355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Николай Белов » Алексей Васильевич Шубников (1887—1970) » Текст книги (страница 5)
Алексей Васильевич Шубников (1887—1970)
  • Текст добавлен: 29 апреля 2017, 13:00

Текст книги "Алексей Васильевич Шубников (1887—1970)"


Автор книги: Николай Белов



сообщить о нарушении

Текущая страница: 5 (всего у книги 15 страниц)

Далее автор переходит к выводу сначала 17 двумерных групп G2, а затем приводит список всех 8G групп симметрии слоев G32, проиллюстрированных рисунками, кочующими из работы в работу с того момента, когда они впервые были нарисованы Вебером.

А. В. Шубников иллюстрирует группы симметрии либо различными орнаментальными мотивами, либо интерференционными картинами. В этом же параграфе дана фактически сводка параллелогонов, заполняющих плоскость параллельными переносами и смежных по целым ребрам, планигонов, заполняющих плоскость в любом положении, полных и неполных плоских изотонов :– многоугольников, в каждой вершине которых сходится одно и то же число ребер, причем многоугольники заполняют плоскость без промежутков. Эта тема в творчестве А. В. Шубникова имеет свою предысторию и заслуживает отдельного рассмотрения [132, с. 58]. Далее автор получает 7 групп симметрии плоских односторонних семиконтинуумов, а затем переходит к слоевым группам и соответствующим им континуумам и семиконтинуумам (31 группа). При весьма схематичном рассмотрении федоровских групп, что обусловлено объемом книги и ее ориентацией на непрофессионалов, уделено внимание плотнейшим упаковкам (по Н. В. Белову), теории параллелоэдров и стереоэдров, определению групп симметрии континуумов и семиконтинуумов.

Анализируя монографии по теории симметрии, можно сказать, что «Симметрия» А. В. Шубникова – явление уникальное, поскольку, если не считать работ по орнаментам или по проявлению упорядоченных форм в природе, собственно симметрии и ее проявлениям в природе в самом широком смысле этого слова посвящены, пожалуй, лишь работы его учителя Г. В. Вульфа. Только в 50—60-х годах нашего столетия появились многочисленные публикации по этому вопросу, из которых сопоставимой можно считать только вышедшую в 1968 г. работу Г. Вейля «Симметрия», а также расширенное и дополненное новое издание книги А. В. Шубникова, вышедшее в соавторстве с В. А. Копциком [344].

В 1940 г. увидела свет написанная совместно с Г. Б. Бокием и Е. Е. Флинтом книга А. В. Шубникова «Основы кристаллографии» [134], завершившая представительный ряд фундаментальных трудов наших соотечественников: Е. С. Федорова, В. И. Вернадского, Б. Н. Делоне, А. Д. Александрова, безвременно скончавшегося В. В. Доливо-Добровольского, А. К. Болдырева и др.

Начиная с монографии [132], А. В. Шубников систематически дополняет и совершенствует разработанную им систему обозначений групп симметрии., отличавшуюся от интернациональной символики, введенной впервые К. Германном в 1929 г. и Ш. Могеном в 1931 г.

Рассмотрим последовательно развитие ортогональной симметрии в трудах А. В. Шубникова и его коллег, генезис антисимметрии и ее расширений, развитие теории симметрии подобия.

В Атласе кристаллографических групп симметрии [150] впервые в отечественной литературе приведен полный иллюстрированный каталог всех в то время известных дискретных групп ортогональной симметрии, причем даже в самих названиях отражены физические приложения рассматриваемых групп.

В «Атласе» даны изображения: 10 групп симметрии форм граней (G20); 31 группа симметрии форм двумерных кристаллов (таблетки G320); 32 группы симметрии форм кристаллов (G30); 7 групп симметрии ребер (бордюров G21); 29 полярных стержневых групп, входящих в состав 75 групп симметрии рядов (G31); 17 групп симметрии граней (G2); 80 групп симметрии слоев (G32); 230 пространственных групп G3.

