355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Олег Дрожжин » Разумные машины (Автоматы) » Текст книги (страница 16)
Разумные машины (Автоматы)
  • Текст добавлен: 6 июля 2019, 16:00

Текст книги "Разумные машины (Автоматы)"


Автор книги: Олег Дрожжин



сообщить о нарушении

Текущая страница: 16 (всего у книги 17 страниц)

Телемеханика

Под телемеханикой разумеют управление машинами и механизмами на расстоянии. Телемеханика – новая, еще совсем молодая отрасль техники. Но, несмотря на это, она достигла уже значительных результатов и бурно развивается в различных направлениях.

Вспомним телевоксы, действиями которых управляют на расстоянии с помощью звука; телелюксы, отвечающие на световые приказы; наконец, радиороботы – автомобили, корабли, самолеты, подчиняющиеся радиосигналам. Все это – проявления телемеханики, которая начинает проникать теперь и в область промышленности – в практику заводов и фабрик.

Здесь пока что исключительное распространение находит лишь способ управления машинами по проволокам с помощью электрического тока. Простейший случай представляют различные станки для обработки металла и дерева – всякие токарные, долбежные, строгальные, сверлильные рабочие машины.

В прежнее время все станки какого-либо завода приводились в движение одним центральным двигателем – паровой машиной. Через все помещение со станками проходил длинный передаточный (трансмиссионный) вал с попарно сидящими на нем шкивами. Один из них закреплялся на валу наглухо (рабочий шкив), другой сидел свободно (холостой шкив). На станке тоже были шкивы. Связь между трансмиссионным валом и станками устанавливалась при помощи бесконечных ремней.

Чтобы пустить в ход стоящий станок, нужно было длинным рычагом, свешивающимся с потолка, передвинуть ремень с холостого шкива на рабочий. Для остановки станка производилось обратное передвижение ремня. Это была тоже телемеханика, но с помощью довольно грубых приемов. Да и передача силы от двигателя к станку производилась тоже громоздкими частями – трансмиссионным валом, шкивами и ремнями.

Развитие электротехники очень сильно изменило внутренний вид новых заводов. Энергия от первичного двигателя – паровой машины, водяной турбины – стала передаваться на завод в виде электрического тока по проводам. Место ремня и шкива у каждого станка занял небольшой электрический двигатель – индивидуальный электромотор такой мощности, которая как раз необходима для приведения в движение этого станка. Чтобы пустить станок в ход, теперь нужно было только включить ток в электромотор.

Исчезли ремни, исчезли шкивы. Обращение со станком упростилось. Но все же еще оставался пусковой реостат, управление которым требовало от рабочего и внимания и умения. При слишком быстром выключении сопротивления через мотор мгновенно проходят очень сильные токи, которые могут сжечь его. Так не раз и бывало. При слишком же медленном передвижении рукоятки рабочий теряет драгоценное время.

Появилась необходимость в каком-то дополнительном механизме, который избавил бы рабочего от возможности делать ошибки. Этот механизм теперь изобретен. Он называется контактором и представляет собою электромагнитное реле. Контактор с раз навсегда установленной скоростью включает или выключает из цепи тока необходимые сопротивления. На контакторе находятся кнопки управления. Обычно бывают три кнопки, окрашенные в разные цвета.

Если станок, кроме индивидуального электромотора, имеет еще и контактор, то обращение с ним до крайности упрощается. Для пуска станка рабочему следует только нажать кнопку. Останавливается станок нажатием другой кнопки. Третья кнопка служит для придачи станку вращения в обратную сторону.

Все станки наших многочисленных новых заводов снабжаются индивидуальными электромоторами и контакторами с кнопками.

В некоторых случаях станки с кнопочным управлением достигают огромных размеров. Один из американских заводов построил, например, токарный и одновременно шлифовальный станок, на котором можно обрабатывать предметы длиною в 14 м и весом до 135 тонн – это вес паровоза. Обслуживают станок 8 электромоторов общей мощностью в 140 лошадиных сил. Главный электромотор, вращающий обтачиваемую громаду металла, имеет 75 лошадиных сил.

С одной стороны станка находятся два суппорта для токарных инструментов, с другой – один суппорт с шлифовальным кругом. Для передвижения суппортных салазок служат два электромотора по 10 лошадиных сил и один для шлифовального круга в 25 лошадиных сил.

