355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Михаил Ивановский » Покоренный электрон » Текст книги (страница 2)
Покоренный электрон
  • Текст добавлен: 27 июня 2017, 10:00

Текст книги "Покоренный электрон"


Автор книги: Михаил Ивановский



сообщить о нарушении

Текущая страница: 2 (всего у книги 23 страниц)

Электрическое поле

Удивительное явление получило правильное объяснение только тогда, когда физики поняли, что вокруг каждого наэлектризованного тела существует что-то такое, что воздействует на другие заряды. Это «что-то» ученые стали называть электрическим полем.

Электрическое поле неразрывно связано с зарядом, однако это не сам заряд. Поле составляет как бы своеобразное продолжение заряда в окружающем его пространстве. Поле отлично от заряда, но оно не менее реально, не менее материально, чем сам заряд.

Обнаружить существование электрического поля возле заряда можно весьма простым опытом. Для этого надо наклеить на стеклянную пластинку кружочек из станиоля или фольги, наэлектризовать его и посыпать мелкими игольчатыми кристалликами гипса или хинина. Кристаллики разложатся по линиям расходящимися лучами во все стороны от заряженного кружка. Если вырезать из фольги два кружка и им сообщить электрические заряды – одному положительный, а другому отрицательный, затем на стекло насыпать мелкие игольчатые кристаллики гипса, то под воздействием электрического поля иголочки гипса улягутся в определенном порядке; их расположение отчасти напоминает размещение железных опилок возле полюсов магнита (рис. 8).

Рис. 8. Кристаллики гипса расположены в определенном порядке между наэлектризованными кружками.

Одноименно заряженные кружки, когда их обсыпают гипсом, дадут картину электрического поля, изображенную на рисунке 9.

Рис. 9. Вид электрического поля между кружками, одноименно заряженными.

Благодаря гипсовым кристалликам электрическое поле между двумя наэлектризованными кружками становится видимым.

Академик А. Ф. Иоффе рассказывал, какой случай ему однажды пришлось наблюдать. Вместе с известным физиком К. Рентгеном Иоффе работал на вершине горы. И вдруг длинные волосы Рентгена распушились, а его большая борода взъерошилась так, что Рентген стал похожим на Черномора.

Внезапное превращение Рентгена в Черномора было вызвано большой тучей, проходившей в это время над вершиной горы. Туча несла с собой большой электрический заряд; между тучей и горой образовалось электрическое поле. Под влиянием этого поля волосы Рентгена расположились так же, как и кристаллики гипса между станиолевыми наэлектризованными кружочками, то есть вдоль так называемых силовых линий электрического поля.

Рис. 10. Электрическое поле между отрицательно заряженным кольцом и кружком, заряженным положительно.

Ларчик просто открывался

Тот ученый, который носил взад и вперед свой круг, попеременно то заряжая его, то разряжая, думал, что электрические заряды возникают сами собой из ничего, и это было ошибкой. Заряды не создавались – они и до опыта присутствовали в круге, как и во всяком теле. А электрическое поле только разделило их. Круги приобрели разноименные заряды. Эти заряды, а вместе с ними и сами круги, притягивались друг к другу с определенной силой.

Чтобы оторвать верхний круг от нижнего, приходилось приложить некоторое усилие, произвести работу. И когда ученый удалял верхний круг, на нем оказывался свободный заряд, обладающий заметной энергией; она проявляла себя при разряде круга в виде яркой искры.

Эта энергия создавалась тем усилием, которое затрачивал ученый, его работой.

Учитывая работу, которую приходится производить, двигая определенный заряд в поле, можно получить наиболее точное представление о силе электрического поля в каждой его точке.

Возьмем проводник в виде шара на изолирующей подставке, заряженный положительно. Если мы поднесем к нему шарик, заряженный также положительно, на него будет действовать сила отталкивания, направленная по продолжению радиуса шара. Чем больше эта сила, тем больше напряженность поля в данной точке.

На рисунке 11 расходящиеся прямые линии показывают направления сил, действующих на положительный заряд в поле положительно заряженного шара.

Рис. 11. Силовые линии и поверхности равного потенциала вокруг положительно заряженного шара.

Эти линии называют силовыми линиями.

Поднося наш заряженный шарик к большому шару, приходится совершать работу, преодолевая сопротивление электрических сил отталкивания. Чем ближе мы поднесем шарик к шару, тем больше совершенная нами работа. Величину, пропорциональную этой работе, назвали потенциалом.

