Текст книги "Разумные машины (Автоматы)"
Автор книги: Олег Дрожжин
сообщить о нарушении
Текущая страница: 10 (всего у книги 17 страниц)
«Видящий» автомобиль
Так, например, телелюкс может превратиться в видящий автомобиль. Это случилось в Иллинойсском университете в США. На лекциях по физике студенты познакомились с фотоэлектрическими элементами и их замечательными свойствами.
Двум студентам – А. Расу и Ж. Вудфиллу – пришло в голову сделать видящий автомобиль. Мысль увлекла их, и студенты проработали над своим изобретением все лето.
Была сделана большая модель автомобиля, приводившаяся в движение электричеством. На месте шофера были помещены два фотоэлектрические элемента. Один из них служил для управления селектором, другой – исполнителем.
Когда все работы были закончены, настал момент пробы. Вудфилл с помощью велосипедного фонаря с электрической лампой направил свет на фотоэлектрический элемент, управляющий распределителем. Одна вспышка света поставила ручку распределителя на первый контакт. Потом свет лампы был брошен на глаз исполнителя. И вдруг зажглись фары (фонари) автомобиля. Рас запрыгал от радости. Потом таким же образом заставили загудеть сигнальный рожок. Наконец, еще несколько вспышек света, и автомобиль медленно двинулся с места.
Осенью счастливые изобретатели демонстрировали видящий автомобиль своим товарищам по университету.
«Видящий» автомобиль двух американских студентов.
В 1930 г. в Лондоне на выставке модельных инженеров всеобщее внимание привлекал любопытный игрушечный электрический поезд, который быстро бегал по рельсам, на как только перед ним помещали зажженную лампу, он почти мгновенно останавливался. Когда же лампу гасили или убирали с пути, поезд снова начинал двигаться.
Игрушечный паровоз с фотоэлементом. Останавливается при освещении лампой.
Нетрудно догадаться, что если этот поезд «видит» свет, то в нем обязательно должен быть фотоэлемент.
Так это и есть на самом деле. Маленький селеновый элемент был помещен в передней части паровоза. С помощью специального реле этот элемент под действием света выключал ток, питающий электромоторчик, и поезд останавливался. Если же свет гас, элемент снова включал ток.
В 1931 г. фотоэлемент с игрушечных паровозов пересаживается на настоящие и превращается в помощника машиниста, следящего за сигналами семафора.
Если семафор открыт, поезд может свободно продолжать свой путь. При закрытом семафоре поезд должен остановиться. Однако, в железнодорожной практике бывают случаи, правда очень редкие, когда машинист не замечает, что семафор закрыт, и поезда не останавливает. Это всегда приводит к крушениям, причем гибнут люди, паровозы, вагоны.
Поэтому давно уже возникла потребность создать такую сигнализацию, чтобы поезд всегда останавливался перед закрытым семафором, независимо от того, видит ли его машинист или не видит. С появлением фотоэлементов с усилителями задача была разрешена и притом довольно просто.
На паровозе была установлена лампа, с помощью прожектора бросающая вверх узкий пучок инфракрасных лучей, и рядом с ней фотоэлемент. Семафоры были снабжены зеркалом. При закрытом семафоре это зеркало располагается горизонтально.
При прохождении паровоза мимо закрытого семафора пучок лучей от зеркала отражается вниз и попадает на фотоэлемент, восприимчивый к инфракрасным лучам.
Этого достаточно, чтобы слабый фототок, усиленный в десятки тысяч раз, открыл тормозной кран и затормозил поезд. Такая установка прекрасно действует и в тумане, так как инфракрасные лучи довольно хорошо проходят через туман. Выходит, что современные паровозы стали зрячими.
В настоящее время эти автостопы (самоостановщики) начинают распространяться на дорогах с большим движением.
Световой «автостоп».
Электрическая собака
Однажды телелюкс превратился даже в механическую собаку. Ее показывали на радиовыставке в Париже еще в 1929 г. Собака эта имела довольно своеобразный вид. Она была сделана из фанеры и покрыта фетром. В глазных впадинах были вставлены стеклянные шарики.
Когда эту собаку освещали, то она начинала двигаться на свет и лаять. Если человек, державший фонарь, отходил в сторону, не переставая все время освещать собаку, она поворачивалась к свету и, продолжая лаять, двигалась к человеку.
Что представляет собой этот робот? Нечто подобное видящему автомобилю двух иллинойсских студентов, но только с гораздо более сложным расположением приборов, которое делает автомат способным ориентироваться относительно света.