Управление всеми движениями станка производится с помощью кнопок. Полный набор кнопок помещен в четырех местах: на станине станка и на каждом из трех суппортов, что позволяет рабочему управлять гигантской машиной с любого рабочего места.

Командные кнопки можно было бы помещать и вдали от станков, например, на каком-нибудь командном мостике, переброшенном поперек цеха. Один человек, скажем главный мастер, находясь на таком мостике и имея на столе перед собою все необходимые кнопки, мог бы в таком случае управлять станками всего цеха. Так именно и сделано на рамном заводе компании Смита.

То же самое мы найдем и у наших доменных печей. Сложнейшим механизмом доменного подъемника, в состав которого входят полтора десятка разных электромоторов, управляет один человек, находящийся перед центральным командным щитом.

Можно было бы командный пост поместить на расстоянии километра и более от управляемых машин. В доменном деле это не требуется. Но существуют химические заводы, работа которых связана с опасностью взрыва. Там перенесение командного поста на далекое расстояние становится необходимостью. И это сделано уже на некоторых заводах Германии.

Удаление командного поста от управляемых механизмов за пределы непосредственной видимости поставило перед техникой очень важную задачу – создать возможность телеконтроля, то есть надзора на расстоянии за тем, что делают машины, каково состояние аппаратов, котлов.

Для телеконтроля прежде всего необходима передача на расстоянии показаний разных измерительных приборов, определяющих температуру печей (пирометров), давления пара в котлах (манометров), скорость вращения моторов (тахометров), силу электрического тока (амперметров), процент влажности воздуха (гигрометров) и т. д.

Эта задача телеизмерений, или, как еще иначе говорят, дистанционных измерений, теперь вполне разрешена. Создано немало приборов, передающих на сотни и тысячи метров показания своих стрелок.

Чтобы с ними познакомиться, нам стоит только зайти в контрольную комнату термического цеха любого металлообрабатывающего завода. В цехе стоят закалочные печи, в которых разогреваются изделия. На их стенах в определенном месте виднеются циферблаты пирометров, стрелки которых показывают температуру внутри печи. У каждого из этих пирометров имеется двойник, расположенный на щите в контрольной комнате. Стрелка двойника не только повторяет показания основного прибора, но еще и записывает их на непрерывно движущейся ленте бумаги.

Дежурный инженер, глядя на циферблаты двойников, получает возможность следить на расстоянии за температурой печей.

Вторая задача телеконтроля – проверка исполнения приказа. Между людьми это получается просто. Когда, например, капитан парохода командует в машинное отделение: «Полный вперед!», то механик, услышав распоряжение, повторяет его: «Есть полный вперед!» и таким путем извещает капитана о выполнении приказа.

А как быть с машиной, если возле нее нет человека, если она сама исполняет приказы?

Выход ясен: нужно «научить» машину в ответ на приказ командира сообщать ему: «Есть приказ выполнен!»

И это уже сделано. Придумано много способов, с помощью которых машины и аппараты сообщают на командный пост о выполнении приказания. Основной из них – сигнализация лампами. Способ этот очень прост и состоит в следующем.

На командном щите или на пульте (на наклонном столе) возле кнопок или рычагов, отдающих приказания, помещаются одна или несколько сигнальных ламп. Предположим, для простоты, что перед нами две кнопки, управляющие где-то установленным насосом, и возле них – сигнальная лампа. Она соединена с насосом таким образом, что загорается только в том случае, когда насос работает.

Нажмем теперь на пусковую кнопку. Почти в то же мгновение зажигается контрольная лампа. Это ответ насоса. «Есть! – как бы говорит он. – Ваше приказание исполнено – я работаю полным ходом!»

Нажмем на остановочную кнопку. Мы увидим, что сигнальная лампа в то же мгновение гаснет. Этим насос сообщает о прекращении работы.

Наиболее широкое применение телемеханика и телеконтроль находят сейчас в той области промышленности, которая занимается добыванием и распределением электрической энергии. В настоящее время электрические станции строят непосредственно у источников первичной энергии – на реках, на торфяных или угольных залежах. Это объясняется тем, что электрическую энергию гораздо легче передавать по проводам на далекие расстояния, чем перевозить на эти же расстояния по железной дороге торф, уголь или другое топливо.

