355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Михаил Ивановский » Покоренный электрон » Текст книги (страница 8)
Покоренный электрон
  • Текст добавлен: 27 июня 2017, 10:00

Текст книги "Покоренный электрон"


Автор книги: Михаил Ивановский



сообщить о нарушении

Текущая страница: 8 (всего у книги 23 страниц)

Устройство электронных оболочек

Самый простой и легкий из атомов – это атом водорода. Водородный атом состоит из ядра, несущего один положительный заряд[17]17
  То есть заряд по величине равный заряду электрона, но противоположный по знаку.


[Закрыть]
, и одного единственного электрона. Ядро атома водорода получило особое название – протон, что значит первичный.

Следующий за водородом в системе Менделеева элемент – гелий. Ядро атома гелия примерно вчетверо тяжелее протона. Оно состоит из двух протонов и двух частиц, которые почти равны протонам по массе, но лишены электрического заряда. Такие, не имеющие заряда, нейтральные частицы названы нейтронами.

Вокруг ядра атома гелия движутся два электрона.

Третью клеточку в таблице Менделеева занимает щелочной металл литий. Вокруг его ядра обращаются три электрона.

Элемент № 4 – бериллий. Его ядро содержит четыре положительные заряда, и окружено оно четырьмя электронами.

Если мы возьмем наугад какой-либо элемент из середины менделеевской таблицы, то убедимся, что этот порядок соблюдается везде. У элемента № 6 – углерода – 6 электронов. У азота – 7, у кислорода– 8, у фтора – 9 и у неона – 10. Номер элемента в системе Менделеева, количество положительных зарядов в ядре и количество электронов в оболочке всегда выражается одним и тем же числом. Например, олово: номер – 50, положительных зарядов ядра – 50, электронов в оболочке – 50.

Вот это число, выражающее одновременно и порядковый номер, и количество положительных зарядов, и количество электронов, называется числом Менделеева.

Посмотрим теперь, как располагаются электроны внутри электронных оболочек различных атомов.

Единственный электрон водородного атома обычно находится очень близко от ядра – на минимальном расстоянии, которое возможно по законам атомной механики. Принято называть этот низший уровень первым.

В атоме существует еще несколько определенных уровней, на которых могут находиться электроны.

В атоме гелия на первом уровне два электрона. Оказывается, что два электрона полностью заполняют первый уровень. Больше электронов на нем поместиться не может.

Поэтому у лития два электрона занимают первый уровень, а третий электрон помещается уже на втором уровне.

На втором уровне могут находиться восемь электронов. Поэтому у следующих за литием семи элементов электроны постепенно заполняют, как бы «достраивают» свой второй уровень. У бериллия там 2 электрона, у бора – 3, у углерода – 4, у азота – 5, у кислорода – 6, у фтора – 7, у неона – 8.

У неона второй уровень заполнен, – больше на нем свободной «жилплощади» нет. И одиннадцатый элемент – натрий помещает свой одиннадцатый электрон уже на третьем уровне.

Этим-то и объясняется то, что натрий и литий но химическим свойствам так похожи друг на друга. И у них обоих по одному электрону на верхнем уровне, то есть во внешнем электронном слое. Также сходны бериллий и магний – у них по два электрона во внешнем слое, и углерод с кремнием, – у которых по четыре внешних электрона и т. д.

Наконец у гелия, неона и аргона внешние слои заполнены целиком – и эти элементы тоже сходны между собой, – они ни в какие соединения не вступают.

У более тяжелых атомов строение электронных оболочек усложняется. Максимальное число электронов: на первом уровне – 2, на втором – 8, на третьем—18, на четвертом – 32. Эти числа и определяют постепенно усложняющуюся для более тяжелых элементов периодичность системы Менделеева.

Движение свободных электронов

Движение электронов в атоме подчинено весьма строгим законам, которые обусловлены характером сил, действующих в атоме.

Ни один электрон не может забраться на чужой «уровень» и быть девятым там, где полагается находиться восьмерым. Ни один электрон не может занять место между слоями, так же, как человек не может встать на лестнице между двумя ступеньками.

Если электрон покидает свою орбиту и переходит на другую орбиту, то он делает это только скачком, только сразу, а не постепенно. Всякое перемещение электронов с одного уровня на другой внутри атома может происходить исключительно скачками и на целое число ступеней.