Электрическая собака. Движется на свет.
Электрическая собака, подобно живой, имеет два глаза – два фотоэлектрических элемента, разделенные непрозрачной перегородкой, которая образует нос.
Каждый глаз включен в цепь, составленную из маленькой батареи аккумуляторов и электромагнитного реле. Эти реле замыкают цепь двух электромоторов, присоединенных к большой батарее аккумуляторов. Левый глаз через реле присоединен к правому электромотору, правый глаз – к левому электромотору. Оба электромотора вращают колеса в ногах собаки каждый на своей стороне.
Схема устройства электрической собаки. Л – лампа; П – непрозрачная пластинка («нос»); Ф1 и Ф2 – фотоэлементы; Б1 и Б2 – батареи аккумуляторов; Р1 и Р2 – реле; ЭМ1 и ЭМ2– электромоторы; А – аккумуляторы, питающие электромоторы.
Предположим, что лампа находится справа от электрической собаки. Тогда левый глаз ее будет затенен носом, и свет лампы будет действовать только на правый глаз, который пустит в ход левый электромотор. От этого собака станет поворачиваться направо, в сторону лампы. Когда затем свет попадет и на левый глаз, го будет пущен в ход еще правый мотор, и собака двинется прямо.
Этот ориентирующийся механизм был изобретен англичанином Мейснером в 1916 г. В то время фотоэлектрические элементы еще только начинали появляться и имели много недостатков. Поэтому Мейснер воспользовался для глаз собаки селеновыми элементами. Его первая собака хорошо распознавала, откуда идет свет, и всегда двигалась на источник света.
В дальнейшем селеновые глаза собаки были заменены фотоэлектрическими элементами, и собака стала еще более ловкой и подвижной. Она отвечала на самые слабые воздействия света.
Что скрывается за смешной собачкой
Электрическая собачка имела большой успех на выставке. Вокруг нее собирались толпы посетителей. Движения со– бачки-робота и ее особенный лай вызывали громкий смех зрителей.
Кто-то из присутствующих советовал изобретателю приделать собачке уши и поместить в нее такой механизм, чтобы она начинала яростно лаять, заслышав отдаленные звуки, например шум шагов.
Никто из присутствующих и не подозревал, что за этой безобидной собачкой скрываются совсем не безобидные вещи, которые выглядят далеко не смешно: подводные мины и военные корабли.
Электрическая собака была изобретена Мейснером, как сказано, в 1916 г. Но ведь это был один из годов мировой войны. Инженеры и ученые, находясь на службе у капитала, прилагали все усилия к тому, чтобы изобретать и строить все более разрушительные машины для истребления людей. Одни работали над броневыми машинами нового, фантастического вида, которые получили название танков, другие изыскивали отравляющие газы, третьи хотели построить такие машины, которые без людей могли бы принимать участие в боях.
Именно эта задача и занимала ум Мейснера. Свой ориентирующийся по свету механизм он предназначал не для собачек, а для управляемых мин. Такие мины действительно были созданы. Управление ими производилось при помощи света прожектора. Однако, эти мины не получили распространения, так как их можно было выпускать только ночью и свет прожектора легко выдавал противнику их присутствие. Заметив торпеду издали, корабль мог своевременно от нее уклониться. К тому же противник светом своих прожекторов мог нарушить управление миной.
Английский инженер Метьюз и физик Фурнье д'Альб занялись разработкой механизма для управления на расстоянии при помощи света моторной лодкой. Они воспользовались селеновыми элементами с электромагнитными реле.
Опыты с моделью лодки производились на небольшом озере. Источником света служил обычный прожектор.
Находясь на берегу, Метьюз и д’Альб, действуя прожектором, пускали лодку в ход, заставляли ее поворачиваться налево, направо, стрелять из пушки и останавливаться. Все световые приказы лодка выполняла быстро и точно. Но и это маленькое чудовище не могло быть использовано для военных целей из-за света, который обнаруживал его присутствие.
Впрочем, из этого еще не следует, что в грядущей войне боевые машины, управляемые светом, не будут принимать участия. Военная техника не стоит на месте. Наоборот, она очень быстро развивается. То, что вчера находилось еще в зародышевом состоянии, сегодня превращается в совершенный, вполне пригодный для практики механизм. Несомненно, что светоуправляемые машины не забыты, что работа над их усовершенствованием продолжается.