На первичной станции ток получается напряжением в несколько тысяч вольт. Для передачи на дальнее расстояние напряжение тока повышают до ста и более тысяч вольт, чтобы иметь возможность без больших потерь передавать ток по сравнительно тонким проводам. Это удешевляет электропередачу. В месте назначения напряжение тока понижается. Для этого служат приборы вспомогательных электрических станций, которые называются подстанциями. Иногда на подстанциях устанавливаются только простейшие аппараты (трансформаторы), не требующие за собою присмотра. Такие подстанции не имеют обслуживающего персонала. Но на более важных подстанциях, с более сложными аппаратами и машинами, люди дежурят круглые сутки.

Большая электрическая станция питает энергией десятки заводов, тысячи жилых помещений. Сеть ее проводов простирается на сотню, а иногда и более километров. В целом получается очень сложное сооружение, далеко выходящее за пределы видимости человека. Отсюда необходимость телеконтроля, теленаблюдения за тем, что происходит в различных участках сети электростанции.

С этой целью на самой электростанции в особом, хорошо освещенном помещении устанавливается щит управления. На нем в упрощенном виде (схематически) изображается вся сеть проводов со всеми подстанциями. Щит разделяется на отдельные участки, соответствующие подстанциям. В верхней части щита помещаются обычно измерительные приборы той подстанции, которая представлена этим участком щита. Ниже идут три горизонтальные линии, изображающие отдельные провода высоковольтной установки с переменным током. Еще ниже проходят горизонтальные линии, изображающие провода низковольтной сети. Между первой и второй сетью включены различные приборы и машины, показанные на щите условными значками.

Если в проводах есть ток, то изображающие их линии на щите светятся. Если тока нет, линии темны. В каждом условном значке тоже имеется контрольная лампа. При исправном действии соответствующей установки на подстанции лампа эта светит спокойно. Если же там, на месте, возникает неисправность, то лампа начинает мигать.

Удачное применение световых сигналов очень упрощает наблюдение за всем распределительным щитом, так как потемневшие линии или мигающие лампочки сразу же бросаются в глаза.

Кроме органов телеконтроля, щит имеет еще органы управления – командные кнопки и рычаги. Их помещают под щитом на специальных столах с наклонной поверхностью, которые называются пультами.

Если в квартире имеется электрическое освещение, то бывает крайне неприятно, когда оно гаснет. Это нарушает течение жизни обитателей квартиры, мешает их веселью или работе. Несравнимо тяжелее перерывы в подаче электричества на заводы и фабрики, на шахты и рудники. Это приводит к остановке станков и машин, к расстройству работы, к большим убыткам производства.

Поэтому электрические станции принимают всевозможные меры к бесперебойной работе, а в случае аварии – к скорейшему ее устранению.

Наиболее частые причины аварий – соединение главных проводов (фидеров) между собою или – при разрыве – с землею. Это называется коротким замыканием. Оно приводит к почти мгновенному усилению электрических токов во много раз, в результате чего обмотки электрических машин (генераторов) на станции сгорают.

Именно так и бывало в начале развития электрификации. Замена сгоревшей обмотки новой выводит машину из строя на долгий срок – на несколько дней или даже недель. Поэтому еще на заре электрификации практика поставила задачу – найти средство для спасения генераторов в случае короткого замыкания.

Собственно говоря, средство это было известно: нужно поскорее выключить генератор из сети, в которой произошло короткое замыкание. Это и делали дежурящие на станции инженеры или техники.

Если выключение производилось своевременно, то генератор оставался невредимым.

Но чаще всего люди опаздывали. Ведь нужно заметить аварию, подойти к выключателю, поднять руку, повернуть рычаг. На все это требуется 5—10 секунд времени при крайнем напряжении внимания дежурного. А в его распоряжении всего одна секунда или даже доля секунды. Ясно, что человек по природе своей к столь быстрым действиям не способен.

И его пришлось заменить механическим дежурным. Были созданы специальные реле, названные максимальными, которые помещают возле основных выключателей. Эти реле «чувствуют» силу тока и при увеличении ее в полтора– два раз заставляют выключатели «сработать», то есть произвести размыкание. Таким образом генератор спасается от порчи.