В некоторых случаях электроны могут не только перескакивать с орбиты на орбиту, но и совсем покидать атом. Такие «свободные» электроны ведут самостоятельное существование, путешествуя в междуатомном пространстве, а иногда и вообще далеко, на миллиарды километров, уходят от атомов.

Особенно «непоседливы» электроны атомов металлов, и причиной этого являются некоторые особенности строения металлов.

Атомы в металлах расположены очень тесно, их оболочки почти соприкасаются. Внешние «пограничные» электроны оказываются не только иод воздействием положительного заряда атома-хозяина, их почти с той же силой притягивают заряды атомов-соседей. «Недостроенные» внешние слои атомов металлов прочностью не отличаются – их внешние электроны пристают то к одному, то к другому атому и кочуют в междуатомных промежутках.

Внутри металла эти почти свободные электроны образуют так называемый электронный газ. Сравнение с газом оправдывается тем, что эти электроны совершают беспорядочное «тепловое» движение и мечутся между атомами металла примерно так же, как мечутся молекулы обычного газа.

Существование в металле свободных электронов было доказано простым и остроумным опытом, в котором кусок проволоки исполнял роль «трамвая», а электроны служили «пассажирами».

Известно, что когда вагоновожатый резко и внезапно тормозит трамвай, то пассажиры, стоящие в проходе, продолжают движение по инерции и падают друг на друга.

Два советских ученых, академики Л. И. Мандельштам и Н. Д. Папалекси сделали такой опыт. Они с большой скоростью завертели медное кольцо, а затем его быстро остановили, и тотчас чувствительные приборы отметили возникновение в кольце кратковременного электрического тока. Это – свободные электроны меди, как пассажиры в трамвае, продолжая движение по инерции, ринулись вперед и образовали электрический ток, создавший в свою очередь магнитное поле (рис. 41).

Рис. 41. Когда кольцо остановили, электроны по инерции продолжали движение вперед, образуя электрический ток и сопровождающее его магнитное поле.

Черепашьим шагом

Электрический ток в проводах – это упорядоченное движение электронов. Когда светит лампочка, то это не значит, что в ней пробегают именно те электроны, которые пригнаны с электрической станции.

Ток в городской сети – переменный, он меняет свое направление 100 раз в секунду. Поэтому в лампочке взад и вперед пробегают одни и те же электроны, которые находились в металлическом волоске лампочки тогда, когда она бездействовала.

А электрическая станция по сути дела служит не поставщиком электронов, а только их толкачом.

Даже при постоянном токе, который течет в одном направлении, электроны перемещаются из одного участка провода в следующий очень медленно, примерно со скоростью миллиметра в секунду, часто и того медленнее. Электроны в металле неторопливы – их движение по проводнику похоже на движение воды в трубе, забитой песком, – настолько сильно им мешают атомы металла.

Конечно, возникает законное недоумение: телеграфный сигнал, посланный из Москвы во Владивосток на расстояние в 10 тысяч километров, прибывает на станцию назначения через 1/30 долю секунды, а электрон, посланный по проводу из Москвы, достигнет Владивостока только через триста с лишком лет. Проворством электроны в металлах не отличаются, но… почему же телеграммы идут так быстро?

Скорость сигнала

Когда телеграфист в Москве нажимает на ключ, то на концы проводов, находящихся в телеграфном аппарате, от батареи подается напряжение, и в этот момент по всей длине проводника от Москвы и до ближайшей станции возникает электрическое поле. Это поле распространяется очень быстро, почти со скоростью света, то есть около 300 000 километров в секунду.

Как приказ командующего приводит в движение сразу всю его армию, так и электрическое поле приводит в движение все электроны, находящиеся в тысячекилометровом участке провода. Хотя сами электроны движутся медленно, но зато всякие изменения электрического поля распространяются очень быстро, почти мгновенно. И через приемный аппарат проходят не те электроны, какие посланы из Москвы, а те, какие находились в приемном аппарате до получения сигнала. Телеграфный сигнал только привел их в движение. Следовательно, телеграммы и телефонные разговоры передаются по проводам не столько электронами, сколько колебаниями электрического поля, созданного в проводах.