Очевидно, на одинаковых расстояниях от шара потенциал одинаков.

На рисунке замкнутые линии соединяют точки, в которых потенциал одинаков. На плоском чертеже это – окружности, а в пространстве – сферы. Поверхности; для которых потенциал одинаков, называют поверхностями уровня потенциала. Силовые линии и поверхность уровня дают представление о поле.

Разумеется, и силовые линии и поверхности уровня в действительности не существуют. Это только воображаемые линии и воображаемые поверхности, которые нам нужны для изображения сил, действующих в электрическом поле так же, как меридианы и параллели на земном глобусе нужны для указания местоположения и в действительности тоже не существуют.

Силовая линия показывает направление, в котором начнет двигаться положительный заряд, помещенный в данную точку поля. Отрицательный заряд движется в противоположном направлении.

Поверхности уровня позволяют оценить величину работы, которая совершается при перемещении определенного положительного заряда из одной точки поля в другую. Для перемещения зарядов по поверхности уровня не нужно усилий, не нужна затрата работы. Переместить положительный заряд с поверхности более низкого потенциала на поверхность более высокого потенциала можно только посторонней силой, производя работу против сил поля. Обратный переход на более низкий уровень потенциала совершается силами самого поля, за счет энергии этого поля. Поле двух разноименных зарядов изображено на рисунке 12 – оно значительно сложнее, чем поле одиночного заряда, силовые линии его искривлены.

Рис. 12. Силовые линии и поверхности уровня потенциала в электрическом поле вокруг двух разноименно заряженных шариков.

Единица заряда

Постоянно наблюдая взаимодействие зарядов – их притяжение и отталкивание, ученые пришли к мысли, что сила притяжения или отталкивания может быть измерена. Ломоносов еще в 1756 году указывал, что «электрическая сила с помощью весов определена быть может».

Сила, с которой притягиваются или отталкиваются два электрических заряда, была «взвешена» французским ученым Шарлем Кулоном в 1785 году. Кулон изобрел весьма точный и чувствительный измерительный прибор, построенный по образцу крутильных весов.

Для изготовления этого прибора Кулон воспользовался круглой стеклянной банкой. Снаружи на банку он наклеил шкалу в виде узкой ленточки с нанесенными на нее градусными делениями, а внутри банки поместил легкую стрелочку, подвешенную на длинной шелковой нити. На тупом конце стрелки Кулон укрепил легкий шарик.

С помощью головки в верхней части прибора можно было поворачивать шелковую нить, а вместе с ней и стрелку с шариком (рис. 13).

Рис. 13. Прибор Кулона.

Другой точно такой же шарик Кулон прикрепил к стеклянному стерженьку величиной с карандаш. Сквозь отверстие в крышке стерженек можно было опускать в банку и доставать его, когда он не был нужен.

Начиная измерение, Кулон установил стрелку так, чтобы подвешенный шарик слегка касался шарика на стерженьке, затем он сообщил этому шарику электрический заряд.

Оба шарика, соприкоснувшись, поделили заряд поровну и, приобретя, таким образом, одноименные заряды, начали отталкиваться. Стрелочка же, преодолевая упругое сопротивление шелковой нити, повернулась.

Кулон измерил, на сколько градусов она повернулась в результате взаимодействия зарядов. Затем он вынул из банки стерженек. При этом стрелка прибора, разумеется, вернулась на прежнее место.

Коснувшись заземленного предмета шариком стерженька, Кулон нейтрализовал его заряд. Шарик лишился заряда, «опустел». Ученый вставил стерженек с «опустевшим» шариком обратно в прибор.

Шарики опять соприкоснулись. Так как на подвешенном шарике заряд оставался, то при соприкосновении шарики опять поделились зарядами. Но величина этих зарядов, очевидно, была уже вдвое меньше прежней.

Одноименные заряды оттолкнулись друг от друга. Стрелка опять отошла в сторону, но уже меньше, чем в первый раз, а Кулон записал, на сколько градусов она отошла.

Проделав этот опыт несколько раз, Кулон убедился, что сила, с какой отталкиваются два равных заряда, в точности пропорциональна произведению этих зарядов, – если каждый из зарядов уменьшается вдвое, то, следовательно, их произведение уменьшается в четыре раза, и сила, с какой они отталкиваются, ослабевает тоже в четыре раза.