Современные максимальные реле все операции производят в течение десятой доли секунды. В быстроте действия они во много раз превзошли человека.

За максимальными реле последовало множество других: дистанционные, ватметровые, блокировочные, температурные, фазовые, частотные.

В детских сказках, созданных народной фантазией, часто встречаются разные добрые волшебники, которые оберегают какого-нибудь Иванушку от всяких несчастий. Вот такими «добрыми волшебниками» на современной электрической станции и являются реле. У них нет ни длинной седой бороды, ни помела с клюкой, как у их сказочных родственников. Основною их частью нередко служит электромагнит или проволочная катушка. Располагаются они везде и всюду: возле трансформаторов, у генераторов, у подшипников, у щитов управления, на подстанциях.

Целая армия «добрых волшебников»!

Одни из них в момент аварии действуют самостоятельно, производя спасительные выключения, другие при приближении опасности, например, когда перегревается обмотка генератора, дают дежурному предупредительные сигналы, привлекая его внимание на угрожаемый участок. Есть и такие реле, которые следят за самим человеком.

Причиной аварий не всегда бывают стихийные обстоятельства – буря, гроза, обледенение проводов. Очень часто виновниками оказывались сами дежурные у распределительного щита, по рассеянности или от усталости производившие неправильные включения. Чтобы этого не происходило, созданы блокировочные реле. Эти механические разумники не дают человеку сделать ошибку. Благодаря им всякое неправильное включение становится невозможным.

Завоеванием защиты нашествие «добрых волшебников» на электростанции не закончилось. Реле начинают теперь принимать на себя самое управление машинами. Это позволило прежде всего автоматизировать многие подстанции. Затем очередь автоматизации дошла и до самих электрических станций. Проще всего это было сделать со станциями, использующими энергию текущей воды.

Первая автоматизированная гидроэлектрическая станция была построена в Германии в 1898 г., возле города Меца. Ее мощность была всего 250 лошадиных сил. Пуск машин в ход или остановка производились на расстоянии – телемеханически.

Развитие автоматических станций шло сначала медленно, но в послевоенное время сильно ускорилось. К 1935 г. число автоматических станций во всем мире поднялось до 10 тысяч. Некоторые из этих станций, как, например, в Луисвилле (США), имеют мощность, превышающую 100 тысяч лошадиных сил.

Появились автоматические станции и у нас. Первая была построена в 1932 г. на Кавказе, возле города Эривани. Мощность ее – 3 тысячи лошадиных сил. Вторая сооружена в 1934 г. на Москва-реке, возле Рублева.

Некоторые автоматические станции работают вполне самостоятельно. Лишь время от времени на них заезжают инженеры для проверки работы. Чаще, однако, автоматические станции соединяются проводами с неавтоматическими. В этом случае автоматика тесно переплетается с телемеханикой. Управление станцией без людей и контроль за ее работой производится на расстоянии, с основной станции. Органы телеконтроля и телеуправления размещаются на щите и на пультах основной станции.

Пульт для управления Эриванской станцией находится в двух километрах от нее. На нем всего четыре кнопки. Если станция не работает, то для пуска ее в ход достаточно нажать всего только одну кнопку. Остановка станции производится нажатием другой кнопки. Остальные кнопки служат для изменения режима (величины) работы.

Пульт Рублевской станции находится от нее на расстоянии трех километров.

Оборудование для автоматизации Эриванской станции приобретено за границей. Аппараты для Рублевской станции сконструированы и изготовлены нашим Гидроэнергетическим институтом совместно с Харьковским электромеханическим заводом.

На всех автоматизированных электростанциях машины работают заметно лучше, чем при ручном управлении. Кроме того, сильно сокращаются расходы на персонал. Немалая экономия получается и на зданиях. Для автоматических подстанций и станций здания строят меньших размеров– ведь машинам ходить не приходится, – потолки делают ниже и совсем не устраивают окон, так как машинам ни чистый воздух, ни свет не нужны.

Кроме электрических станций, промышленная телемеханика позволяет управлять на расстоянии многими другими вещами. Интересный пример дают шлюзы Панамского канала. Управление ими централизовано. Пульт управления находится в особой контрольной комнате, которая называется диспетчерским (распорядительским) постом. Перед пультом– схематическая модель зашлюзованной части канала с маленькими алюминиевыми воротцами, со стерженьками – указателями уровня воды, и другими подробностями.