«Диссимметрия» А. В. Шубникова [151] – одна из замечательных статей, в которой объединено несколько важных для теории симметрии положений. В первую очередь, следуя П. Кюри, автор окончательно дает определение диссимметрии: «...мы будем называть элементами диссимметрии данной группы те из элементов симметрии высшей взятой для сравнения группы, которые выпадают из нее при переходе к данной группе, являющейся подгруппой высшей группы. Иначе говоря, элементами диссимметрии данной группы будем называть те элементы симметрии, которые нужно добавить к данной группе, чтобы она преобразовалась в высшую группу, сравниваемую с данной» [ 151, с. 158]. Проанализировав вопрос существования диссимметрии, автор приходит к выводу: «...каждой группе симметрии можно при желании найти высшую группу, по отношению к которой данная группа симметрии будет подгруппой» [151, с. 162]. Отсюда исходят многие из современных методов расширения групп ортогональной симметрии. Исследовав вопрос о минимальной симметрии, автор приходит к заключению: «...мы...должны сделать вывод о принципиальной неисчерпаемости симметрии не только в направлении поисков высших групп симметрии, но и в обратном стремлении найти минимальную симметрию» [151, с. 163].

В 1948 г. вышли две работы А. В. Шубникова [158, 160]. Первую из статей проанализируем при рассмотрении групп аффинной симметрии. Вторая статья посвящена получению групп G30 абстрактно-групповыми методами, и тогда группы симметрии 2, т и I абстрактно изоморфны, поэтому 32 кристаллографическим группам соответствует лишь 18 точечных абстрактных. В заключении авторы пишут: «Принимая такую классификацию, мы тем самым соглашаемся считать одинаковыми многие из тех групп, которые в обычной классификации трактуются как различные; в частности, с новой точки зрения одинаковыми должны считаться моноклинные группы С2 и Cs с триклинной Ch Между тем кристаллы, отвечающие этим группам, обладают совершенно различными свойствами. Поэтому для целей кристаллографии классическое разделение на 32 группы остается неизменным» [160, с. 672].

Дальнейшее углубление теории дискретных групп ортогональной симметрии в трудах А. В. Шубникова и ее рассмотрение в историческом аспекте немыслимо без анализа общего состояния этой теории. К началу 50-х годов нашего столетия теорию ортогональной симметрии можно было в целом считать законченной, однако существовало, да и сейчас существует, множество вопросов, нуждающихся в уточнении, дополнении, упрощении. Не секрет, что вывод 230 групп, данный в свое время Е. С. Федоровым и А. Шенфлисом, весьма сложен для восприятия, а модифицированное их повторение С. А. Богомоловым не менее трудно для понимания. Проблема наглядного вывода федоровских групп решена в работах Н. В. Белова, посвященных как отдельным вопросам строения федоровских групп (Браве-решеткам, элементам симметрии пространственных федоровских групп), так и самому выводу в популярном «Классном методе вывода пространственных групп симметрии», увидевшем свет в 1951 г. Н. В. Белов неоднократно возвращался к этой проблеме, постоянно упрощая и делая все более наглядным механизм «порождения» одних групп другими.

Детализация учения об ортогональной симметрии привела к своеобразному «размежеванию» школ А. В. Шубникова и Н. В. Белова. Действительно, в трудах А. В. Шубникова в основном рассматриваются проблемы уточнения и классификации свойств точечных групп симметрии [240, 258, 299, 300, 329], в то время как в рамках школы Н. В. Белова, помимо максимального внимания к федоровским группам и 14 решеткам Браще, развивается и дополняется учение об одномерных и двумерных малых кристаллических группах, рассматриваются проблемы их классификации, где интересы А. В. Шубникова и Н. В. Белова пересекаются. А вот работы по точечным группам в рамках школы Н. В. Белова скорее исключение, чем правило, да и они рассматриваются больше с пространственных, чем с «точечных» позиций. Поэтому для школы Н. В. Белова и логичен интерес к выводу вначале четырехмерных решеток Браве (на основе известной теоремы Цассенхауза, для получения групп G4 достаточно знать решетки и точечные группы G40), а затем и самих групп. Иной подход к «малым многомерным» группам симметрии типа G41, G42... характерен для А. Ф. Палистранта в рамках общей систематики групп вида Gpqrs. Отметим, что алгоритм отыскания четырехмерных точечных групп был найден Э. Гурса в 1889 г. (G4 = прямому произведению групп дробно-линейных преобразований), а в 1951 г. Харли нашел почти все четырехмерные кристаллографические группы. В 1967 г. их число было уточнено до 227.

