Текст книги "Разумные машины (Автоматы)"
Автор книги: Олег Дрожжин
сообщить о нарушении
Текущая страница: 8 (всего у книги 17 страниц)
«Лунное вещество»
Первые электрические глаза стали изготовлять около шестидесяти лет назад с помощью селена.
Селен – вещество, похожее на серу. Он был открыт в 1817 г. шведским химиком Берцелиусом в осадках свинцовых камер для получения серной кислоты.
Исследуя этот вновь найденный химический элемент, Берцелиус нашел, что он по своим свойствам занимает промежуточное место между серой и металлом теллуром. Нужно было дать название новому веществу. Берцелиус остановился на слове «селен», от греческого «селенэ», что значит Луна. Такой выбор был сделан потому, что слово «теллур» происходит от латинского «теллюс» – Земля. Ближайшей же спутницей Земли в пространстве является Луна – «селенэ». Названием «селен» Берцелиус хотел указать на то, что этот элемент родственен теллуру.
Чего-либо особенного в селене – «лунном веществе» – Берцелиус не обнаружил. Однако, в нем таилось свойство, использование которого делало возможным сказочные вещи. Это свойство было открыто лишь в 1872 г. Меем, молодым ассистентом английского инженера Смитса. 12 февраля 1873 г. Виллоуби Смитс сделал доклад об этом открытии в Обществе телеграфных инженеров в Лондоне.
Смитс начал доклад следующими словами:
– Мистер Прис сообщил нам, что с помощью микрофона можно слышать топот мухи, похожий на топот лошади, идущей по деревянному мосту; однако, я могу сообщить о такой вещи, которая мне кажется еще более чудесной, – о том, что с помощью телефона я слышал падение светового луча на металлический стержень.
Слышать световой луч стало возможным благодаря селену. Мей обнаружил, что свет, падая на селен, уменьшает его сопротивление электрическому току. Уменьшение сопротивления обнаруживается мгновенно и выражается в увеличении силы тока.
Замечательная чувствительность селена к свету произвела на современников открытия большое впечатление и привлекла к нему внимание многих исследователей. Начались многочисленные попытки практически использовать это свойство с помощью приборов, названных «селеновыми элементами».
Первый простейший из селеновых элементов был изобретен немецким инженером Вернером Сименсом в 1876 г. Этот элемент состоит из двух тонких платиновых проволочек, намотанных на пластинку слюды так, что между ними остается расстояние в один миллиметр. На одном конце платиновые проволочки прикреплены к слюдяной пластинке, на другом – проволочки присоединены к зажимам (клеммам).

Простейший селеновый элемент Сименса.
Пластинка с намотанными проволочками обмакивается в расплавленный селен.
При остывании селен подвергается еще закаливанию, которое состоит в том, что весь элемент нагревают до двухсот градусов Цельсия и потом быстро охлаждают.
Если включить в цепь аккумулятора селеновый элемент и гальванометр, то стрелка гальванометра отклонится чуть в сторону от нуля и покажет наличие слабого тока. Но стоит только осветить селеновый элемент, как ток мгновенно усиливается.
Само собой разумеется, что при этом опыте селеновый элемент нужно держать в темной комнате, а гальванометр на свету.
Если в цепь с селеновым элементом включить электромагнитное реле, то можно с помощью луча света управлять сильными электрическими токами и, следовательно, производить любые действия.

Схема включения селенового элемента. СЭ – селеновый элемент; П – платиновая проволочка; Г – гальванометр; А – аккумулятор.
Свой селеновый элемент Вернер Сименс применил в 1876 г. для устройства первого «видящего» автомата. Это была большая модель человеческого глаза, состоявшая из глазного яблока со зрачком и подвижными веками. Внутри глазного яблока был помещен селеновый элемент. В слабо освещенной комнате глаз был открыт. Но стоило только поместить перед ним лампу так, чтобы свет прошел через отверстие зрачка внутрь, как веки тотчас же закрывались.
Здесь получается сходство с человеческим глазом не только по внешности, но и по действию. У человека и у животных простейшим видом действия является рефлекс. Так называют автоматическое движение в ответ на какое– либо внешнее воздействие.
Примером рефлекса может служить отдергивание руки при уколе о что-нибудь.
В выполнении рефлекса принимают участие чувствующие органы, нервы и мышцы или железы, образующие вместе рефлекторную цепь. На одном ее конце всегда находится чувствующий орган, на другом – исполнительный (мышца или железа). Связь между ними осуществляется с помощью нервов.