Поворачивая выключатель или замыкая рубильник, мы тем самым даем толчок всем электронам в проводах и как бы командуем им: «Ток! Марш вперед!». И в то же мгновение все свободные электроны металла, как солдаты по команде, делают первый шаг и начинают свое медленное, неуклонно-дружное движение вперед.

Так возникает в проводнике электрический ток.

Ток, теплота и свет

Однако движение электронов в проводнике нельзя представить себе, как четкий размеренный марш колонны солдат. Свободные электроны металла по-прежнему сохраняют суетливость мошкары, роящейся в вечерней прохладе летнего дня. Они перескакивают от атома к атому, прыгают вправо и влево, вверх и вниз, вперед и назад.

Разность потенциалов только отчасти упорядочивает движение электронов, она хотя и понемногу, но постоянно и непрерывно отклоняет, «гонит» суетливый рой электронов в проводнике в ту сторону, в какую направлены силы поля, то есть вдоль проводника.

Толчки, которые электроны щедро раздают атомам, не остаются без последствий. Атомы металла начинают сильней раскачиваться, их колебательные движения становятся более размашистыми, увеличивается тепловое движение частиц, иначе говоря, металл, из которого сделан провод, начинает нагреваться.

Так движение электронов в проводнике – электрическая энергия – преобразуется в колебательное движение атомов – в тепловую энергию.

Но при движении потока электронов по проводнику не только может выделяться тепло.

Пока нагрев не очень велик, оболочки атомов как бы пружинят, и атомы, столкнувшись, отскакивают друг от друга, подобно мячикам. Чем температура выше, тем соударения становятся более резкими, более энергичными.

Некоторые электроны из внешних слоев не выдерживают слишком сильных толчков, они вылетают из своих орбит и попадают на другие орбиты, более удаленные от ядра.

Когда электрон поднялся на более высокий уровень, атом, поглотивший энергию удара, приходит в возбужденное состояние. Но такое состояние длится недолго. Электрон снова соскакивает на свой обычный уровень, а атом лишается избытка энергии.

Избыточная энергия атома не исчезает. Возвращаясь в нормальное состояние, атом излучает небольшую порцию света, которая называется световым квантом. Энергия кванта в точности равна тому избытку энергии, которого лишился атом.

Каждый «прыжок» электрона «вниз», к ядру атома, сопровождается излучением кванта.

Кванты, выбрасываемые возбужденными атомами, различаются друг от друга своими энергиями.

Наш глаз способен улавливать это различие. Кванты малой энергии дают ощущение красного света. Несколько большей энергией обладают кванты оранжевого света. Еще больше энергия квантов желтого, зеленого, голубого, синего и, наконец, фиолетового света. Смесь этих квантов в определенной пропорции дает ощущение белого света (рис. 42).

Рис. 42. Схема уровней энергии водородного атома. При переходе электрона с какого-нибудь уровня на другой, более низкий уровень, атом испускает квант, соответствующий излучению определенного цвета.

Пока тело нагрето слабо, оно не светится: сила толчков недостаточна для возбуждения атомов, и тело не излучает даже квантов красного света. При повышении температуры атомы прежде всего начнут испускать кванты красного света, и мы тогда говорим: тело нагрелось до красного каления.

Дальнейшее повышение температуры влечет за собой излучение квантов большей энергии. Цвет раскаленного предмета меняется. Он начинает светиться желтовато-золотистыми лучами, так называемое соломенно-желтое каление, а при температуре около 6000° свечение тела становится почти белым. При таком нагреве тело испускает примерно такие же световые кванты, что и Солнце. Температура солнечной поверхности – 6000°.

Так движения электронов в оболочках атомов, их «прыжки» с высоких уровней на более близкие к ядру атома, – порождают свет.

Способы освобождения электронов

Само собой разумеется, что толчки, испытываемые атомами при сильном нагреве, могут вызвать не только прыжки электронов с уровня на уровень. Достаточно энергичный толчок может выбросить электрон на такое расстояние, что притяжение ядра атома уже будет не в силах возвратить его обратно.

Электрон, выбитый из оболочки атома, перестает быть его «пленником». Электрон начинает самостоятельно странствовать. Это странствование продолжается до тех пор, пока он не попадет «в плен» к какому-либо другому атому.