Несколько в стороне от работ А. В. Шубникова по симметрии стоит его статья 1956 г. [219]. По словам В. А. Копцика: «Принцип Пьера Кюри, воскрешенный из забвения и заново прочитанный Шубниковым..., породил обширную литературу»,[* Копцик А. В. Очерк развития теории симметрии и ее приложений к физической кристаллографии за 50 лет. – Кристаллография, 1967, т. 12, вып. 5, с. 768.] в которой краткие соображения, извлеченные из трудов П. Кюри, легли в интерпретации A. iB. Шубникова и его учеников в основу решения многих вопросов физической кристаллографии. Эта статья стала центральной в философском жанре литературы о симметрии. Ее тема, беря свое начало в ранних статьях Шубникова [70, 124, 151], находит окончательное решение в работе [261] и в книжке [343], вышедшей уже посмертно в 1972 г.

Следующая, чрезвычайно важная серия работ А. В. Шубникова и его учеников связана с предельными группами ортогональной симметрии и их приложениями к физической кристаллографии. Поскольку физическая кристаллография в трудах А. В. Шубникова выделена в отдельную главу, то во всех рассматриваемых работах будут анализироваться только те разделы, которые связаны с развитием собственно теории симметрии. Основоположником этих проблем следует считать П. Кюри, и это легко установить по высказываниям А. В. Шубникова: «Основная заслуга Пьера Кюри заключается в том, что он, занимаясь вопросами симметрии конечных фигур, как кристаллографических, так и некристаллографических, точно установил существование семи предельных групп симметрии, содержащих оси бесконечного порядка. Он же убедительно показал, что предельные группы симметрии могут быть успешно использованы для описания физических свойств кристаллов. Таким образом, явно „некристаллографические“ группы оказались в некотором смысле типично кристаллографическими» [343, с. 33, 34].

Каким же образом А. В. Шубниковым была развита теория предельных групп симметрии? Как было упомянуто ранее, впервые понятие предельных групп симметрии выкристаллизовалось в его монографиях, вышедших в 1940 г. После выхода в свет книги [132] А. В. Шубников вновь возвращается к этой тематике в своих работах 1944 г. [145, 147], за которыми в 1946 г. появилась монография, посвященная этому же вопросу [149]. Определение текстуры, данное А. В. Шубниковым, практически остается в силе и по настоящее время: «Под текстурой мы разумеем всякое однородное тело нерешетчатой структуры, состоящее из множества элементарных частиц любой физической природы, определенным образом (по законам симметрии) ориентированных в пространстве. Примерами текстур могут служить: кристаллические текстуры, состоящие из ориентированных игольчатых или пластинчатых кристаллов; волокнистые материалы вроде дерева; смектические (слоистые) жидкие кристаллы; неслоистые (нематические) жидкие кристаллы, состоящие из ориентированных по длине молекул...» [198, с. 5]. В этих работах практически полностью использованы все основные типы предельных групп симметрии и группы семиконтинуумов. Важность развития этого направления подчеркнута во введении к избранным трудам А. В. Шубникова: «Идея о возможности управления свойствами материалов при частичном упорядочении ориентировок кристаллитов, образующих текстуру, стала сейчас обычной. Она широко используется при создании многих практически важных материалов, прежде всего сегнетоэлектрических керамических текстур – самого распространенного пьезоэлектрика современной пьезотехники, гидроакустики, техники связи. Идеи А. В. Шубникова о симметрии и свойствах подобных анизотропных сред вошли не только в практику. На их основе продолжают решаться многие задачи кристаллофизики» [350, с. 4]. Это направление нашло продолжение в работах И. С Желудева, Ю. И. Сиротина и др. Дальнейшее обобщение состояло в получении групп антисимметрии текстур, также разработанных А. В. Шубниковым [234]. Предельные группы антисимметрии текстур, вначале под флагом предельных точечных групп антисимметрии, появились в его известной работе [173], а в 1960 г. Б. А. Тавгер продемонстрировал их физическую реальность.

