составляет 12 центов. Значит, 6 крендельков (25 – 19 = 6) стоят 12 центов, 1 кренделек – 2 цента, а 1 крендель – 6 центов.

Проверка. 4 кренделя и 7 крендельков стоят 24 + 14 = 38 центов, а 7 кренделей и 4 кренделька стоят 42 + 8 = 50 центов, то есть действительно на 12 центов дороже, чем в первом случае.

30. В гостях у Герцогини, кухарки и Чеширского Кота. Чеширский Кот должен обнаружить на подносе 2 кренделя: после того как он съест половину кренделей и еще 1 крендель, на подносе не останется ничего. Соня должна обнаружить на подносе 6 кренделей: после того как она съест половину кренделей и еще 1 крендель, на подносе останется 2 кренделя для Чеширского Кота. Мартовский Заяц увидел на подносе 14 кренделей: после того как он съел 7 кренделей и еще 1 крендель, на подносе осталось 6 кренделей. Болванщик увидел 30 кренделей: после того как он съел 15 кренделей и еще 1 крендель, на подносе осталось 14 кренделей.

Таким образом, скачала на подносе было 30 кренделей.

31. Сколько дней работал садовник? Работая добросовестно, садовник может заработать самое большее 3 – 26 = 78 кренделей. Он заработал только 62 кренделя. Значит, 16 кренделей он не получил из-за того, что отлынивал от работы. Каждый день, который садовник отлынивал от работы, он теряет 4 кренделя (разность между 3 кренделями, которые мог бы получить за добросовестную работу, и 1 кренделем, который взыскивается с него за безделье). Следовательно, садовник отлынивал от работы 4 дня и работал добросовестно 22 дня.

Проверка. За 22 добросовестно отработанных дня садовник заработал 66 кренделей. За 4 дня, которые он отлынивал от работы, садовник вернул 4 кренделя.

Таким образом, всего он получил 62 кренделя.

32. В котором часу? Неправильный ответ, который обычно приходится слышать: в 6 часов. Правильный ответ: в 5 часов.

В 5 часов первый удар часов Королевы совпадает с первым ударом часов Короля. Второй удар часов Королевы приходится по времени на третий удар часов Короля. Третий удар часов Королевы совпадает с пятым ударом часов Короля. На этом бой часов Короля заканчивается, а часы Королевы еще должны пробить 2 раза.

33. Сколько человек заблудилось в горах? Назовем одной порцией количество припасов, которое один человек съедает за день. У 9 человек первоначально было 45 порций (запас провизии на 5 дней). На второй день у них осталось только 36 порций. На второй же день они повстречали вторую группу, и 36 оставшихся порций хватило всем на 3 дня. Следовательно, всего должно было быть 12 человек.

Значит, во второй группе было 3 человека.

34. Сколько пролито воды? На пятый день, когда вода была пролита, ее оставалось на 8 дней. Пролитой воды хватило бы погибшему на 8 дней. Следовательно, пролито было 8 кварт воды.

35. Скоро ли на свободу? Когда тюремный надзиратель станет вдвое старше узника, разность их возрастов будет равна возрасту узника. Но разность возрастов не зависит от времени и по истечении срока заключения будет такой же, как сейчас, то есть равной 29 годам. Следовательно, в день выхода на свободу узнику исполнится 29 лет, а тюремному надзирателю, который вдвое старше, 58 лет.

Таким образом, узнику осталось провести в темнице еще 4 года.

36. Долго ли выбраться из колодца? Те, кто думают, что лягушка выберется из колодца за 30 дней, ошибаются: лягушка могла бы выбраться из колодца к вечеру на 28-й день. Действительно, утром на 2-й день лягушка находится на высоте 1 фут над дном колодца, утром на 3-й день – на высоте 2 фута и т. д. Наконец, утром на 28-й день лягушка находится на высоте 27 футов над дном колодца. К вечеру того же дня она достигнет верха и вылезет из колодца, после чего ей уже не придется соскальзывать вниз.

37. Успеет ли велосипедист на поезд? Велосипедист рассуждал неверно: он усреднял расстояния, а не время. Если бы со скоростью 4 мили в час, 8 миль в час и 12 миль в час он двигался одно и то же время, то его средняя скорость действительно составила бы 8 миль в час, но большую часть времени он затратил на подъем в гору (со скоростью 4 мили в час), а меньшую – на спуск под гору (со скоростью 12 миль в час).

Нетрудно подсчитать, сколько времени он пробыл в пути. Подъем в гору занял у него 1 ч, полчаса (или 30 мин) он затратил на передвижение по ровному участку дороги и треть часа (или 20 мин) на спуск под гору. Всего в пути он пробыл 1 ч 50 мин, опоздав к поезду на 20 мин.