Нагревание заставляет некоторые электроны вылетать за пределы раскаленного вещества.

Еще в 1733 году ученые заметили, что воздух вблизи раскаленного металла становится проводником электричества. С этим явлением ученые сталкивались постоянно, но объяснения ему не находили. Слишком мало тогда знала наука об электричестве.

То же самое приходилось наблюдать во время опытов с катодными трубками. Раскаленный катод выбрасывает значительно больше электронов, чем холодный.

Все эти наблюдения доказывают, что нагревание заставляет электроны двигаться быстрее, а большая скорость и, следовательно, большая энергия помогает им вылетать за пределы металла. Раскаленный металл всегда окружен легким, невидимым облачком электронов.

Бегство электронов из нагретого тела получило название термоэлектронного эффекта, или термоэлектронной эмиссии. Слово эмиссия означает – выход, выпуск.

Электроны освобождаются из оболочек атомов не только при воздействии высокой температуры. Опытами Столетова доказано, что и свет освобождает электроны.

В приборе Столетова ультрафиолетовые лучи, обрушиваясь на цинковый кружок, выбивали электроны за пределы металла. Совершив воздушный полет, они «приземлялись» на сетчатом электроде.

Это действие света на электроны получило название фотоэлектронной эмиссии или фотоэлектронного эффекта. Но эти термины употребляются сравнительно редко. Физик Казанского университета профессор В. А. Ульянин, который исследовал фотоэлектронную эмиссию одновременно со Столетовым, предложил другое, более короткое и простое название – фотоэффект; оно и получило общее признание.

Прибор Столетова, усовершенствованный другими физиками (рис. 43), называется теперь фотоэлементом.

Рис. 43. Схема фотоэлемента. Свет, падая на поверхность фотокатода, выбивает из нее электроны, и в цепи прибора возникает ток.

Таким образом люди научились освобождать электроны из невидимой крепости атома. Тем самым был совершен переворот, положивший начало новой эре в истории науки и техники.

Было установлено, что электроны могут двигаться не только по проводам (там они движутся очень медленно).

В предельно разреженных газах (в высоком вакууме) электроны при определенных условиях развивают скорости, немногим отличающиеся от скорости света.

Именно здесь они могут полностью проявить свои замечательные свойства.

Управление движением электронов по проводам дало человечеству телеграф, телефон, электрические двигатели, электрическое освещение (лампами накаливания).

Уменье использовать для практических целей различных областей техники движения электронов в разреженных газах составило новую эпоху в развитии электротехники. Эту молодую отрасль электротехники назвали электронной техникой или электроникой.

Глава пятая. Служба свободных электронов

Недоумение Томаса Эдисона

Электрическую лампочку изобрел русский инженер Александр Николаевич Лодыгин. Привилегию на свое изобретение Лодыгин получил 11 июля 1874 года, и в том же году Академия наук присудила ему Ломоносовскую премию. Вскоре началось производство «русских лампочек», которые пользовались большим спросом как в России, так и за границей.

В 1877 году лейтенант флота Хотинский, отправляясь в служебную командировку в Америку, захватил с собой несколько лодыгинских лампочек. Хотинский показал эти лампочки известному американскому изобретателю Томасу Эдисону. Эдисон быстро оценил все достоинства нового способа освещения и принялся усовершенствовать русскую электрическую лампочку.

Наиболее существенное изменение, какое предприимчивый американец внес в устройство лампочки, состояло в том, что он заменил короткий и толстый угольный стерженек в лампочке Лодыгина длинным и тонким, то есть сделал лампочку с угольной нитью.

Пользуясь широкой рекламой, Эдисон беззастенчиво попытался выдать изобретение Лодыгина за свое. В Америке, где не знали о «русских лампочках», Эдисону это удалось. В Европе необоснованные претензии Эдисона встретили решительный отпор. Патентные бюро всех государств отказали Эдисону в выдаче привилегий «на изобретение», предложив ему ограничиться привилегией «на усовершенствование».

Французский электротехнический журнал, высмеивая притязания американцев, писал: «Почему бы не сказать уже, что и солнечный свет изобретен в Америке?»

А. Н. Лодыгин, продолжая совершенствовать лампочку, вскоре заменил угольную нить нитью из тугоплавкого металла вольфрама, то есть создал электрическую лампочку в ее современном виде.