Теория предельных групп симметрии, восходя к ранним работам Шубникова, Кюри, Хееша, завершилась работой А. В. Шубникова [162], открывшей с помощью теории симметрии новую главу «тензорной кристаллографии». «Известно, – пишет сам автор, – что многие физические явления, происходящие в кристаллах, могут быть описаны с помощью векторов и тензоров. Приписывая физическим явлениям определенную симметрию, естественно перенести понятие симметрии и на те величины, которыми эти явления описываются, то есть на векторы и тензоры. Первой задачей, которую мы себе ставим в настоящей работе, как раз и является установление понятия симметрии векторов и тензоров. Вторая наша задача состоит в выводе всех возможных групп симметрии векторов и тензоров» [162, с. 347]. Эта работа генетически восходит к книге A. В. Шубникова, Г. Б. Бокия и Е. Е. Флинта [134]. В 1949 г. вышла работа А. В. Шубникова [164]. Дальнейшее уточнение и расширение этих понятий связано в первую очередь с работами И. С. Желудева, В. А. Копцика (особо следует отметить его «Шубниковские группы»).

B. Е. Найша, Ю. И. Сиротина (наиболее полные таблицы размерностей групповых тензорных пространств), Л. А. Шувалова (предельные группы двойной антисимметрии) и др.


Антисимметрия и ее обобщения

По словам Б. К. Вайнштейна, в современной кристаллографической литературе общепризнано, что «вершиной творчества Алексея Васильевича в области теории симметрии явилось открытие антисимметрии. Рожденное в чистых высотах абстракций обобщение понятия кристаллографического равенства фигур и введение антиравенства привели в дальнейшем к появлению целого потока работ по черно-белой и цветной симметрии ... во всех этих работах теория симметрии получила выход за рамки геометрического трехмерного пространства, что явилось крупнейшим после работ Е. С. Федорова обобщением» [350, с. 8].

Генезис понятия антисимметрии, сформулированного А. В. Шубниковым, по характеристике А. М. Заморзаева, можно описать следующим образом: «Высказанная Шпайзером и практически осуществленная Вебером идея изображения двусторонней плоской фигуры (ленты, слоя) на односторонней плоскости чертежа с помощью черного и белого цвета, соответствующих „лицу" и „изнанке" фигуры, произвела глубокое впечатление на Г. Хееша и А. В. Шубникова...

Для Хееша был вполне естественен скачок на одно измерение выше: от разработки принципа вывода 80 слоевых групп (в качестве черно-белых двумерных) непосредственно из 17 плоских федоровских к попытке вывода четырехмерных „гиперслоевых" групп (в виде черно-белых трехмерных) и 230 федоровских; попутно им были получены 122 четырехмерные точечные группы с особенной (инвариантной) гиперплоскостью (как черно-белые трехмерные точечные) из 32 гадолинских классов. Хееш интересовался прежде всего геометрической задачей многомерного обобщения классических групп, лишь мимоходом указав на возможность физического толкования знака четвертой координаты: для математической четкости вопрос и формулировался на „четырехмерном“ языке, отпугивавшем кристаллографов. Отчасти поэтому его новаторские работы не были своевременно оценены кристаллографами, а математики и физики просто не заметили статей Хееша в кристаллографическом журнале.

