355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Михаил Ивановский » Покоренный электрон » Текст книги (страница 11)
Покоренный электрон
  • Текст добавлен: 27 июня 2017, 10:00

Текст книги "Покоренный электрон"


Автор книги: Михаил Ивановский



сообщить о нарушении

Текущая страница: 11 (всего у книги 23 страниц)

Электронная лампа

Кристаллический детектор, обслуживавший первые радиоприемники, обеспечивал очень чистое звучание телефона, но отличался крайней неустойчивостью. Он работает только в том случае, когда острие спиральки попадает на детектирующую точку кристалла. При малейшем толчке пружинка вздрагивала, острие соскакивало с чувствительной точки, слышимость пропадала. Поиски новой «точки» требовали некоторого времени, прием радиопередачи с таким детектором был ненадежен.

Неустойчивая работа кристаллического детектора заставила искать ему заместителя.

В настоящее время кристаллический детектор применяется только в простейших любительских приемниках и в некоторых установках специального назначения.

Основные части прибора, заменившего кристаллический детектор, существовали порознь задолго до изобретения радио. Это – катодная трубка и осветительная электролампочка.

Одна комбинация катодной трубки и осветительной лампочки уже была осуществлена и служила человечеству в качестве рентгеновского аппарата.

Вторая комбинация тех же частей вылилась в современную электронную лампу.

Простейшая электронная лампа состоит из стеклянного баллона, в который впаяны два электрода– катод и анод. Такая лампа с двумя электродами называется диодом. Слово диод означает «два входа».

Катодом в электронной лампе служит раскаленная вольфрамовая нить; анодом – металлическая пластинка.

Анод изготовляют из молибденовой жести, из никеля, из тантала или из меди.

Задача катода – испускать при накале как можно больше электронов, поэтому вольфрамовые нити на радиоламповом заводе обрабатывают так, чтобы облегчить электронам выход из нити. Для этой цели нити покрывают веществами, которые легко освобождают электроны. Такой катод, даже при невысокой температуре, испускает небольшое количество электронов.

Нить катода накаливают током от маленькой батареи. С повышением температуры число вылетающих из нити электронов возрастает.

Если не прикладывать к аноду положительного напряжения, то электроны будут роиться вокруг катода легким облачком и вновь возвращаться в катод. Но как только на аноде появится положительное напряжение, электроны устремятся к аноду.

Отличие электронной лампы от рентгеновской трубки состоит в том, что в электронной лампе применяют напряжения гораздо более низкие, чем в рентгеновской трубке.

Так как напряжение на электродах электронной лампы сравнительно невелико, то электроны совершают перелет с катода на анод не столь стремительно, как в рентгеновской трубке. Они «приземляются» на аноде довольно спокойно, и рентгеновские лучи поэтому не возникают.

Совершенно очевидно, что ток в электронной лампе может проходить лишь в одном направлении – от катода к аноду и ни в коем случае не наоборот, так как электроны могут слетать только с катода (рис. 62).

Рис. 62. Если к аноду присоединить минус батареи, то ток через лампу не пойдет.

Если переменить знаки напряжения на электродах: к аноду присоединить минус батареи, а к катоду – плюс, ток через лампу не пойдет, так как холодный анод электронов не испускает. Следовательно, электронная лампа-диод может исполнять роль электронного клапана, то есть служить детектором. Диод справляется с обязанностями детектора гораздо лучше кристалла с пружинкой. Он работает устойчиво, без капризов и перебоев.

Кроме того, диод применяют в качестве выпрямителя переменного тока малой мощности. Диод, предназначенный для выпрямления переменного тока, называется кенотроном.

Через год после изобретения диода, электронная лампа была так усовершенствована, что стала одним из могущественных электронных приборов.

Сетка – третий электрод

Коренное усовершенствование электронной лампы состояло в том, что в ней был устроен специальный регулировщик – третий электрод. Электронам, свободно пролетавшим через диод от катода к аноду, пришлось теперь подчиняться командам регулировщика и направляться к аноду только по его разрешению.

Этот третий электрод делают различного вида и формы: иногда это легкая проволочная решетка или сеточка, иногда – спираль, навитая вокруг проволочки катода на некотором от нее расстоянии. Но, независимо от формы, третий электрод всегда называется сеткой.