У пульта находится диспетчер – распорядитель движения. Перекачиванием воды из одной камеры шлюза в другую, открыванием и закрыванием шлюзовых ворот он управляет, нажимая на те или иные кнопки.

Контрольные сигналы о выполнении телемеханического приказания дает модель. Ее маленькие воротца, открываясь или закрываясь, движутся в точности так же, как и настоящие ворота на канале. По мере прибывания воды в камеру на модели поднимаются стерженьки, показывая уровень воды с ошибкой не более как на три миллиметра.

Находясь у такого пульта «с живой схемой» (так называют модель), забываешь о расстоянии. Кажется, что наблюдаешь действительное явление, а не его копию.

Подобная же, но еще более совершенная централизация управления шлюзовыми воротами и затворами плотин вводится на строящемся сейчас огромном канале Волга – Москва, который будет самым лучшим в мире. Электрическая связь по проводам и без проводов (по радио) между всеми участками канала будет такова, что главный диспетчер (распорядитель), находящийся на своем посту в Дмитрове или в Химках, на специальном табло (щите) будет видеть, где находятся пароходы, куда они движутся и каково положение механизмов канала.

Дежурные механики из своих центральных постов, нажимая на кнопки, смогут открывать и закрывать ворота шлюзов, поднимать или опускать затворы плотин. На контрольных щитах они тогда будут видеть, как работают все эти механизмы.

Особенно много занимались централизацией управления в железнодорожном деле. В этой области в США достигнуты к настоящему времени значительные результаты, и мы многое начинаем вводить у себя.

В 1935 г. завод имени Казицкого в Ленинграде построил сложнейшую диспетчерскую аппаратуру для централизованного управления всеми стрелками и светофорами на участке железных дорог протяжением в 70 км. Пульт этой установки по форме напоминает пианино. На щите перед пультом находится план всего участка в виде «живой схемы». На ней с помощью светящихся сигналов изображаются положение стрелок и место нахождения поездов.

Аппарат устроен так, что, если какой-либо путь на станции занят, диспетчер даже по ошибке не может направить туда второй поезд: «добрые волшебники» – блокировочные реле – этого не допустят.

Вся эта телемеханическая аппаратура будет установлена под Москвой между станциями Люберцы и Куровская, Московско-Казанской железной дороги.

Век разумных машин

В высшей степени разнообразны и многочисленны разумные машины наших дней.

Они дежурят на маяках, исправно зажигая по вечерам и гася по утрам их электрические лампы.

Они управляют уличным движением в городах, разносят книги по этажам библиотек, продают спички, газеты, пирожки, чистят ботинки, фотографируют людей, снимают копии с документов.

Они бессменно стоят у рулей океанских пароходов и у рычагов самолетов.

Они следят за ходом химических реакций, считают движущиеся предметы, отмечают время гонщиков, сортируют сигары, яблоки и бобы, охраняют дома от злоумышленников, открывают и закрывают двери домов, читают книги слепым, гравируют картины для типографий.

Они управляют автомобилями, кораблями, самолетами без людей.

Они выдувают ламповые колбы и бутылки, делают бумагу и автомобильные рамы, месят тесто и пекут хлеб, охраняют машины на электрических станциях и не позволяют живым дежурным производить неправильные включения.

Они выполняют еще тысячи и тысячи всяких иных дел, освобождая человека от тяжелой или скучной работы.

Казалось бы, люди должны умножать эти совершенные машины и радоваться тому, что они созданы, что они существуют.

Однако, прислушавшись к голосам, доносящимся из того, большого еще, мира, который находится за нашими границами, мы обнаружим прямо противоположное: не благодарность, а страх перед машинами и даже проклятья, к ним обращенные.

«Человеческие существа, столь заботливо вскормившие их (машины), проснулись, – пишет американец Чейз, – и нашли себя в окружении новой расы диких и опасных зверей, господствующих над ними».