38. Не опоздал ли пассажир на поезд? На первую станцию пассажир прибыл через минуту после того, как ушел поезд. Десять миль в час – это одна миля за 6 мин или полторы мили за 9 мин. Таким образом, на следующую станцию поезд прибыл через 8 мин после того, как пассажир прибыл на первую станцию. На следующей станции поезд стоял 14 1/2 мин, поэтому у пассажира было в запасе 22 1/2 мин, чтобы успеть сесть на поезд на следующей станции. Четыре мили в час – это 1 миля за 15 мин, или полторы мили за 22 1/2 мин. На следующую станцию пассажир прибудет как раз вовремя, чтобы успеть сесть на поезд.

39. Далеко ли до школы? Разница во времени между опозданием на 5 мин и приходом за 10 мин до начала урока составляет 15 мин. Следовательно, если мальчик будет идти в школу со скоростью 5 миль в час, то он сэкономит 15 мин (по сравнению с тем, сколько он затратил бы на дорогу, если бы шел со скоростью 4 мили в час). Пять миль в час – это одна миля за 12 мин, а 4 мили в час – это 1 миля за 15 мин. Следовательно, идя быстрее, мальчик экономит по 3 мин на каждой миле, а 15 мин – на расстоянии 5 миль.

Значит, школа находится в 5 милях от дома.

Проверка. Идя со скоростью 5 миль в час, мальчик затрачивает на дорогу один час, а идя со скоростью 4 мили в час, – час с четвертью (за час он проходит первые 4 мили, а за четверть часа – последнюю милю), то есть 1 ч 15 мин. Разница по времени действительно составляет 15 мин.

40. Разве не печально? История действительно немного печальная, так как при подсчете барышей и убытков торговец произведениями искусства просчитался: в тот день он не только ничего не заработал, но и потерпел убыток в 20 долларов.

Попробуем разобраться, почему так получилось. Первую картину он продал с 10 %-ной прибылью. От продажи ее он выручил 990 долларов. За сколько он купил ее? Так как прибыль составляет 10 % не от 990 долларов, а от первоначальной стоимости картины, то 990 долларов – это 110 % от первоначальной стоимости картины, или 11/10. Следовательно, за картину торговец заплатил 10/11 от 990, то есть 990 долларов.

[Проверка. За картину торговец заплатил 900 долларов, 10 % от 900 составляют 90 долларов, поэтому от продажи картины он выручил 990 долларов, получив при этом прибыль 90 долларов.]

А как обстоит дело со второй картиной? От продажи ее торговец потерял 10 % от ее первоначальной стоимости, поэтому вторую картину он продал за 90 %, или 9/10, от ее первоначальной стоимости. Следовательно, при покупке второй картины торговец заплатил за нее 10/9 от 990 долларов, то есть 1100 долларов.

[Проверка. За вторую картину торговец заплатил 1100 долларов, 10 % от 1100 составляют 110 долларов, поэтому он продал ее за 1100 – 110 = 990 долларов.]

Таким образом, от продажи второй картины он потерпел убыток в ПО долларов, а от продажи первой картины получил прибыль всего 90 долларов. Следовательно, в тот день он потерял всего 20 долларов.

41. Кто старше? Прежде всего вычислим, через сколько дней часы Болванщика и Мартовского Зайца покажут одно и то же время. Так как часы Мартовского Зайца отстают с такой же скоростью, с какой спешат часы Болванщика, то в следующий раз они покажут одно и то же время, когда часы Болванщика уйдут вперед на 6 ч, а часы Мартовского Зайца отстанут на 6 ч. (На тех и других часах будет 6 ч, причем и те и другие часы будут показывать неверное время.) За сколько дней часы Болванщика уйдут вперед на 6 ч. За час они уходят вперед на 10 с, за 6 ч – на 1 мин, за сутки – на 4 мин, за 15 суток – на 1 ч, за 90 суток (дней на календаре) – на 6 ч. Таким образом, через 90 дней на часах Болванщика и Мартовского Зайца стрелки снова будут показывать одно и то же время.

Нам неизвестно, в какой из дней января Болванщик и Мартовский Заяц поставили на своих часах точное время.

Но если бы это произошло в любой из дней, кроме 1 января, то день, когда часы Болванщика и Мартовского Зайца в следующей раз покажут одно и то же время (а это событие, как мы установили, произойдет через 90 дней), пришелся бы не на март, а на апрель (или даже на май). Следовательно, Болванщик и Мартовский Заяц могли сверить свои часы только 1 января. Но даже в этом случае их часы покажут в следующий раз одно и то же время в марте только при условии, если год високосный! (В этом читатель без труда убедится с помощью календаря: через 90 дней после 1 января в обычный год наступает 1 апреля, а в високосный год – 31 марта!) Тем самым доказано, что 21 день рождения Мартовского Зайца приходится на високосный год. Следовательно, Мартовский Заяц мог родиться в 1843, а не в 1842 году или 1844 году. (Через 21 год после 1843 года наступает високосный 1864 год.) По условиям задачи только один из двух (либо Мартовский Заяц, либо Болванщик) родился в 1842 году. Следовательно, в 1842 году родился Болванщик. Значит, Болванщик старше Мартовского Зайца.


    Ваша оценка произведения:

Популярные книги за неделю