Иначе подходил к идее антисимметрии А. В. Шубников. Построив в своей книге „Симметрия" под впечатлением рисунков Вебера интерпретацию ленточных групп чернобелыми бордюрами... и воспроизведя впоследствии те и другие рисунки... он не сразу перешел к следующему измерению. Считая, что „дальнейшее усовершенствование учения о симметрии может иметь смысл лишь в том случае, если оно находит или найдет в будущем себе оправдание в практике естествознания" ([148, с. 76], – Я. Д.), Шубников мог сформулировать понятие антисимметрии только как принципиальное расширение классической симметрии за счет добавления изменения физического свойства. Глубокое убеждение в прикладной ценности развиваемого им учения, разделявшееся далеко не всеми кристаллографами до работ Кокрена, привело ведущего советского кристаллографа от докладов к монографии „Симметрия и антисимметрия конечных фигур“, вышедшей в 1951 году».[* Заморзаев А. М. Теория простой и кратной антисимметрии. Кишинев: Штиинца, 1976, с. 8, 9.] Вот что пишет по этому поводу Б. Н. Делоне: «Комитет по присуждению Государственных премий колебался, за какое изобретение наградить Алексея Васильевича: за текстуры или за черно-белые группы. Уже перед самим решением вопроса просили меня ответить, что я думаю. Когда Алексей Васильевич выдумал черно-белые группы и нашел, что таких точечных групп 58, он, чувствуя, что это все-таки уже совсем математика, прочел об этом доклад у нас в совете Математического института АН СССР. С точки зрения математика это был вопрос о гомоморфных отображениях 32 точечных групп на группу второго порядка. Вопрос, так сказать, тривиальный и не очень сложный. Поэтому я ответил комитету, что лучше дать премию за текстуры, и А. В. Шубников был удостоен за эти исследования Государственной премии.

Теперь я вижу, что я, как математик, глубоко ошибался. Хотя и правда, что Г. Хееш нашел те же 58 групп гораздо раньше А. В. Шубникова, о чем Алексей Васильевич, конечно, не знал, но его работа не была замечена. Это же открытие А. В. Шубникова, изложенное им в книге „Симметрия и антисимметрия конечных фигур“, положило начало огромному потоку работ по таким же и еще более общим группам, которые оказались очень полезными для разных исследований в физике твердого вещества и кристаллографии... Конечно, правы те, которые говорят, что после исследований А. В. Гадолина, Е. С. Федорова и А. Шенфлиса в теории кристаллографических групп самые важные – это работы А. В. Шубникова об обобщенных группах симметрии» [Л. 57, с. 382—384].

Рассмотрим содержание замечательной работы А. В. Шубникова, написанной в 1945 г. [148]. Приводимые ниже слова автора полностью характеризуют ученого и как кристаллографа-теоретика, и как кристаллографа-практика, чем и объясняются его блестящие достижения: «Первое, на чем мы настаиваем, – это, если позволительно так выразиться, узаконение фактического положения вещей в отношении практики интерпретации симметрии материальными фигурами. Мы не можем целиком согласиться с мнением некоторых математиков, для которых учение о симметрии есть просто учение о группах ортогональных преобразований. Для нас корни его лежат в широко понимаемом естествознании; мы не можем отделить операцию преобразования от объекта исследования; не можем говорить, в частности, о группе симметрии, определяемой одной осью симметрии бесконечного порядка, не имея в руках соответствующего образца фигуры. Симметрия есть широко распространенное явление природы, и его нельзя отождествлять с той или иной математической интерпретацией симметрии» [148, с. 76].

Рис. 1. Фигура двухсторонней симметрии и антисимметрии.

1 – части фигуры связаны плоскостью симметрии; 2 – осью второго порядка; 3 – центром инверсии; 4 – плоскостью антисимметрии; 5 – осью антисимметрии второго порядка; 6 – центром антисимметрии.