Схема рефлекторной дуги. Ч – чувствующая клетка; Н – нервное волокно; НК – нервная клетка; С – соединение концов нервных волокон; М – мышечные волокна.
Всякий раз, как чувствующий орган раздражают (пусть это будет укол иглой кожи на пальце), по нервам пробегает нервный ток и заставляет мышцы сократиться (рука в нашем примере отдергивается).
Если осветить глаза живого человека ярким светом, они непроизвольно (автоматически) закрываются. Это тоже рефлекс. Подобную же картину дает и искусственный глаз Сименса. Чувствующий орган в нем – селеновый элемент, нервы – электрические провода и, наконец, органы действия – закрывающиеся веки.
Такие автоматы, как искусственный глаз Сименса, можно с полным основанием назвать рефлексными автоматами, или рефлексными роботами. К этому виду роботов относятся все слышащие и видящие автоматы.
К настоящему времени создан ряд селеновых элементов, более совершенных, чем тот, который был сделан Сименсом около шестидесяти лет назад. Один из таких улучшенных приборов сконструирован англичанином Бидуэллом. Основной частью элемента Бидуэлла является такая же слюдяная пластинка с намотанными на нее двумя платиновыми проволоками и покрытая селеном, как и в элементе Сименса. Только эта пластинка помещена в закрытый стеклянный сосуд с выкачанным воздухом. Это предохраняет элемент от сырости и делает его более стойким. Стеклянный сосуд элемента Бидуэлла имеет такой же цоколь, как обычная электрическая лампочка, что упрощает включение его в цепь.
Миллион триста тысяч лет для одной секунды
Селеновый элемент дает возможность конструировать необычайно чувствительные реле, отвечающие на невообразимо слабые токи. Самое чувствительное реле было изобретено шведским инженером Аллштремом в 1907 г.
Существенную часть его образует тонкий железный листок, подвешенный на платиновых проволочках перед электромагнитом. К листку прикреплено маленькое зеркальце, на которое падает тонкий пучок света от яркой лампы. Отразившись от зеркальца, луч света падает на коробку, закрывающую селеновый элемент. В этой коробке сделана щель. Весь прибор располагают так, чтобы световое пятно от зеркала было рядом со щелью.
Теперь предположим, что по обмотке электромагнита прошел слабый электрический ток. Тогда электромагнит сдвинет железный листок с его нулевого положения, и отраженный пучок света, отклонившись (в сторону, попадет на селеновый элемент, который включен в цепь другого электромагнитного реле со звонком. И звонок в то же мгновение зазвонит.
Аллштрем нашел, что его реле отвечает на токи силой в 10-14 ампера. В развернутом виде 10-14 изображается единицей, деленной на единицу с четырнадцатью нулями, – это будет одна стотысячная доля от одной миллиардной ампера.
Чтобы сделать хоть немного наглядной эту ничтожно малую величину, обратимся к обычной пятидесятиваттной электрической лампочке.
В одну секунду через ее нить пробегает небольшое количество электричества – 5/11 кулона (если напряжение в сети равно 110 вольтам).
Можно подсчитать, сколько времени нужно было бы накоплять это самое количество электричества при помощи того невообразимо слабого тока, которое обнаруживает реле Аллштрема.
Результат получается ошеломляющий – миллион триста тысяч лет!
Вдумайтесь только в это число! Миллион триста тысяч лет нужно было бы копить электричество, чтобы дать комнатной лампе возможность гореть ярко только в течение одной секунды.

Реле Аллштрема. Л – лампа; MP1 – первое магнитное реле (перед магнитом висит металлическая пластинка с зеркальцем); СЭ – селеновый элемент; МР2 – второе магнитное реле; З – звонок; А – аккумулятор.
Это число красноречиво говорит о том могуществе, которое проявляет современная наука в деле овладения ничтожно малыми величинами.
Кроме селеновых элементов, были созданы еще более замечательные светочувствительные приборы – «пустотные фотоэлектрические элементы». Их история началась через четырнадцать лет после открытия светочувствительного селена.
«Бесполезное открытие»
Серый октябрьский день 1888 г. хмуро смотрел в окна физического корпуса Московского университета. В одной из его полуподвальных комнат с светло-желтыми стенами у некрашенного стола сидел человек лет сорока пяти с большой, окладистой русой бородой. Его голубые глаза, не отрываясь, следили за листочками электроскопа, соединенного с металлической пластинкой, установленной рядом на изолирующей подставке. Справа между двумя сдвинутыми углями ярко горела вольтова дуга, заливая комнату ослепительным светом. На столе возле электроскопа тикали карманные часы. За картонной ширмой на другом конце стола был второй такой же электроскоп и вторая такая же пластинка.