Сетка располагается между анодом и катодом, и для нее в цоколе лампы сделан отдельный вывод. Следовательно, лампа, снабженная сеткой, имеет не два входа, как диод, а три. Такие лампы называются триодами (рис. 63).

Рис. 63. Триод в разрезе, сетка в виде спирали обвивается вокруг катода. Слева – условное изображение триода с подогревным катодом.

Сама по себе сетка препятствием для электронов служить не может. Проволочки, из которых она изготовлена, тонки, а ячейки ее просторны.

Электроны могут пролетать сквозь сетку почти без всяких помех и задержек, но только до тех пор, пока на сетку не подано отрицательное напряжение.

Тогда отрицательно заряженные проволочки сетки будут отталкивать электроны назад к катоду и противодействовать их движению к аноду. Ток ослабеет и может совсем прекратиться – лампа будет «заперта».

Если триод присоединяют к колебательному контуру приемника, лампа становится общим звеном для трех самостоятельных электрических цепей.

Одну цепь составляют нить накала катода и небольшая батарейка, которая ее подогревает. В этой цепи электроны бегут от минуса батареи по нити и уходят к плюсу батареи. Роль этой цепи довольно ограничена – поддерживать накал нити.

Вторая цепь составлена мощной анодной батареей, которая своим плюсом присоединена к аноду лампы, а минусом – к катоду. Эта батарея создает сильное электрическое поле между анодом и катодом лампы. Под воздействием электрического поля электроны, клубящиеся вокруг накаленного катода, проскальзывают сквозь сетку, когда она заряжена положительно, и «приземляются» на аноде.

Третья цепь образована колебательным контуром, который одним проводником присоединен к катоду, а другим – к сетке. В этой цепи действуют высокочастотные колебания контура, они создают небольшое переменное напряжение между катодом и сеткой и меняют интенсивность потока электронов, движущихся от катода к аноду.

Воздействие цепи сетки на силу тока в анодной цепи является основой работы электронной лампы.

Сетка расположена очень близко к катоду, и поэтому она оказывается полным хозяином того облачка электронов, которые вьются возле катода. Каждое колебание напряжения на сетке заставляет облачко изменяться.

Отрицательное напряжение увеличивается – электронное облачко съеживается, прижимается к катоду, электроны, едва вылетев из нити, вынуждены тотчас возвращаться обратно: их отгоняет отрицательное напряжение сетки (рис. 64).

Рис. 64. Отрицательное напряжение на сетке запирает лампу, а положительное – усиливает анодный ток.

Когда отрицательное напряжение уменьшается, облачко разрастается.

Если же отрицательное напряжение упадет ниже определенного предела, электроны начнут прорываться сквозь сетку и лететь к аноду.

При дальнейшем ослаблении отрицательного напряжения, когда оно совсем сойдет на нет, или даже сменится положительным напряжением, электроны, ничем не сдерживаемые, ринутся сквозь сетку к аноду, и через лампу в этом случае пойдет сильный анодный ток.

Итак, сетка, в зависимости от величины и знака ее заряда, или усиливает, или уменьшает, или вовсе парализует влияние электрического поля, создаваемого анодом. Она, как водопроводный кран, может пропускать электроны и широким свободным потоком и тонкой струйкой; она может позволить им сочиться как бы по каплям или полностью прекратить их движение к аноду, – «запереть» лампу.

Сетка – в высшей степени тонкий и точный регулятор анодного тока, текущего через лампу от катода к аноду.

Напряжение на сетку подает колебательный контур. Электроны, раскачавшиеся в катушке, соединенной с конденсатором, то накапливаются на сетке, то покидают ее. Величина заряда на сетке меняется вместе с колебаниями в контуре. Электроны, вылетевшие из катода, то стремительно летят к аноду, то жмутся к нити катода, отброшенные отрицательным зарядом сетки.

Величина заряда сетки, доставляемого колебательным контуром, – незначительна. Она и не должна быть большой. Благодаря близости к катоду сетка властно управляет потоком миллиардов электронов. Ничтожнейшие изменения, легкие колебания напряжения на сетке тотчас сказываются на силе анодного тока. Сетка пропускает электроны в строгом соответствии с колебаниями, возникшими в контуре.

