Текст книги "Покоренный электрон"
Автор книги: Михаил Ивановский
Жанры:
Прочая детская литература
,сообщить о нарушении
Текущая страница: 21 (всего у книги 23 страниц)
В таинственную область Галактики
Это замечательное достижение творческого гения человека с большим успехом было применено астрономами для исследования недоступных телескопу областей окружающей нас части Вселенной.
«Ночегляды», построенные тремя советскими учеными, астрономами А. А. Калиняком, В. Б. Никоновым и электрофизиком В. И. Красовским, позволили узнать, что находится позади темных туманностей, которые виднеются на небе в созвездии Стрельца.
Все окружающие нас звезды, как яркие и крупные, так и мельчайшие звездочки Млечного пути, образуют огромное скопление, которое называют Галактикой. В Галактике насчитывается свыше ста миллиардов звезд, и одна из них – наше Солнце.
Размеры звездного облака таковы, что даже быстролетный свет тратит на путешествие от края и до края этого облака почти сто тысяч лет.
Все звезды, входящие в состав Галактики, и наше Солнце в их числе, обращаются вокруг ее центра.
Уже много лет ученых интересует, – что находится в центре Галактики? Вокруг чего обращаются звезды? Узнать это до сих пор не удавалось, так как центральная область Галактики закрыта от наших взоров огромными непрозрачными тучами темной космической пыли. Эти тучи чернеют на фоне Млечного пути, как «угольные мешки», и мешают рассмотреть, что находится за ними.
Рис. 110. Одна из соседних галактик, на которую, как предполагают ученые, похожа наша Галактика.
Летом 1948 года астрономический электронный «ночегляд» был готов. Астрономы повезли свой прибор в Симеизскую обсерваторию в Крыму, чтобы с его помощью проникнуть в таинственную область Галактики. Если за пылевыми облаками находятся звезды, то может быть их инфракрасное излучение прорывается сквозь толщу космической пыли, и тогда «ночегляд» ею заметит!
В течение нескольких ночей астрономы исследовали небо в созвездии Стрельца и убедились, что позади темных облаков действительно расположено большое скопление ярких звезд. Если бы можно было убрать мешающие тучи пыли, мы видели бы в созвездии Стрельца яркое светящееся пятно овальной формы.
Дальнейшее усовершенствование электронных приборов для видения в инфракрасных лучах обещает дать еще больше сведений об этой, пока еще неизученной, области нашей Галактики, но даже то, что уже сделано, является замечательной победой новой отрасли астрономии, получившей название «астрономии невидимого».
Рис. 111. Один и тот же участок неба, сфотографированный в обычных лучах (наверху) и на пластинках, чувствительных к красным лучам (внизу).
Электронные и фотографические «ночегляды» помогли установить, что кроме сверкающих звезд, какие мы видим на небе, в мировом пространстве есть много несветящихся небесных тел – «темных звезд». Наша Галактика, по– видимому, населена небесными телами гораздо гуще, чем мы думали прежде. Электронные приборы уже начали во многом помогать старым оптическим системам – телескопам, а в некоторых случаях даже заменять их.
Дальнейшие успехи электронных ночезрительных телескопов – дело недалекого будущего. Первый опыт постройки такого телескопа был сделан в Советском Союзе в марте 1936 года.
Фотоэлементы с запирающим слоем
Электроника изучает и применяет фотоэлементы трех типов. О двух из них уже шла речь – это столетовские фотоэлементы, в которых используется внешний фотоэффект (электроны, выбитые светом, вылетают наружу – за пределы вещества фотокатода), и фотосопротивления, в которых используется внутренний фотоэффект (электроны, выбитые светом, остаются внутри вещества и уменьшают его сопротивление электрическому току).
Разработан еще третий вид светочувствительных приборов, называемых вентильными фотоэлементами или фотоэлементами с запирающим слоем. В них, как и в фотосопротивлениях, электроны, выбитые светом из оболочек атомов, не вылетают наружу, а остаются внутри вещества. Этим они похожи на фотосопротивления, но отличаются от них одной важной особенностью.
Фотосопротивления, как и столетовские фотоэлементы, работают только тогда, когда к ним присоединен источник тока (батарея). Свет, выбивая из вещества фотокатода электроны, тем самым облегчает прохождение тока через вакуум в столетовских фотоэлементах или через вещество в фотосопротивлениях.
Элементы с запирающим слоем не нуждаются в дополнительных источниках тока. Они сами служат источником тока. На них падает свет, и они дают ток. Эти фотоэлементы – генераторы тока, непосредственно преобразующие световую энергию в электрическую.
Для изготовления фотоэлементов с запирающим слоем первоначально применяли закись меди. Толстую пластинку красной меди прокаливали в электрической печи так, чтобы она покрылась массивным слоем закиси меди. Затем с одной стороны пластинки закись полностью счищали, а с другой – поверх слоя закиси наносили тончайшую прозрачную пленку какого-либо металла – той же красной меди или золота.
К изготовленному таким способом фотоэлементу присоединяли проводники – один к нижнему слою металла, а другой к верхнему, прозрачному слою.
Как только на поверхность прозрачного слоя падает свет, в фотоэлементе возникает электрический ток. Электроны, выбитые светом из молекул закиси меди, проскакивают в верхний прозрачный слой металла, а оттуда устремляются в проводник. Совершив путешествие по проводам, электроны возвращаются обратно в слой закиси меди, проникая в нее с теневой стороны и замыкая цепь. И вот в этом-то и скрыта странная особенность вентильных фотоэлементов.
Что заставляет электроны проделывать длинный кружной путь по проводам? Что мешает им вернуться в слой закиси тем самым путем, каким они вышли из нее, то есть просто перескочить из прозрачного слоя металла обратно в закись? Этот путь, казалась бы, наиболее короткий, но электроны почему-то путешествуют по проводам и возвращаются в слой закиси, так сказать, с «черного хода». Причина этого явления пока еще в точности не установлена.