«Творение восстает против своего творца, – вторит Чейзу немец Шпенглер. – Как некогда микрокосмос (малое существо) – человек – восстал против природы, так теперь восстает микрокосмос – машина – против человека. Хозяин земли становится рабом машины. Она заставляет его, нас, всех без исключения, – знаем и хотим мы этого или нет, – идти по ее пути. Бешено несущаяся колесница волочит за собою сверженного победителя, пока он не погибнет».

Если чехословацкий писатель Чапек шутил, показывая в своей интересной комедии восстание роботов, механических людей, которые, перебив живых людей, заняли их место на земле, то в словах Чейза, Шпенглера и многих других нет и намека на шутку.

В чем дело? Почему прилежные и заботливые машины вдруг превратились в «диких и опасных зверей, господствующих над нами»? Почему бешено несущаяся колесница техники грозит гибелью человечеству?

Потому, отвечает Кайо, бывший французский министр, что «машина вытесняет человека… машина, закусив удила, еще больше усиливает бедственное положение, выбрасывая рабочих на улицу, обрекая их на безработицу».

Кайо как будто прав. Машины действительно вытесняют человека. Вспомним завод-автомат компании Смита. При ручном изготовлении автомобильных рам ему потребовалось бы 18 тысяч рабочих. На самом деле у Смита работает всего 200 человек. Искусные автоматы сделали лишним труд 17 800 человек только на этом одном заводе.

Каждая бутылочная машина Редферна, занимая двух рабочих, делает лишним труд 1 400 человек.

Вспомним сигароделательную машину Паттерсона, ламповый автомат Кернинга, бесчисленные металлообрабатывающие станки-автоматы. Все они делают лишним труд десятков, сотен и тысяч рабочих. Этих людей постигает печальная участь. Машина освобождает их не только от тяжелого или скучного труда, но и от верного куска хлеба: рабочие получают расчет и оставляют стены заводов и фабрик.

В середине 1929 г. американская промышленность находилась в наиболее цветущем состоянии. И тем не менее в США было около 5 миллионов безработных.

В конце того же 1929 г. в Америке разразился жестокий экономический кризис, который, как пожар в бурю, быстро стал перебрасываться из страны в страну и в несколько месяцев охватил весь капиталистический мир.

И через два года общее число безработных в 46 капиталистических государствах достигло 48 500 тысяч человек. Вместе с членами семейств это составляет более 100 миллионов. Лишившись заработка, все эти люди были обречены на жалкое существование.

По сообщению американского журнала «Нью-Йорк пост», в 1934 г. во всем капиталистическом мире от голода умерло 2 400 тысяч человек и покончило жизнь самоубийством от нужды еще 1 200 тысяч человек. Это страшные цифры!

Кто же принес все эти беды и голодные страдания десяткам миллионов людей? Не машины ли?

«Да, да, машины! Машины!» в один голос утверждают Чейзы, Шпенглеры, Кайо и тысячи других.

«Машины превратились в диких и опасных зверей и грозят уничтожить человечество!»

«Бешено несущаяся колесница (техники) волочит за собою сверженного победителя, пока он не погибнет!»

Из этого обвинения машин делаются и соответствующие выводы. Если машины виноваты в бедствиях более чем ста миллионов человек, то – долой машины! Если же без них нельзя обойтись, то в таком случае нужно хотя бы задержать их развитие.

«Необходимо взнуздать развивающуюся науку… зажать технику», предлагает Кайо.

«Нужно объявить отсрочку по изобретениям по меньшей мере на десяток лет и рассматривать всех изобретателей как опасных сумасшедших, требующих надлежащего ухода и присмотра», пишет Чейз.

«Давайте остановим технику на пять лет полным отказом от новых патентов и запрещением применять новые изобретения», советует французский писатель Дюамель.

И капиталисты пытаются остановить технику.

Одни скупают патенты и хоронят их в ящиках своего письменного стола. Такой случай с бутылочной машиной Оуэна был отмечен еще двадцать лет назад В. И. Лениным.

Другие принимаются за прямое уничтожение машин. В 1930 г., например, в США было сломано семнадцать доменных печей, которые еще недавно давали стране ежегодно около полутора миллионов тонн чугуна.

В 1932 г. в Хемнице был разрушен машиностроительный завод Гартмана, один из крупнейших в Германии.