Поэтому колебания анодного тока, текущего через лампу от батареи, копируют модуляцию колебаний, поступающих на сетку от контура, одновременно и выпрямляя и усиливая ток.

Триод, сетка которого соединена с контуром, доставляет в телефон уже не слабенький ток, уловленный антенной и контуром, а сильный анодный ток, способный привести в действие несколько телефонов или даже громкоговоритель. Триод совмещает в приемнике две обязанности – и детектора и усилителя.

Однако этим не исчерпываются возможности лампы.

Действия обратной связи

С помощью еще одного очень несложного приспособления электрические колебания из цепи анода можно заставить вернуться обратно в лампу, и она усилит их вторично. В цепь, подводящую ток от анода лампы к телефону, присоединяют небольшую катушку и сближают ее с катушкой колебательного контура.

Мощное воздействие пульсирующего анодного тока, который течет в дополнительной катушке, скажется на катушке контура. В ней возникнут сильные колебания, в точности соответствующие толчкам анодного тока. Эти колебания передадутся на сетку. На сетке начнут появляться и исчезать электрические заряды большей величины. Они будут во много раз сильнее, чем до включения дополнительной катушки.

Электронный поток, струящийся в лампе от катода к аноду, под действием усиленных зарядов сетки начинает пульсировать еще четче, резче, энергичней.

Усиленные колебания анодного тока в лампе попадут в дополнительную катушку. Дополнительная катушка передаст их в контур. Контур – вернет сетке. Сетка – анодному току. Анодный ток через дополнительную катушку опять – контуру. В итоге получится громадное усиление сигналов.

Катушка, которая служит для связи между анодной цепью и колебательным контуром и возвращает обратно в контур усиленные лампой колебания, получила название катушки обратной связи – делает возможным радиоприем самых слабых сигналов отдаленных станций. Такой радиоприемник называют регенеративным (рис. 65).

Рис. 65. Упрощенная схема однолампового приемника с обратной связью.

Рождение русских ламп

После смерти А. С. Попова (А. С. Попов скончался в 1906 году) ученые А. А. Петровский, И. Г. Фрейман и В. П. Коваленков продолжали дело, начатое их учителем. В 1914 году молодой инженер, впоследствии академик, Н. Д. Папалекси изготовил первые радиолампы. В 1915 году М. А. Бонч-Бруевич создал первую русскую вакуумную лампу. Но все эти работы были успехами одиночек, которые не получали поддержки в царской России.

В 1915 году М. А. Бонч-Бруевич служил в чине поручика на Тверской приемной радиостанции. Радиостанция нуждалась в усилительных лампах, которые в то время привозили из-за границы. Шла империалистическая война – доставлять лампы было трудно. Бонч-Бруевич задумал изготовить собственные лампы и устроил на радиостанции небольшую мастерскую. Начальник радиостанции, капитан Аристов, не разрешал заниматься в служебном помещении «посторонними делами», и Бонч-Бруевичу пришлось перенести «лабораторию» к себе на квартиру.

В его опытах ему помогали рядовой Бобков и старший унтер-офицер Кабошин. Стеклодува не было, изготовить цельный стеклянный баллон было некому, и лампу пришлось сделать составной, скрепляя ее отдельные части замазкой.

Первую лампу собрали на обеденном столе под стеклянным колпаком. В крышке стола пришлось просверлить много дырок для стеклянных и резиновых трубок, которые вели к насосам, откачивавшим воздух из лампы, и для проводов, подводивших ток от анодной батареи и от батареи накала.

Несмотря на толстый слой замазки, которой изобретатель покрывал места соединения отдельных частей лампы, воздух просачивался внутрь баллона, и его приходилось непрерывно откачивать.

Во время опытов рядовой Бобков крутил колесо большого форвакуумного насоса, Бонч-Бруевич следил за работой ртутного насоса и смачивал замазку, чтоб она не засохла, а унтер-офицер Кабошин с наушниками ловил телеграфную передачу Эйфелевой башни в Париже.

Вскоре в одной из воинских частей нашлось два стеклодува. Их перевели на радиостанцию, и они изготовили цельные стеклянные баллоны, из которых уж не приходилось непрерывно откачивать воздух.