В 1934 г. в Америке был создан еще один ориентирующийся по свету механизм – подзорная труба, самостоятельно следящая за аэропланом. Поле зрения этой трубы разделено двумя поперечными перегородками на четыре равные части (квадранты). В каждом квадранте помещено по одинаковому фотоэлементу. Каждая пара противоположных фотоэлементов через усилитель и реле соединена с электромоторчиком. Один из этих электромоторов двигает трубу вправо и влево, другой вверх и вниз.
Живой наблюдатель устанавливает трубу так, чтобы аэроплан был виден посредине поля зрения. После этого человек может совсем отойти от трубы, и она сама начнет следить за аэропланом. Сущность ее действия состоит в следующем.
Когда аэроплан сдвинется с центрального положения в трубе, то на каждый фотоэлемент попадет другое количество света – одни получат больше, другие меньше. Это приведет в действие электромоторы, которые повернут трубу в таком направлении, что аэроплан снова займет центральное положение, после чего моторы остановятся. Новое перемещение аэроплана в то же мгновение вызовет новое движение трубы.
Опыты с этой трубой-роботом показали, что фотоэлементы производят наводку на цель лучше человека.
Такие самонаводящиеся трубы предназначаются для прицельных машин, управляющих стрельбою зенитных пушек и пулеметов.
«Видящий» станок
К ориентирующимся по свету роботам следует причислить также замечательный токарный станок, созданный в 1935 году советским инженером комсомольцем В. С. Вихманом.
Начало истории этого изобретения первостепенной важности относится к концу 1933 года. Был серый декабрьский день. В одной из уютных аудиторий Московского станкоинструментального института шла очередная лекция по курсу «кинематики станков». На черной доске возникали меловые фигуры и ряды математических формул. Профессор с изящной легкостью разбирал различные типы кулачковых дисков и валов, применяемых для обработки криволинейных поверхностей, И студенты скоро поняли, что каждый вид поверхности для своей обработки требует специального устройства кулачкового механизма.
– Универсального, всеобщего решения задачи нет, да его не может быть! – закончил профессор свои объяснения и перешел к следующему разделу курса.
Молодые студенты послушно продолжали внимать словам профессора и заносить в свои тетради новые ряды чертежей и формул. И только один человек рассеянно смотрел в широкое окно, за которым медленно падали пушистые хлопья снега. Это был Виктор Вихман. Его поразило заключение профессора о неразрешимости задачи в общем виде.
«Если тут ничего не может сделать механика, – думал студент, которому недавно минул двадцать первый год, – то не поможет ли здесь электротехника?»
Мысль о неразрешимой задаче крепко засела в сознание Вихмана, и в дальнейшем он часто к ней возвращался. Выводя карандашом на бумаге разные контуры, он думал, как их передать на изделие.
Лучшим «приспособлением» к станку является, конечно, сам человек, рассуждал Вихман, представляя себе рабочего у станка, перед которым лежит чертеж. Глаза рабочего воспринимают форму линий и через головной мозг по нервам передают ее рукам. Глядя на чертеж и действуя руками на суппорт (подвижной держатель резца), рабочий вытачивает требуемую форму.
И вот однажды – это было весной 1934 года, когда из почек на деревьях выглянули тонкие листочки и в воздухе нежно запахло свежей зеленью, – Вихману пришла в голову смелая мысль: а нельзя ли сделать самый станок видящим, пристроить ему глаза и показывать чертеж ему – станку, а не человеку?
Вихман был серьезным радиолюбителем, интересовался телевидением и отлично знал, что существуют электрические глаза – фотоэлементы, превращающие свет в электрические токи.
В несколько мгновений сложился план работы: нужно создать такой «видящий аппарат», который мог бы двигаться по контуру чертежа и затем так присоединить его к токарному станку, чтобы суппорт, несущий резец, точно повторял движение видящего аппарата.
Началась напряженная работа. Вихман сначала изучает свойства фотоэлементов. Потом изобретает видящий аппарат.
В два месяца весь видящий аппарат был продуман до мельчайших подробностей и изображен в чертежах и схемах. Осталось разработать его связь с суппортом. Вихман обращается за советом к профессорам института. Особенно ценные указания дает доцент Харизаменов. К середине 1934 года была решена и эта задача.
Комитет по изобретательству при Совете труда и обороны (СТО) берет изобретение Вихмана на особый учет. Станко-инструментальный институт отпускает средства на постройку действующей модели. И в феврале 1935 года уже начинаются ее испытания.