Именно такой принцип мышления привел А. В. Шубникова к успеху, ведь недаром считается, что симметрия – это метод мышления, а не просто набор групп преобразований. В той же статье автор пишет (рис. 1): «Мы определили выше материальную фигуру как геометрическую фигуру плюс свойство; приписав геометрической фигуре свойство знака, мы приходим к представлению о фигуре полярной – такой фигуре, которая может быть в зависимости от обстоятельств положительной или отрицательной... Понятием полярной фигуры также успешно пользовались до сих пор, не употребляя самого термина, например, в теории поля и векторном исчислении под именем источников и стоков, но в учение о симметрии оно вводится нами впервые... Вводя понятие полярной фигуры, мы уже в силу логической необходимости должны ввести и понятие нейтральной фигуры – фигуры, знака не имеющей, или, формально говоря, фигуры одновременно положительной и отрицательной... Необходимо указать еще на возможность существования фигур смешанной полярности, то есть фигур, которые состоят из положительных и отрицательных частей» [148, с. 216]. Далее автор пишет: «Подобно тому, как правая фигура может быть равна левой, так, по нашему предположению, положительная фигура может быть равна отрицательной. Это вид равенства назовем противоположным равенством или антиравенством. Так как антиравные фигуры должны быть в то же время зеркально, совместимо или одновременно зеркально и совместимо равны друг другу, то следует различать: зеркальное, совместимое, а также двойное (совместимо-зеркальное) антиравенство фигур» [148, с. 217, 218]. В своей работе А. В. Шубников вводит новые симметричные преобразования: «...все новые симметрические преобразования должны иметь в качестве составного элемента операцию перемены знака фигуры... Новым операциям мы дадим старые названия с добавлением приставки анти и будем, следовательно, говорить об антивращении, антиотражении, зеркальном антивращении и т. д.» [148, с. 222]. Здесь начало всей теории антисимметрии. Однако А. В. Шубников в этой статье наметил не только контуры теории антисимметрии, но и кратной антисимметрии. Действительно: «Если материальную фигуру со знаками (или знаком) одного сорта позволительно рассматривать как четырехмерную фигуру особого рода, то есть как фигуру, в которой интересен лишь знак четвертой координаты, а не ее абсолютная величина, то фигуру со знаками двух сортов следует уже рассматривать как фигуру пяти измерений. Ясно, что принципиально можно идти и далее в этом направлении, и тогда абстрактная материальная фигура, долженствующая отображать действительность по необходимости не полно, представится нам снабженной множеством разнообразных этикеток плюсов и минусов, напоминая собой облепленный всевозможными ярлыками чемодан путешественника, изображающий также несовершенно, однако более совершенно, чем чемодан без ярлыков, историю поведения своего хозяина» [148, с. 219].

В заключении, которое мы приведем почти полностью, поскольку в нем четко сформулированы задачи учения о симметрии, достигнутые успехи и перспективы развития, автор говорит: «Задача усовершенствования учения о симметрии, которую мы себе ставим, задача, целиком основанная на операции перемены знака фигуры, с математической точки зрения, очевидно, сводится к выводу и исследованию всех групп симметрии (групп ортогональных преобразований) трехмерных фигур в четырехмерном пространстве. С точки зрения естествоиспытателя она сводится к интерпретации этих групп материальными трехмерными фигурами, к изображению и объяснению с их помощью известных явлений природы и предвидению новых.

Часть этой проблемы нами уже решена. Нами выведены все группы симметрии конечных кристаллографических материальных фигур, то есть все точечные группы фигур, удовлетворяющих закону рациональности параметров. Общее их число оказалось равным 122. Из них... 58 групп относятся к фигурам смешанной полярности. Далее мы установили 17 точечных групп с бесконечными осями. Эти группы, хотя и не относятся к кристаллографическим в узком смысле, но играют в кристаллографии громадную роль и должны, по нашему мнению, найти полезное применение во многих вопросах физики.