Первые лампы, изготовленные с помощью стеклодувов, имели два катода. Когда один катод перегорал, лампу вынимали из гнезда, переворачивали и вставляли в гнездо другим концом. Так включали второй, запасной катод (рис. 66).

Рис. 66. Один из первых тверских ламповых радиоприемников с лампой, изготовленной в лаборатории М. А. Бонч-Бруевича.

Создание Нижегородской радиолаборатории

В 10 часов утра 25 октября (по старому стилю) 1917 года радиостанция крейсера «Аврора» возвестила народам земного шара о всемирно исторической победе Великой Октябрьской социалистической революции. Радист «Авроры» передал обращение «К гражданам России», написанное Владимиром Ильичем Лениным.

«Временное правительство низложено. Государственная власть перешла в руки органа Петроградского Совета рабочих и солдатских депутатов – Военно-революционного комитета, стоящего во главе петроградского пролетариата и гарнизона.

Дело, за которое боролся народ: немедленное предложение демократического мира, отмена помещичьей собственности на землю, рабочий контроль над производством, создание Советского правительства, это дело обеспечено.

Да здравствует революция рабочих, солдат и крестьян!»[18]18
  В. И. Ленин, Соч., т. 26, стр. 207.


[Закрыть]

С первого дня существования советского государства радио стало могущественным средством связи нашего правительства со всей страной и другими народами.

30 октября 1917 года радиостанции революционного Петрограда передали радиограмму о создании Советского правительства, подписанную В. И. Лениным.

В ноябре, когда контрреволюционный генерал Духонин, исполнявший обязанности главнокомандующего русской армией, нарушил приказ Советского правительства о перемирии, радио послужило важнейшим средством связи.

В своих воспоминаниях о В. И. Ленине, Иосиф Виссарионович Сталин приводит эпизод переговоров с мятежным генералом: «Помнится, как после некоторой паузы у провода лицо Ленина озарилось каким-то необычайным светом. Видно было, что он уже принял решение. „Пойдем на радиостанцию, – сказал Ленин, – она нам сослужит пользу: мы сместим в специальном приказе генерала Духонина, назначим на его место главнокомандующим тов. Крыленко и обратимся к солдатам через голову командного состава с призывом – окружить генералов, прекратить военные действия, связаться с австро-германскими солдатами и взять дело мира в свои собственные руки“».[19]19
  И. В. Сталин, Соч., т. 6, стр. 63.


[Закрыть]

В ночь на 22 ноября 1917 года Ленин и Сталин приехали на военно-морскую радиостанцию в Петрограде. Здесь Ленин написал историческое воззвание: «…Солдаты! Дело мира в ваших руках…»

Радио, оказавшее огромные услуги советскому правительству, развивалось при неустанных заботах В. И. Ленина и И. В. Сталина.

В эти героические дни группу энтузиастов радио объединил в своей мастерской талантливый инженер и изобретатель М. А. Бонч-Бруевич. При Тверской радиоприемной станции организовалась тогда первая русская радиолаборатория. Лаборатория помещалась в крохотной комнатке, размером около двух квадратных сажен. Там М. А. Бонч-Бруевич с помощниками изобретали и испытывали новые типы радиоламп, которые назывались тогда катодными реле.

Успешная и плодотворная работа Тверской радиолаборатории была поддержана советским правительством и лично В. И. Лениным. Весной 1918 года лаборатория получила средства на дальнейшую работу.

К июлю 1918 года лаборатория изготовила вручную 1500 «тверских» радиоламп и 100 приемников. Их установили в различных городах Советской России.

В декабре 1918 года Владимир Ильич Ленин подписал «Положение о радиолаборатории с мастерской Народного комиссариата почт и телеграфов», которую надлежало создать в Нижнем Новгороде (ныне г. Горький) на базе Тверской лаборатории.

В этом «Положении» Владимир Ильич Ленин с гениальной прозорливостью наметил основные пути, по которым должно идти развитие радиотехники.

В те годы специалисты спорили о преимуществах различных типов радиопередатчиков. Кто отстаивал электрическую дугу, кто считал, что источником электромагнитных колебаний должны служить машины, вырабатывающие переменный ток высокой частоты. Сторонников электронной лампы было тогда очень мало.