Человек с окладистой бородой был так увлечен своими наблюдениями, что не заметил, как за дверью его комнаты сторож Василий кому-то тихо сообщил:
– Профессор Столетов здесь, в этом кабинете. Они работают-с. Постучите!
Раздался громкий стук в дверь. Ученый от неожиданности вздрогнул и нехотя пригласил:
– Войдите!
В комнату ввалился высокий плотный мужчина в путейской инженерской фуражке, краснощекий, с густыми, чуть закрученными усами и гладко выбритым подбородком.
– Здравствуй, милый друг Александр Григорьевич! – шумно обратился к профессору пришедший. – Ты меня извини! Давно у тебя не был. Проходя мимо по Моховой, вспомнил про тебя и решил заглянуть. Ну, как поживаешь, что поделываешь? Да погаси ты эту проклятую вольтову дугу! От нее можно ослепнуть.
Инженер был словоохотлив. Не ожидая ответа на свои вопросы, он говорил почти все время сам и за четверть часа успел рассказать обо всем, что с ним произошло за последний год, в течение которого старые школьные товарищи не виделись.
– Ну, а теперь, друг милый, расскажи мне, что делаешь ты? Все электроскопиками занимаешься? – смеялся инженер. – Не надоело?
Столетов пожал плечами.
– Нет, не надоело. С конца прошлого года я изучаю новое и поразительное явление. Если хочешь, я тебе его сейчас покажу. Это совсем нетрудно.
– Пожалуйста! Пожалуйста! – пробасил инженер. – Интересно, что может быть нового под луной в наше время, когда все изучено и все измерено!
Профессор исподлобья посмотрел на инженера. По его тонким губам скользнула чуть заметная усмешка.
– Чудак ты, Владимир Иванович! Человечество только начинает изучать тайны природы, а ты думаешь, что все изучено. Вот, пожалуйста, посмотри! – Столетов указал рукой на стол с приборами. – Это цинковая пластинка. Она так блестит потому, что покрыта тончайшим слоем ртутной амальгамы.
– Так, так, – с понимающим видом заметил инженер. – Пластинка – на стеклянной ножке, значит, изолирована от земли. Кроме того, она соединена с электроскопом, который позволяет судить о заряде пластинки. Дальше!
– А дальше зарядим пластинку отрицательным электричеством! – С этими словами профессор потер лисий мех о смоляную палочку и прикоснулся к цинковой пластинке. Листочки электроскопа раздвинулись на значительный угол. – Сделаем то же самое со второй цинковой пластинкой. Она нам послужит для проверки, для сравнения. Ну, а теперь будем наблюдать! – Столетов зажег вольтову дугу и сел на свое место. Рядом с ним расположился его школьный товарищ.
– Куда же прикажешь смотреть?
– А вот сюда, на электроскоп!
– Смотрю и вижу – листочки понемногу сближаются. Стало быть, электрический заряд пластинки куда-то уходит… Ну, вот листочки совсем сошлись. Заряд весь исчез. На это потребовалось пять секунд времени. А дальше что?
– Дальше? Ничего. Это все!
Инженер расхохотался:
– Неужели все?
– Все! Больше ничего! – кивнул профессор.
У инженера от раскатистого смеха даже слезы на глазах выступили.
Столетов был смущен. Такого впечатления от показанного опыта он не ожидал.
– Ты чего смеешься, Владимир Иванович? В цирке ты, что ли, находишься?
– Да нет, не в цирке, а в лаборатории ученого-физика, имя которого известно и за границей. И чем же эти ученые люди занимаются? Электроскопики разряжают! Ха-ха-ха!
– Погоди смеяться, – сухо остановил Столетов веселого гостя. – А знаешь ли ты, почему цинковая пластинка теряет свой заряд? Посмотри-ка на другой электроскоп за ширмой. Видишь, он не разрядился. Цинковая пластинка, соединенная с ним, находилась в тени. Свет вольтовой дуги на нее не падал. Уберем этот лист картона, затенявший пластинку. Видишь, и второй электроскоп столь же быстро разряжается. Ты понимаешь, что здесь действует?
– Как не понять! Свет вольтовой дуги! – развел инженер руками. – Это может сообразить и десятилетний мальчик.