Это было волнующее время. Вместо металла в станок помещался кусок парафина. Под видящий аппарат подкладывался чертеж контура, по которому должна производиться обточка материала. И станок начинал действовать. Кусок парафина быстро вращался, резец снимал стружку. Горящими глазами студент-пятикурсник впивался в острее резца, следя за его движением. В общем резец давал нужное очертание. Значит, станок «видел» чертеж и работал по чертежу. И это было самое главное. Но обрабатываемая поверхность получалась не гладкой, а ступенчатой. И это было делом второстепенным, так как зависело от настройки электрической части станка. Вихман был воодушевлен. Он твердо верил в окончательный успех своего замысла.
Опыты со станком продолжались февраль, март и апрель 1935 года. За большими окнами института снова распускались деревья Зуевского парка, снова громче зазвучали свистки паровозов с Савеловского вокзала.
Но Вихман весны почти не замечал. Он каждый день помногу часов возился со своим станком и засиживался в лаборатории иногда до полуночи, вызывая ворчание сторожей.
Работа ладилась, и в мае были получены первые положительные результаты. Они были лучше ожидавшихся.
Спустя месяц Совет народных комиссаров СССР отпустил сто пятьдесят тысяч рублей на проектирование и постройку «видящего» станка для промышленных целей. Решено создать в первую очередь видящий фрезерный станок. В тот момент, когда пишутся эти строки (март 1936 года), проектирование фрезерного станка подходит к концу, после чего приступят к его постройке. С 15 марта 1936 года началось проектирование видящего токарного станка тоже для промышленных целей. Все проектные работы ведутся особой бригадой в станко-инструментальном институте.
Изобретение В. С. Вихмана вызвало большой интерес и за границей. Ведь там нет ничего подобного. И американские станкостроительные фирмы уже вызываются строить видящие станки системы Вихмана.
Первая модель видящего станка передана в Политехнический музей на выставку советского изобретательства.
Там ее может увидеть в действии всякий желающий.
Модель «видящего» станка советского студента Вихмана, выставленная в Политехническом музее в Москве.
Звезда открывает выставку
«Терпеливые» селеновые и фотоэлектрические элементы засаживают за телескопы и заставляют их наблюдать за солнцем, луной и звездами. Первоначально видящие роботы применялись в астрономии только для определения яркости небесных светил (звездная фотометрия). Потом электрический глаз приспособили для наблюдения за прохождением звезды через меридиан, представленный в телескопе вертикальной нитью. Определение этого момента очень важно для установления местоположения звезды.
Живой наблюдатель всегда делает ошибку. Одни из людей отмечают более позднее время, другие, наоборот, забегают вперед. Робот-астроном этим недостатком не обладает. Селеновый или фотоэлектрический глаз видит звезды гораздо лучше, острее человеческого глаза и совершенно точно отмечает нужный момент.
Как ни слаб свет звезд, но, уловленный фотоэлементами, превращенный в электрические токи, а затем усиленный в сотни тысяч и даже в миллион раз, он может вызвать не только движение самопишущего пера, но и нечто большее. Замечательный пример такого действия звездного света дает чикагская выставка «Столетие прогресса».
Ее устроители решили самым способом открытия выставки показать посетителям огромные достижения науки и техники наших дней и с этой целью предоставили открытие не президенту республики, а… Арктуру, звезде первой величины в созвездии Волопаса.
В назначенный день к девяти часам вечера перед выставкой собралась миллионная толпа. На территории выставки было темно и тихо. Но когда стрелка часов дошла точно до девяти часов тридцати минут, произошло нечто грандиозное: на всей территории выставки вспыхнули бесчисленные электрические огни разных цветов, открылись ворота, и множество громкоговорителей запели американский национальный гимн.
Все это сделал свет звезды.
Море огней на чикагской выставке, зажженных звездой Арктуром.
В качестве пунктов наблюдения были избраны четыре обсерватории, расположенные в разных штатах. Четыре обсерватории, а не одна, взяты были для того, чтобы избегнуть всяких случайностей погоды: если небо в одном или другом месте будет закрыто облаками, то в третьем или в четвертом оно окажется чистым. К телескопам, вместо человеческих глаз, были приставлены фотоэлементы, соединенные с усилителями.
Когда свет звезды через телескопы попал на чувствительную поверхность фотоэлементов, из нее брызнули вырванные этим светом электроны. Возник электрический ток. Катодные лампы усилили его в миллион раз и по проводам бросили в Чикаго на выставку. А там многочисленные реле с помощью этого тока произвели все возложенные на них действия.