В настоящее время мы заняты вопросом выявления на основе новых представлений всего многообразия простых форм. Самая важная и трудоемкая задача – задача использования пространственных групп, которая должна с наибольшей полнотой осветить проблему структуры кристаллов, пока еще совсем не начата. Впереди маячат и другие важные проблемы симметрии, совсем не задетые в нашем обзоре: проблема диссимметрии, проблема материальных фигур многообразной полярности и т. д. Для нас ясно, что учение о симметрии отнюдь не может считаться законченной областью знания: оно будет жить и развиваться вместе с наукой в целом, с естествознанием в особенности и с его составной частью – кристаллографией» [148, с. 227].

Следующие работы, посвященные той же тематике, увидели свет только в 1951 г., причем за это время никаких существенных сдвигов в теории не произошло. В докладе [172] и главным образом в монографии [173] в более развернутом виде с использованием черно-белых иллюстраций был повторен вывод 58 точечных групп антисимметрии (младших). Помимо Г. Хееша и А: В. Шубникова, точечные группы антисимметрии выводили Б. А. Тавгер и В. М. Зайцев, В. Л. Инденбом (на основе теории неприводимых представлений групп, причем были выведены и группы цветной симметрии и группы предельной (магнитной) симметрии) и А. Ниггли. В 1966 г. В, А. Копцик в своей «энциклопедии» дал их графические изображения.

Практически развитие этого направления можно датировать 1951 г. в связи с выходом в свет работы А. В. Шубникова [173]. Спустя два года появились две работы У. Кокрена, в которых показана возможность использования идеи антисимметрии для решения некоторых вопросов структурной кристаллографии. В Советском Союзе вывод точечных групп симметрии и антисимметрии был распространен на пространственные группы. Общая теория пространственных групп антисимметрии (названных шубниковскими) была разработана А. М. Заморзаевым, и им же был осуществлен их вывод. Впоследствии под его руководством сформировалась Кишиневская школа теории симметрии," которая с середины 60-х годов занимает лидирующее положение в деле обобщения понятий симметрия и вывода соответствующих групп.

В 1954 г. выходит статья А. В. Шубникова [194], в которой рассмотрены пути приложения теории антисимметрии к классификации колеблющихся молекул, в квантовой механике, в рентгеноструктурном анализе. Впоследствии прогнозы Шубникова подтвердились.

В следующем году на основе работы Н. В. Белова был осуществлен вывод групп черно-белой симметрии. Этот вывод, видимо, был стимулирован возможностью использования шубниковских групп в рентгеноструктурном анализе. Вывод шубниковских групп был реализован с различных методологических позиций: методом «замены образующих» (Шубников-Заморзаев) и методом «цветного центрирования» (Белов). Перекрестное сравнение результатов позволило точно фиксировать и число шубниковских групп. К 1963 г. В. А. Копцик осуществил третий вывод шубниковских групп, построил их графические изображения по принципу Интернациональных таблиц и в целях большего удобства для кристаллоструктурщиков разработал так называемую двухчленную символику. С 1958 г. появляются многочисленные приложения шубниковских групп антисимметрии к проблемам физики кристаллов.

Малые кристаллографические (и некристаллографические) группы антисимметрии появились позже. Вначале наибольшее внимание было уделено 17 двумерным федоровским группам. Первым этими вопросами занимался Кокрен (по Веберу), затем Н. В. Белов, Н. Н. Неронова и Т. С. Смирнова в 1955 г., снова Н. В. Белов – в 1959 г. и через год – А. М. Заморзаев и А. Ф. Палистрант при этом первые авторы использовали метод цветного центрирования, вторые – шубниковский метод замены образующих у 17 плоских. Оба метода дали 46 существенно новых черно-белых групп.