В 1931 г. в Англии было снесено более семидесяти кораблестроительных верфей. В Америке, в штате Массачусетс, по ночам с текстильных фабрик тайно от рабочих выносили станки и ломали их. На фабрике Пирса было уничтожено шестьсот станков и более трех тысяч веретен, на фабрике «Саул» – шестьсот станков и две тысячи веретен, на фабрике в Бристоле – около двух тысяч станков и семьдесят тысяч веретен.

Такие примеры можно было бы приводить сотнями. От них веет средневековым мракобесием. Им не хочется верить. И тем не менее это не выдуманные события, а действительные факты.

Невольно встает вопрос: неужели все эти Чейзы, Шпенглеры, Кайо, Дюамели правы, приписывая машинам причину чудовищной безработицы и миллионы голодных смертей? Ведь машины – не живые существа, способные мыслить и одаренные волей, а мертвые механизмы. Они лишь выполняют волю человека. Если в руках бандита находится револьвер, то можно ли обвинить этот самый револьвер в том, что он убивает ни в чем неповинных людей?

Разумеется, нет. Виноват в убийстве не револьвер, а человек, который им пользовался.

То же можно сказать и о машинах. Не машины вызвали бедствия безработицы, а люди: тот общественный строй, при котором существуют капиталисты, владеющие машинами, и рабочие, продающие свою силу.

К чему же может привести дальнейший ход техники?

Было уже сказано, что в 1929 г., когда американская промышленность находилась на вершине своего расцвета, безработица достигла 5 миллионов человек.

Это сущие пустяки по сравнению с тем, что получилось бы, если бы вся американская промышленность ввела наиболее совершенные (то есть наиболее производительные) из машин того времени.

Вот только два примера. В 1929 г. 39 тысяч рабочих на трех тысячах кирпичных заводах изготовили 8 миллиардов кирпичей. Но то же количество кирпичей могли бы сделать шестьсот рабочих на шести заводах с новейшими машинами.

В том же году 27 тысяч рабочих на нескольких тысячах мельницах дали 3 миллиарда килограммов муки. Но то же количество муки могли бы дать лишь восемнадцать человек на шести мельницах с новейшими машинами.

При введении столь совершенных машин на улицу были бы выброшены почти все американские рабочие – около 35 миллионов человек, а с семьями и все 100 миллионов человек, из общего числа населения в 120 миллионов.

Их ожидала бы голодная смерть.

Ясно, что капитализм зашел в тупик, что капитализм, по выражению Ленина, гниет. На том пути, по которому идет капитализм, человечество ожидают страшные бедствия.

Где же выход из тупика?

Защитники капитализма предлагают «взнуздать технику», приостановить поток изобретений, задержать жизнь на том уровне, которого она достигла сейчас, или даже вернуться лет на пятьдесят, на сто назад.

Конечно, все это пустые и глупые бредни!

Выход из тупика, в который попало человечество, заключается, как показали Маркс и Энгельс, в уничтожении не машин, а капиталистического строя человеческого общества и в замене его социалистическим, при котором средства производства – машины, заводы – принадлежат всем.

На одной шестой части земной суши эта задача уже выполнена. Российский пролетариат в союзе с трудящимся крестьянством, под руководством гениального Ленина и созданной им партии большевиков, капитализм в своей стране низвергнул.

И теперь под руководством Сталина, наилучшего ученика и сподвижника Ленина, и железной ленинской партии у нас идет радостная титаническая стройка нового, бесклассового, социалистического общества.

У нас нет теперь капиталистов. Все: фабрики, заводы, шахты, земля принадлежат государству, то есть всему трудящемуся народу. От этого роль машин у нас стала совсем иной.

При капитализме машины были средством производства прибавочной стоимости, средством эксплоатации рабочих. Это были как бы насосы, выкачивающие из миллионных масс трудящихся горы золота для отдельных людей – капиталистов.

У нас никакой эксплоатации человека человеком нет. Поэтому и машины у нас не служат более средством эксплоатации. Они становятся лучшими помощниками в труде.

При капитализме человек настолько ничтожная величина, что о нем не заботятся и, ограбив по «закону», выбрасывают его, как сор на свалку, предоставляя умирать от голода.

У нас же «из всех ценных капиталов, имеющихся в мире, самым ценным и самым решающим капиталом являются люди, кадры» (Сталин).


    Ваша оценка произведения:

Популярные книги за неделю