Звезду Арктур избрали не случайно. Свет, пробегая в секунду 300 000 км, идет от нее к нам ровно сорок лет. Значит, тот луч звезды, который открыл выставку 1933 г., отправился в путешествие по мировому пространству в 1893 г. А как раз именно в этом году в Чикаго была предшествующая большая выставка – Колумбийская. Свет Арктура перекинул как бы мост между двумя этими выдающимися выставками.
Звезда Арктур открывает выставку в Чикаго в 1933 г. Слева вверху свет Арктура попадает в обсерваторию. Справа вверху, пройдя через телескоп, свет звезды падает на фотоэлемент. Слева внизу четыре обсерватории по телефонным проводам передают ток, вызванный Арктуром, на выставку – внизу справа.
Видящие роботы могут отмечать время на скачках и гонках. С этой целью дорога перегораживается инфракрасным лучом. Как только движущийся предмет пересечет луч, робот отмечает время. Точность при таком способе доходит до сотых долей секунды. Человек же дает точность до пятых долей секунды.
Фотоэлектрический отметчик времени на состязаниях.
Уличный самозажигающийся фонарь.
Видящие роботы начинают следить за освещением в школах, на фабриках и заводах, на улицах и даже на буях (поплавках) в море и на реках.
Так, например, в начале 1936 года группа советских инженеров – Антонов, Жерве, Мачерет и Палкин – разработала проект речного бакена-автомата, который с заходом солнца сам зажигает свою электрическую лампу, а утром гасит. Основная часть устройства – селеновый или меднозакисный фотоэлемент. Для питания лампы электрическим током к бакену присоединяется маленькая водяная турбинка, вращающая электрический генератор. Схема питания устроена так, что лампа постоянно мигает – это привлекает к ней внимание. Если рабочая лампа почему-либо не загорается, то автомат зажигает запасную.
На реках со слабым течением или на озерах и морях водяная турбинка работать не будет. В таком случае на бакене можно поместить батарею сухих элементов, достаточную для питания ламп на протяжении шести месяцев.
Робот-стенограф
В 1916 г. англичанину Флауэрсу удалось сконструировать, пользуясь селеновым фотоэлементом, такой робот, который может стенографировать человеческую речь. Робот Флауэрса получил название диктофона. Устройство этого замечательного аппарата довольно сложно.
Схема устройства диктофона Флауэрса. 1 – электрические конденсаторы; 2 – катушки самоиндукции; 3 – луч света, падающий на зеркальце электромагнита; 4 – луч света, отраженный от зеркальца; 5 – селеновый элемент; 6 – аккумуляторы; 7 – дроссели; 8 – микрофон; 9 – записывающее перо; 10 – электромагниты; 11 – мембрана; 12 – подкладка зеркальца; 13 – зеркальце; 14 – линзы; 15 – светящаяся вольфрамовая нить лампы; 16 – экранчик; 17 – электромагнит, управляющий записывающим пером; 18 – цилиндр с бумагой, на которой производится запись; 19 – винт в гайке, поднимающий цилиндр при каждом обороте на один сантиметр.
Диктовка производится перед обычным микрофоном. Возникающие в нем электрические токи направляются в ряд параллельно соединенных электрических резонаторов. Каждый из них состоит из конденсатора, катушки самоиндукции и электромагнита, сердечником которого является постоянный магнит. Перед магнитом находится металлическая пластинка с маленьким зеркальцем.
Все электромагниты и зеркальца расположены по дуге круга. Перед зеркальцами находится электрическая лампочка с одной только нитью. Свет этой нити, пройдя через маленькие линзы, падает на зеркальца всех электромагнитов и, отразившись от них, собирается в одной точке селенового элемента, который в этом именно месте сделан не чувствительным к свету.
Электрические токи при диктовке, попав в резонаторы, вызывают в некоторых из них электрические колебания. С помощью электромагнитов электрические колебания передаются зеркальцам. Отраженные ими зайчики света бегают по селеновому элементу и вызывают в его цепи колебательные токи, управляющие самопишущим пером, которое вычерчивает на бумаге кривые линии. Каждому звуку соответствует вполне определенная кривая линия.
Таким образом любое слово будет записано в виде ряда нескольких волнистых линий. Заучив волнистые буквы, можно легко читать запись диктофона, которая по внешнему виду очень напоминает стенографическую запись.