Слоевые группы антисимметрии независимо друг от друга были получены в 1961 —1963 гг. двумя группами исследователей – Н. Н. Нероновой и Н. В. Беловым, а также А. Ф. Палистрантом и А. М. Заморзаевым. Существенно новых групп оказалось 368. Н. Н. Неронова и Н. В. Белов методом цветного центрирования вывели 244 группы антисимметрии стержней. Другими методами этот результат был повторен Э. И. Галярским и А. М. Заморзаевым в 1965 г.

В 1958 г. во втором издании брошюры [232] А. В. Шубников «оперативно» реагирует на бурное развитие теории симметрии: «Вслед за первой работой по антисимметрии, посвященной выводу групп антисимметрии конечных фигур, появились работы, в которых этот вывод был распространен на бесконечные фигуры типа кристаллических решеток (Н. В. Белов, А. М. Заморзаев). Антисимметрию иногда можно представлять как „двухцветную" (черно– белую) симметрию, и тогда она находит отклик в „многоцветной симметрии", начало которой положено Н. В. Беловым. Установленные нами 58 черно-белых групп конечных фигур оказались совпадающими с группами магнитной симметрии кристаллов (Б. А. Тавгер, В. Н. Зайцев). Число бесконечных черно-белых групп, установленное указанными выше авторами и их учениками, составляет 1651, причем нетрудно представить их в виде единой, легко обозреваемой системы, подчиняющейся системе 230 федоровских групп» [232, с. 9]. В том же году А. В. Шубников получил 21 предельную точечную группу антисимметрии, и результаты вывода тут же использовал для описания антисимметрии текстур [234]. В 1959 г. появляется статья А. В. Шубникова [241], в которой выведены предельные группы антисимметрии стержней. В заключении статьи указывается рецептура построения семиконтинуумов с помощью двух непараллельных трансляций, перпендикулярных оси «порождающего» стержня.

В 1961 г. выходит работа А. В. Шубникова [258], написанная, как указывает автор, по образцу опубликованной в 1959 г. полной систематики точечных групп классической симметрии. Все группы автор подразделяет на 14 рядов, каждый из которых порождает одинаковое количество черно-белых, в свою очередь разделенных на 27 бесконечных рядов групп некристаллографической антисимметрии.

В следующем году А. В. Шубников вывел группы (классы) симметрии и антисимметрии конечных и бесконечных лент [263, 264]', в которых он дополнил уже сложившуюся классификацию групп ортогональной и чернобелой симметрии. Группы антисимметрии конечных лент он получил, используя методы Н. В. Белова. Эти же группы были независимо получены в работах Н. В. Белова и его учеников, а также Т. Романом и А. Пабстом.

Последние работы А. В. Шубникова по антисимметрии 1965—1968 гг. посвящены уточнению классификации точечных групп симметрии и получению (на основе принципов антисимметрии) всех 32 кристаллографических классов из 11 аксиальных [299, 300, 329, 332, 335].

Этапы развития антисимметрии приведены в табл. 3, вне которой остались многочисленные усовершенствования системы обозначений групп антисимметрии, работы по их использованию при исследовании природных явлений, структур, форм.

Следующим чрезвычайно интересным расширением понятия антисимметрии является антисимметрия различного . рода. Вот каким образом возникло это направление теории симметрии, восходящее, очевидно, к высказыванию А. В. Шубникова в работе [148]: «При подробной разработке... учения о симметрии и антисимметрии конечных фигур А. В. Шубников остановился преимущественно на черно-белой интерпретации антисимметрии как на самой наглядной и общедоступной. Однако уже в первом своем сообщении об идее антисимметрии в 1945 году он говорит не только о широком разнообразии толкований знака плюс или минус, но и о возможности одновременно приписывать точкам несколько качественно различных знаков (фигуры многообразной полярности). Спустя десятилетие, под влиянием появления первых приложений антисимметрии эту же идею многократной антисимметрии стали развивать (независимо от ее высказывания Шубниковым) молодые математики Кишиневского университета... под названием антисимметрии различного рода...


    Ваша оценка произведения:

Популярные книги за неделю