В своих дальнейших опытах Кулон измерил, с какой силой отталкиваются два заряда, если изменяется расстояние между ними. Оказалось, что когда расстояние между шариками увеличивается вдвое, сила отталкивания ослабевает вчетверо. Если расстояние возрастало втрое, – сила отталкивания уменьшалась в девять раз.

Так было установлено, что сила взаимодействия двух зарядов пропорциональна произведению величин этих зарядов и обратно пропорциональна квадрату расстояния между ними. Эта зависимость получила название закона Кулона.

С помощью крутильных весов можно определить не только силу отталкивания двух одноименных зарядов, но и величину самих зарядов. Для этого необходимо выбрать единицу заряда.

Ученые условились принять за единицу количества электричества заряд шарика, который отталкивает другой точно такой же заряд с силой в 1 дину[1]1
  Дина – единица силы, принятая в физике. Приблизительно равна весу 1 миллиграмма.


[Закрыть]
при расстоянии между шариками в 1 сантиметр и при условии, что они разделены сильно разреженным пространством – находятся в вакууме.

Для практических целей эта мера оказались слишком маленькой, и в употребление вошла другая, более крупная мера – кулон.

Кулон больше первоначальной единицы ровно в три миллиарда раз.

Электричество может течь

Уже на заре изучения электрических явлений ученые убедились, что электрические заряды могут не только накапливаться, но и перетекать с одного предмета на другой по проводнику.

Герике, привязав к серному шару хлопчатобумажную нитку с шариком из слоновой кости на конце, заметил, что заряд серного шара распространился по нитке и наэлектризовал костяной шарик, который тоже стал притягивать легкие предметы.

Другие исследователи научились передавать заряд по изолированным бечевкам и шнуркам на большие расстояния. При этом выяснилось, что лучше всего заряды движутся по изолированным металлическим проволокам.

Именно металлы, которые Джильберт называл «неэлектрическими материалами», оказались хорошими проводниками электричества, а почти все остальные твердые вещества – плохими проводниками. Изоляторы, по которым заряды совсем не передвигались, стали называть диэлектриками.

Копилка зарядов

В середине XVIII века было сделано важное изобретение. Придумали прибор, получивший название лейденской банки, ее изготовили из обыкновенной стеклянной банки. Снаружи банку обернули листом тонкого металла, который охватил ее наподобие подстаканника; внутри также поместили металлическую обкладку. Внутреннюю обкладку соединили с металлическим стержнем, увенчанным шариком и пропущенным сквозь крышку банки (рис. 14).

Рис. 14. Лейденская банка.

Чтобы зарядить лейденскую банку, шарик соединяют с каким-либо источником электричества, а внешнюю обкладку заземляют – для этого достаточно держать банку в руке. Внутренняя обкладка приобретает электрический заряд, а заряды во внешней обкладке разделяются, положительные сдвигаются в одну сторону, а отрицательные – в другую. Заряды, оказавшиеся на наружной поверхности внешней обкладки, уходят в землю, и тогда каждая из обкладок приобретает заряды разных знаков.

Заряды, разделенные стенкой банки, как перегородкой, взаимно притягиваясь, удерживают друг друга. Благодаря этому лейденская банка способна накапливать и сохранять исключительно большие заряды – гораздо больше, чем могла бы накопить каждая из ее обкладок, взятая порознь.

Чтобы обнаружить заряд банки, достаточно соединить металлическим проводником наружную обкладку с шариком. Электрический разряд происходит в виде искры, с треском проскакивающей между концом проводника и шариком.

Если разрядить банку собственными руками, то человек почувствует болезненный удар. Двести лет назад один из физиков соорудил большую лейденскую банку и дал испробовать ее действие своей любознательной жене. Разряд лейденской банки был так силен, что женщина заболела и слегла в постель.

Разряд большой банки или батареи, то есть группы банок, у которых все внутренние обкладки соединены между собой металлическим проводником, а все наружные – между собой другим проводником, может оказаться смертельным. Лейденские банки следует разряжать не рукой, а металлическим разрядником.

Позже ученые убедились, что копилку электрических разрядов не обязательно делать в виде банки. Ее может заменить тонкая стеклянная пластинка, обложенная с двух сторон металлическими листочками: фольги или станиоля. Можно также укладывать куски стекла стопкой, прослаивая их станиолем. Все четные и все нечетные металлические прослойки следует порознь соединить между собой.