– Теперь зарядим пластинку положительным электричеством, – продолжал объяснения раздосадованный ученый. – Видишь, электроскоп не разряжается. Значит, в этом случае свет не действует. Если вместо цинковой взять железную пластинку, то действия не будет даже при отрицательном заряде. Ты понимаешь, сколько здесь кроется разных тайн? Почему знак заряда играет роль? Почему свет влияет на одно вещество и не влияет на другое? Как, каким образом действует свет?
– Да зачем нам это нужно знать? – удивляется инженер. – Эх, ты, чистая наука! Подумаешь, какое действие! Свет разряжает электроскоп с отрицательным электричеством. Все это детские забавы, Александр Григорьевич! Ты не обижайся на меня, но это же совершенно бесполезное открытие! Вот если бы ты изобрел что-либо такое, чтобы, например, поезд сам собой остановился у закрытого семафора, когда зазевается машинист, это было бы полезно и в то же время сказочно! Нет, я на твоем месте такой мелочью не занимался бы. Кстати, это твое открытие?
– Нет. Это явление открыл в прошлом году в Германии профессор Вильгельм Хальвакс. Он назвал его фотоэлектрическим эффектом.
– Ну, так знаешь, что я тебе посоветую, милый друг? – заявил инженер, решительно вставая, чтобы распрощаться. – Плюнь ты на этот фотоэлектрический эффект, тем более, что не ты его открыл, и займись чем-нибудь поважнее и посерьезнее!
Профессор Столетов не последовал «дружескому» совету своего старого школьного товарища. В течение нескольких лет подряд он тщательно изучал новое явление, пытаясь проникнуть в тайну действия света, но безуспешно: физика того времени еще не располагала достаточными для этого сведениями.
Кроме А. Г. Столетова и В. Хальвакса, фотоэлектрическим эффектом занимались еще очень многие физики. В результате огромной исследовательской работы выяснилось, что фотоэлектрический эффект широко распространен в природе; в той или иной форме он наблюдается не только у цинка и других металлов, но и вообще у твердых тел, жидкостей и газов.
Сущность фотоэлектрического эффекта, или, короче, фотоэффекта, состоит в том, что под действием света – видимого или невидимого – из вещества вырываются мельчайшие частички отрицательного электричества – электроны. У очень многих веществ фотоэффект дают только ультрафиолетовые лучи. Но существуют и такие, у которых фотоэффект вызывается видимым светом. К ним относятся, например, щелочные металлы – литий, натрий, калий, рубидий и цезий. Цезий чувствителен даже к невидимым инфракрасным лучам.
Фотоэлектрические элементы
«Бесполезное открытие», по выражению школьного товарища профессора А. Г. Столетова, фотоэффект за последнее десятилетие с каждым годом приобретает все более важное значение в научно-исследовательской работе, в промышленности и даже в общественной жизни благодаря широкому применению фотоэлектрических элементов. Так называют чувствительные к свету приборы, использующие фотоэффект.
Первым фотоэлементом следует считать ту цинковую пластинку, соединенную с электроскопом, которой пользовался в своих исследованиях профессор А. Г. Столетов. Кстати, она теряла свой заряд под действием не световых, а ультрафиолетовых лучей, которые вольтова дуга испускает вместе с видимым светом. Это А. Г. Столетов знал еще в 1888 г.
Пять лет спустя, в 1893 г., два немецких ученых – Эльстер и Гейтель – заменили цинковую пластинку цинковым шаром. Это был второй вид фотоэлемента, которым два ученых долгое время пользовались для исследования ультрафиолетовых лучей.
Их интересовал, например, вопрос, насколько обыкновенное стекло прозрачно для этих невидимых лучей. Освещая шар вольтовой дугой, Эльстер и Гейтель определяли, сколько секунд требуется для его разрядки. Потом между шаром и вольтовой дугой ставили оконные стекла. В этом случае на разрядку требовалось времени в пять, в десять раз больше. Было ясно, что оконные стекла плохо пропускают ультрафиолетовые лучи. Помещая вместо обычных стекол кварцевые, Эльстер и Гейтель нашли, что те прекрасно пропускают ультрафиолетовые лучи. Теперь такие стекла начинают применяться для окон домов.
Фотоэлемент в виде цинкового шара не очень нравился Эльстеру и Гейтелю. Он был мало чувствителен и не удобен в обращении. Поэтому ученые не раз задумывались над тем, как бы его улучшить. Упорно продолжая работы по изучению фотоэффекта, Эльстер и Гейтель в 1910 г. создали, наконец, фотоэлемент в таком виде, который в основном применяется и сейчас.