Эдисон же в это время продолжал малоуспешные опыты с угольными нитями и никак не мог понять, что с ними происходит. Его лампочки выходили из строя чрезвычайно быстро и необыкновенно странным образом. Угольная нить почему-то перегорала как раз в том месте, где она соединялась с проволокой, ведущей к положительному полюсу батареи или динамомашины. Даже на глаз было отчетливо видно, что анодный конец нити нагрет сильнее и светит ярче, чем катодный.

Значит, нить недоброкачественна, решил Эдисон, один ее конец тоньше и поэтому он перегорает быстрее. Была сделана идеально ровная нить, но и она перегорела в том же самом месте. Тогда Эдисон стал менять местами проводники, ведущие к лампочке от динамомашины. Он присоединял к положительному проводнику то один конец нити лампочки, то другой, и во всех случаях раскалялся и сильнее светил именно тот конец, который вел к положительному полюсу.

Причина гибели лампочек заключалась не в качестве нити, а именно в разнице между плюсом и минусом. После нескольких лет бесполезных исканий, Эдисон пришел к выводу, что отрицательные электрические заряды могут как бы «испаряться» или «улетучиваться» из раскаленной нити электрической лампочки. На эту же мысль наводили и опыты с катодными трубками, в которых раскаленный катод усиливал излучение.

Эдисон поместил внутри лампочки возле нити металлическую пластинку и вывел наружу проволочку, прикрепленную к этой пластинке (рис. 44).

Рис. 44. Над раскаленной нитью вьется облачко электронов. Прибор показывает присутствие тока между нитью и пластинкой.

Между проводником, подводящим в лампочку ток, и проволочкой, припаянной к металлической пластинке, Эдисон включил чувствительный гальванометр. Когда лампочку зажгли – гальванометр отметил присутствие тока. Это доказывало, что электрические заряды действительно «улетучиваются» или «испаряются» с раскаленной нити и перелетают на металлическую пластинку. По цепи, состоящей из накаленной нити, металлической пластинки и сильно разреженного пространства между нитью и пластинкой, проходил электрический ток.

Так на опыте было доказано существование термоэлектронного эффекта или термоэлектронной эмиссии.

Однако до конца в этом явлении Эдисон не разобрался, и загадка преждевременной гибели лампочек раскрылась только 14 лет спустя, когда «электронная теория» разъяснила, что именно происходит в раскаленной нити лампочки.

Причина гибели лампочек

По раскаленной нити электрической лампочки движутся электроны. Нить тонка. Путь для электронов затруднен: пробираясь между атомами, электронам приходится преодолевать, большое сопротивление. Электроны энергично расталкивают атомы. Колебания атомов достигают большого размаха и силы, иначе говоря, температура волоска подымается.

Электроны наружных оболочек атомов, под градом непрерывных и сильных толчков, мечутся с орбиты на орбиту. При каждом прыжке «вниз» они испускают световые лучи. Все порции света, выброшенные отдельными атомами, сливаются в сплошной световой поток. Волосок лампочки ярко светится.

При высокой температуре скорость электронов очень значительна, и многие электроны вылетают из нити. Однако нить, потеряв часть электронов, заряжается положительно и притягивает электроны обратно. Часть электронов возвращается в нить, но на их место вылетают новые. Вокруг нити вьется облачко электронов.

Нить присоединена к источнику тока. Приложенная к ее концам разность потенциалов распределена вдоль всей нити, причем наиболее положительным оказывается, естественно, конец, соединенный с плюсом источника тока. Это место сильнее всего притягивает электроны, и значительная часть электронов возвращается в нить именно здесь. Положительный конец нити подвергается сильной электронной бомбардировке. Сталкиваясь с атомами материала нити, эти электроны отдают им свою энергию и увеличивают размах колебания атомов, то есть еще более повышают температуру.

Положительный конец нити перекаливается, материал нити в этом месте начинает испаряться, нить «перегорает».

С переводом освещения на переменный ток этот недостаток устранился. Переменный ток одинаково разогревает оба конца нити, так как ее каждый конец поочередно бывает и плюсом и минусом. Лампочки, питаемые переменным током, служат дольше.


    Ваша оценка произведения:

Популярные книги за неделю