Вместо стекла годится любой другой изолятор-диэлектрик: слюда, парафинированная бумага, наконец, воздух (рис. 15).

Рис. 15. Первоначально в лейденской банке внутренней обкладки не делали, а наливали в банку воду.

Такие приборы получили название: конденсаторы, то есть «уплотнители».

При разряде лейденской банки весь заряд одной обкладки переходит на другую и нейтрализует накопленный на ней противоположный заряд. По проводу, соединяющему обкладки, хотя бы он и был сделан из длинной проволоки, перетекает весь электрический заряд. Такое передвижение заряда получило название – электрический ток.

Так постепенно, шаг за шагом, на протяжении почти трехсот лет люди изучали электрические явления.

Многие исследователи ошибались и выдвигали необоснованные, не подкрепленные опытом догадки. Другие ученые увязали в разнообразных бесчисленных опытах, никак не осмысливая свою работу, и их исследования напоминали бесцельное блуждание в лесной чаще.

Но все же ценой огромных усилий, в постоянной борьбе с заблуждениями и ошибочными гипотезами, постепенно развивалась наука об электричестве.

Мнение древних философов и ученых о незначительности электрических явлений превратилось в свою противоположность – наука устанавливала, что мир электрических явлений безгранично обширен.

Не в шутку, а совершенно серьезно один ученый как-то воскликнул: «Скажите мне, что такое электричество, и я объясню вам все остальное».

В представлении этого ученого происходящие в природе электрические явления приобрели важное, всеобъемлющее значение.

Глава вторая. Ученые догадываются о существовании электрона

Творец подлинной науки

Уроженец Севера, Ломоносов еще ребенком любовался красивым и величественным явлением природы – полярными сияниями. Он видел, как ясной зимней ночью высоко над землей появляется лента, сотканная из нежных, мерцающих лучей зеленоватого света и похожая на край бархатного занавеса, спустившегося из заоблачной выси.

Занавес непрерывно колышется, как бы под дуновением неощутимого ветерка. По его лучистой бахроме пробегают волны, и сияние колеблется, словно дышит, то разгораясь, то притухая.

Иногда вместо зеленоватой ленты над полюсом встают столбы света желтоватого, розового или фиолетового оттенков. Они подымаются ввысь, неожиданно разворачиваются веером, превращаются в лучистую корону или сказочную арку, сверкающую над снежной равниной.

Спустя некоторое время сияние расплывается, тускнеет, и на его месте остается бесформенное светящееся облако, которое, постепенно слабея, исчезает, растворяясь во тьме полярной ночи.

Рис. 16. Ясной зимней ночью высоко над землей появляется лента, как бы сотканная из нежных мерцающих лучей.

Северные сияния видны не только на крайнем Севере, ими случается любоваться и в Ленинграде, в Москве и даже в более южных городах.

В 1743 году в Петербурге наблюдали особенно большое и яркое полярное сияние, и тогда М. В. Ломоносов написал торжественное стихотворение:

 
Но где ж, натура, твой закон?
С полночных стран встает заря!
Не солнце ль ставит там свой трон?
Не льдисты ль мечут огнь моря?

Что зыблет ясный ночью луч?
Что тонкий пламень в твердь разит?
Как молния без грозных туч
Стремится от земли в зенит?
 

В этом стихотворении Ломоносов впервые выразил мысль, что полярные сияния – сродни молнии. Они, следовательно, электрические явления, – в электрической природе молнии Ломоносов нисколько не сомневался.

На мысли об электрической сущности полярных сияний Ломоносова наводил общеизвестный в те времена опыт «с трясением барометра».

Ртутные барометры делали тогда из стеклянных трубок, запаянных с одного конца. Такую трубку наполняли ртутью и затем переворачивали открытым концом в чашку с ртутью. Часть ртути выливалась в чашку, а часть, удерживаемая атмосферным давлением, оставалась в трубке. При этом в верхнем запаянном конце трубки над ртутью создавалась полость, содержащая сильно разреженный воздух и пары ртути.

Когда такой барометр сильно встряхивали, то в полости над ртутью возникало зеленоватое свечение. Некоторые ученые думали, что свечение барометра родственно свечению фосфора, но опыты не подтвердили этого предположения.