В новом приборе светочувствительный слой металла тонкой пленкой наносят на часть внутренней поверхности стеклянного сосуда, имеющего форму груши. В центре сосуда помещается металлическое кольцо на металлической же подставке. От светочувствительного слоя и от кольца идут выводы к наружным клеммам. Из сосуда удаляется воздух.
Под действием света из металлической пленки вырываются электроны, часть которых попадает на кольцо. В результате пленка очень скоро заряжается положительным электричеством, и тогда выбрасывание электронов прекращается.
Положительный заряд пленки можно обнаружить с помощью очень чувствительного электроскопа (электрометра). Кольцо от осевших на нем электронов заряжается отрицательно.
Если во время опыта светочувствительную пленку и кольцо соединить проводником, то по нему потечет электрический ток, и выбрасывание электронов из пленки под действием света будет продолжаться безостановочно. Включив в эту цепь сверхчувствительный гальванометр, можно определить силу тока. Она оказывается крайне ничтожной и измеряется стомиллиардными долями ампера.
Таким током нужно было бы копить электричество тысячу шестьсот лет, чтобы дать возможность пятидесятисвечной лампе гореть всего только одну секунду.

Схема включения фотоэлемента. ФЭ – фотоэлементы; К – катод; А – анод; Г – гальванометр; А – аккумулятор.
В фотоэлементе Эльстера и Гейтеля происходит превращение света в электрический ток. В обычной же лампе электрический ток превращается (частично) в свет. Поэтому можно сказать, что фотоэлемент есть как бы лампа навыворот, лампа наизнанку.
В дальнейшем, желая увеличить чувствительность фотоэлемента, Эльстер и Гейтель стали присоединять к нему батарею аккумуляторов «минусом» к металлической пленке, «плюсом» к кольцу. Отсюда светочувствительная пленка металла получила название «катода» (отрицательного полюса), а кольцо – «анода» (положительного полюса). Напряжение батареи достигало ста пятидесяти вольт.
В темноте по такой цепи ток не идет – мешает разрыв внутри фотоэлемента. Но стоит только на светочувствительный слой пустить луч света, как в то же мгновение от катода к аноду через разрыв полетят электроны, и ток в цепи возникнет. Сила этого тока при одинаковом освещении в несколько десятков раз больше той, которую дает фотоэлемент без вспомогательной электрической батареи.
Вводя в стеклянный баллон разреженные инертные газы (аргон, неон и некоторые другие газы, не вступающие ни в какие химические соединения), Эльстер и Гейтель еще больше повысили чувствительность своего фотоэлемента. Такие газонаполненные фотоэлементы с вспомогательной батареей дают токи в сотни раз более сильные, чем пустотные фотоэлементы без батареи.
Наконец, в 1921 г. немецкий астроном X. Розенберг присоединил к фотоэлементу катодную лампу, применяемую в радиотехнике. Таким путем ему удалось необычайно слабые токи усилить в сотни тысяч раз. Это событие было переломным в «жизни» фотоэлемента: получив мощное подкрепление со стороны катодных ламп, он выходит из тиши лабораторий на широкий простор фабрик, заводов, городов, делая с каждым годом новые блестящие завоевания.
С 1932 г. заводское производство фотоэлементов налажено и у нас в Советском союзе (в Москве на Электроламповом заводе и в Ленинграде на заводе «Светлана»). Мы производим фотоэлементы марки «ГК-2». В них непосредственно на стекло грушевидного баллона наносится тонкий слой магния, который служит подкладкой для светочувствительного слоя. На эту подкладку осаждается тончайшая пленка светочувствительного металла калия. Поверх калия наносится еще тончайший слой серы. Это повышает чувствительность фотоэлемента в несколько раз. Наконец, в баллон вводится разреженный газ аргон или неон.
Светочувствительный слой покрывает всю шаровую часть баллона. Лишь с одной стороны – против кольца – в нем оставляется круглое окно, через которое свет попадает внутрь фотоэлемента. Если весь баллон можно сравнить с глазом, то окно соответствует зрачку глаза.
Наш фотоэлемент «ГК-2» очень чувствителен: на расстоянии метра от пятидесятисвечной лампочки он дает токи (при включении вспомогательной батареи напряжением в 240 вольт), достигающие нескольких тысячных долей ампера.
С 1933 г. мы начали производить еще и цезиевые фотоэлементы, на которые, как и на глаз, действуют главным образом лучи видимого света и частично инфракрасные лучи.