Владимир Ильич Ленин потребовал, чтобы сотрудники Нижегородской лаборатории разработали конструкции пустотных (вакуумных) радиоламп. Его гениальное предвидение полностью оправдалось. Именно вакуумная электронная лампа обеспечила блестящий расцвет радиотехники. Ей принадлежало будущее.

Нижегородская радиолаборатория была первым научно-исследовательским институтом, созданным советским правительством. Она объединила усилия почти всех наиболее талантливых русских радиоинженеров. Душой лаборатории был М. А. Бонч-Бруевич. В Нижний Новгород приехал В. П. Вологдин, многое сделавший для развития высокочастотной электротехники, А. Ф, Шорин – один из создателей советского звукового кино. Тут же работал Д. А. Рожанский, который впоследствии совместно с Ю. Б. Кобзаревым создали радиолокационную аппаратуру, В. К. Лебединский, обучивший тысячи молодых специалистов, Б. А. Остроумов, В. В. Татаринов и многие другие.

Рис. 67. Нижегородская радиолаборатория.

Созданная по мысли В. И. Ленина, Нижегородская радиолаборатория успешно разрешила задачи, поставленные перед ней советским правительством. М. А. Бонч-Бруевич был целиком поглощен созданием радиотелефонных широковещательных передатчиков. А. Ф. Шорин совершенствовал радиотелеграфную аппаратуру. В. П. Вологдин конструировал первые советские мощные ртутные лампы для преобразования переменного тока в постоянный и улучшил изобретенные им машинные генераторы высокой частоты.

Владимир Ильич Ленин оказывал коллективу радиолаборатории большую поддержку.

В письме М. А. Бонч-Бруевичу 5 февраля 1920 года В. И. Ленин писал: «…Пользуюсь случаем, чтобы выразить Вам глубокую благодарность и сочувствие по поводу большой работы радиоизобретений, которую Вы делаете. Газета без бумаги и „без расстояний“, которую Вы создаете, будет великим делом. Всяческое и всемерное содействие обещаю Вам оказывать этой и подобным работам.

С лучшими пожеланиями В. Ульянов (Ленин)».[20]20
  В. И. Ленин, Соч., т. 35. стр. 372.


[Закрыть]

Благодаря энергичному содействию В. И. Ленина коллектив сотрудников Нижегородской радиолаборатории быстро наверстывал все, что было упущено в дореволюционные годы.

Уже в 1919 году были поставлены первые опыты радиотелефонных передач. Опыты прошли вполне удачно, и 17 марта 1920 года, по предложению В. И. Ленина, Совет Труда и Обороны постановил построить в срочном порядке в Москве Центральную радиотелефонную станцию, радиусом действия в 2000 верст.

Стопятидесятиметровую ажурную радиобашню для московской радиостанции спроектировал и построил замечательный русский ученый, инженер и изобретатель Л. Ф. Шухов.

Осенью 1921 года работники Нижегородской лаборатории закончили сборку радиотелефонной станции и приступили к испытаниям передатчика. Приемным пунктом для опытных переговоров по телефону был избран Берлин.

В Берлине хорошо слышали московскую станцию, но ответную передачу организовать не могли. Берлинская радиостанция по мощности и совершенству оборудования значительно уступала московской. Да и вообще в Западной Европе тогда не было ни одной радиотелефонной станции, которая могла бы соперничать с передатчиком на Шаболовке. Московские передачи 1920 года были первыми радиотелефонными передачами в Европе на дальнее расстояние.

К 1921 году советская радиотехника благодаря заботам нашей партии и лично В. И. Ленина и И. В. Сталина заняла ведущее место в радиотелефонии и с тех пор более никогда его не уступала.

В пятую годовщину Советской власти – 7 ноября 1922 года – московская радиостанция начала широковещательные передачи последних известий, лекций, концертов и докладов.

От триода до октода

Дальнейшее развитие радиотехники было неразрывно связано с успехами советской науки.

Первое и очень важное усовершенствование радиолампы осуществил в 1918 году академик А. А. Чернышев – он изобрел подогревный катод.

В лампе с подогревным катодом источником электронов служит не сама раскаленная нить, а трубочка, покрытая слоем веществ, способных испускать электроны, и надетая на нить, как чехол. Нить, подобно маленькой электрической печке, подогревает катод изнутри, и он начинает испускать электроны.