У Ломоносова имелась электрическая машина наподобие той, что была у Герике, но только вместо серного шара в ней вращался пустотелый стеклянный шар, из которого был выкачан воздух.

Когда шар вращали, одновременно натирая его ладонями, то внутри шара появлялось довольно яркое свечение, которое «в темноте изрядную палату освещать могло». Это свечение несомненно вызывалось электризацией шара. Когда на поверхности шара накапливались и искрили электрические заряды, – внутри его струился зеленоватый свет, такой же, как и в ртутном барометре.

И Ломоносов пришел к гениальному выводу: «Свет в трубках без воздуха электрический!».

Свечение разреженного воздуха в приборах было чрезвычайно похоже на игру полярных сияний, возникающих в самых верхних, разреженных слоях земной атмосферы. Высоту полярных сияний Ломоносов определил почти безошибочно – в 400 километров, а на такой высоте воздух действительно сильно разрежен. Поэтому причину полярных сияний Ломоносов видел в электрических разрядах, образующихся вследствие трения водяных паров и частичек воздуха в восходящих потоках атмосферы.

Ломоносов был прав, считая, что природа полярных сияний электрическая. Однако причина свечения – другая. Теперь известно, что Солнце выбрасывает в пространство потоки заряженных частиц. Они-то и вызывают свечение газов в верхних слоях атмосферы.

Героическая смерть Рихмана

Об электрической природе молнии некоторые ученые догадывались еще до Ломоносова. В 1698 году некто Уолл, раздобыв большой кусок янтаря, стал натирать его и получил искру в дюйм длиной.

При этом «раздался такой звук, точно в печке лопнул кусок угля».

То было подобие молнии и грома, воспроизведенных в маленьком, комнатном масштабе. Сходство имелось несомненное, но сходство – не доказательство. Чтобы убедиться в действительном родстве между электрической искрой и молнией надлежало «поймать» настоящую молнию и установить ее электрическую природу.

Это осуществили летом 1752 года М. В. Ломоносов и Г. В. Рихман.

Рихман взял железный прут длиной в 180 сантиметров, продел его сквозь бутылку с отверстием в донышке и укрепил на крыше своего дома. Ученый привязал к пруту железную проволоку и, тщательно изолировав ее от стен дома, провел в комнату. С конца проволоки свешивалась линейка с льняной или шелковой нитью, служившей для измерения величины электрических зарядов. Когда в проволоке появлялись электрические заряды, нить отходила от линейки и «гонялась за пальцем».

Свой прибор ученые назвали «громовой машиной». Она служила для многочисленных наблюдений силы и характера электрических разрядов в атмосфере. Такую же «громовую машину» установили и в доме Ломоносова (рис. 17).

Рис. 17. Электрическая стрела Ломоносова.

Оба ученых самоотверженно работали, не считаясь с опасностью для жизни.

26 июля 1753 года, во время заседания в Академии наук, Рихман заметил, что приближается гроза, и поспешил домой. Он хотел в этот день показать гравировальному мастеру Соколову электрические явления и действие «громовой машины», чтобы Соколов смог выгравировать рисунки для печати.

Рихман и Соколов прошли в комнату, где находился прибор. Рихман поглядел в окно и сказал, что гроза еще далеко и опасности нет никакой. Он стоял возле самого прибора и смотрел на электрометр.

В этот миг Соколов увидел, что от «громовой машины» отделился бледно-синеватый огненный клубок, величиною с кулак, и коснулся лба Рихмана. Академик, не издав ни единого звука, упал навзничь. «В самый тот момент последовал такой удар, будто бы из малой пушки выпалено было», – рассказывал потом Соколов. Сам он отделался лишь испугом, легкими ушибами да изорванным кафтаном.

Слуга Рихмана тотчас побежал к Ломоносову сообщить, что «господина профессора громом зашибло». Ломоносов поспешил на квартиру Рихмана, но вернуть жизнь другу не удалось…

Ломоносов писал о происшедшем: «Мы старались движение крови в нем возобновить, за тем, что он был еще тепл; однако голова его повреждена и больше нет надежды. И так он плачевным опытом уверил, что електрическую громовую силу отвратить можно, однако на шест с железом, который должен стоять на пустом месте, в которое бы гром бил сколько хочешь. Между тем, умер господин Рихман прекрасной смертью, исполняя по своей профессии должность. Память его никогда не умолкнет».


    Ваша оценка произведения:

Популярные книги за неделю