Еще до изобретения подогревного катода пробовали накаливать нить катода от сети переменного тока, понижая его напряжение с помощью трансформатора. Попытки не увенчались успехом: сила тока в городской сети меняется 100 раз в секунду, поэтому и температура нити и количество вылетающих из катода электронов тоже менялись 100 раз в секунду.

Кроме того, вокруг нити накала образуется переменное электромагнитное поле, которое мешает регулирующему действию сетки.

С изобретением подогревного катода эти недостатки устранились. Толстые стенки трубочки, надетой на нить накала, не успевают охлаждаться, когда понижается температура нити, они же защищают, экранируют внутреннюю часть лампы от мешающего влияния поля, создаваемого переменным током.

Для подогревных катодов перестали быть необходимыми дорогие и недолговечные батареи или аккумуляторы. Если в распоряжении радиослушателя находится сеть переменного тока, простой и надежный трансформатор может отлично служить ему для питания цепи накала.

Инженеры, разрабатывавшие новые, более совершенные типы радиоламп, старались повысить их экономичность и мощность, улучшить их работу и создать лампы, пригодные для выполнения тех разнообразных задач, которые ставила перед ними развивающаяся радиотехника. Конструкторы ламп стремились уничтожить вредные явления, происходящие в лампах, и повысить коэффициент усиления лампы.

Прежде всего между анодом и сеткой поместили еще одну сетку, на которую подали положительное напряжение, но несколько меньшее, чем на аноде.

Вторая сетка отгородила анод от первой сетки и устранила вредное влияние емкости между ними. Это улучшило регулирующее действие первой сетки. Коэффициент усиления двухсеточной лампы получился выше, чем у триода.

Для экранирующей сетки потребовался четвертый вход, и четырехэлектродная лампа получила название: тетрод.

Вслед за этим конструкторы ополчились против помех, порождаемых вторичными электронами, которые вылетают из анода под действием электронной бомбардировки. Электрон, налетающий на поверхность металла с большой скоростью, может выбить из металла даже несколько новых электронов, которые и называют вторичными.

Чтобы обезвредить влияние вторичных электронов, пришлось поставить около анода еще одну сетку. Эта сетка стала пятым электродом, и лампе дали новое название: пентод. Пентоды – один из наиболее совершенных типов радиоламп.

Иногда бывает целесообразно применять еще более сложные лампы. Например, первой управляющей сетке можно придать в помощь вторую управляющую сетку и таким образом осуществить двойное управление анодным током. Так в лампе появилась четвертая сетка или шестой электрод. Лампа с шестью входами стала именоваться – гексод.

Все сложные лампы получают название по числу входов или по числу сеток: с семью входами гептод, или пентагрид (пять сеток).

Шестисеточная лампа называется октод или гексагрид (шесть сеток).

Для экономии места в приемнике, конструкторы начали помещать внутри одного баллона два-три анода – каждый из них со своими сетками, получающих электроны от одного или двух катодов. Такая комбинированная лампа заменяет собой две-три обычные лампы. Во многих современных приемниках можно найти двойной диод-триод, двойной диод-пентод, триод-гексод и другие комбинированные лампы.

Всего к 1951 году было изобретено около десяти тысяч различных типов радиоламп.

Благодаря применению многосеточных и комбинированных ламп наши приемники имеют сравнительно небольшие размеры и вес при весьма высокой чувствительности и мощности.

В современных приемниках шесть-семь сложных ламп заменяют несколько десятков «первобытных» трехэлектродных ламп.

Хрупкие стеклянные баллоны ламп стали заменять иногда металлическими корпусами самой различной формы. Металлические баллоны защищают – экранируют лампу от вредного влияния других радиоприборов, смонтированных вместе с нею на панели приемника.

Радиолампы последних моделей окончательно утратили наследственные черты своих прародителей – разрядной трубки и осветительной лампочки.

Усовершенствование радиоламп сделало радиосвязь привычной, повседневной и даже более распространенной, чем электрическое освещение или водопровод. Радио проникло в самые отдаленные уголки Советского Союза. Передачи Москвы звучат в горных селениях Памира и Алтая, в засыпанных снегом поселках Камчатки, в сибирской тайге и среди арктических льдов на зимовках полярников


    Ваша оценка произведения:

Популярные книги за неделю