По-видимому между тонким прозрачным слоем металла и закисью меди существует особый пограничный слой, обладающий свойствами клапана: выход свободен, а вход – воспрещен. Пограничный слой беспрепятственно выпускает электроны из закиси меди, но запирает для них обратный путь. Отсюда и возникло название фотоэлементов такого типа – фотоэлементы с запирающим слоем.
Чувствительность меднозакисных фотоэлементов оказалась небольшой. Изобретены иные, более выгодные конструкции фотоэлементов с запирающим слоем.
Например, на железную пластинку наносят слой селена и покрывают его тончайшим прозрачным слоем золота. Запирающий слой образуется между селеном и золотом. Чувствительность селеновых фотоэлементов вчетверо превышает чувствительность меднозакисных (рис. 112).
Рис. 112. Внешний вид селенового фотоэлемента с запирающим слоем.
Однако и они преобразуют в электрическую энергию только сотые доли процента энергии световых лучей.
Один из исследователей фотоэлементов этого типа, Б. Т. Коломиец, в течение нескольких лет «путешествовал» по клеткам таблицы Менделеева. Он искал вещества, подобные селену, и, перебирая один за другим химические элементы и их соединения, испытывал их пригодность для изготовления более совершенных фотоэлементов.
В клеточке № 81, между ртутью и серым тяжелым свинцом, Коломиец нашел то, что искал. Серебристо-белый, мягкий и легкоплавкий таллий в соединении с серой и кислородом приобретает нужные свойства.
Коломиец проделал очень много интересных исследований таллия, значительно продвинувших вперед наши знания о фотоэлементах. Серно-таллиевый фотоэлемент оказался во много раз чувствительнее селенового.
Разработанный в Киеве, в Украинской Академии наук, серно-серебряный фотоэлемент с запирающим слоем, также оказался весьма совершенным. Он обладает чувствительностью почти в сто раз большей, чем меднозакисный, и очень чувствителен к инфракрасным лучам. Коэффициент полезного действия этого элемента равен почти двум процентам.
Вентильные фотоэлементы широко применяются в приборах для измерения силы света, – в электрических фотометрах, – приборах, позволяющих по отклонению стрелки гальванометра, измеряющего фототок, судить об освещенности. Фотометрами этого рода постоянно пользуются фотографы, кинооператоры, светотехники и астрономы. Лучшие в мире, наиболее чувствительные и точные, астрономические фотометры построены советским ученым В. Б. Никоновым.
Важно, чтобы фотоэлементы отзывались на действие предельно слабого света. С этой целью и стремятся повысить их чувствительность. Для фотоэлемента с запирающим слоем повышение чувствительности в известной степени связано с повышением коэффициента полезного действия. А так как некоторые фотоэлементы уже могут значительную часть световой энергии преобразовывать в электрическую, возникает мысль – нельзя ли их использовать в качестве генераторов электрической энергии?
Солнце посылает несколько сот киловатт энергии на каждый квадратный километр земной поверхности. Несколько квадратных километров земной поверхности, сплошь устланные светоэлементами с достаточно высоким коэффициентом полезного действия, дали бы электрическую мощность, сравнимую с мощностью крупнейших электростанций. Без затраты топлива, без особо сложных сооружений, светоэлектростанции черпали бы энергию непосредственно от Солнца.
Пока на пути к такому использованию фотоэлементов стоят еще большие трудности. Даже сама идея кажется фантастичной. Но советская наука идет вперед гигантскими шагами. И то, что сейчас кажется лишь темой для фотографического рассказа, через несколько лет может стать реальностью.
Глава двенадцатая. В заводских цехах
Победы творческого труда
Еще недавно пределом скорости работы бумагоделательной машины было 300 метров в минуту. Ныне бумага изготовляется со скоростью 450 метров; за сутки машина дает бумажную ленту длиной в 648 километров!
Скорость прокатки стали на непрерывно действующих станах, блюмингах достигла 1600 метров в минуту. Это означает, что раскаленная болванка движется в прокатном стане со скоростью курьерского поезда.
Скорости новейших станков таковы, что человек при всем желании не в состоянии вручную регулировать и контролировать их работу. Наши органы чувств для этого недостаточно восприимчивы, а движения слишком медлительны. С такой задачей могут справиться только проворные автоматические регуляторы.
Человеку незачем вручную управлять машинами. Он может спокойно перепоручить это дело автоматически действующим реле, фотоэлементам, электронным и ионным приборам. Себе же человек оставляет почетную роль творца новых «умных» машин– автоматов, роль управляющего приборами управления, контролера механических контролеров и автоматических регуляторов. Тяжесть труда в нашей стране перекладывается на плечи машины. Труд становится с каждым годом интереснее, легче и намного производительнее.
Замечательные успехи советской науки и техники облегчили труд, повысили его производительность, это в свою очередь изменило характер управления производством и его организацию.
Не так уж давно на автозаводе блок автомобильного двигателя обрабатывался на 56 станках, занимавших 500 квадратных метров производственной площади. Работали на этом участке в три смены 180 станочников и мастеров.
Теперь корпус двигателя обрабатывается на автоматической поточной линии из 16 станков. Они занимают всего лишь 200 квадратных метров. На всех 16 станках одновременно действует 504 режущих инструмента и 20 электродвигателей общей мощностью 35 киловатт.
Каждые две минуты с конвейера сходит готовый блок.
Обслуживают эту поточную линию только 3 человека при помощи нескольких десятков электрических и электронных приборов: реле, тиратронов, усилителей, электронных переключателей и сигнальных аппаратов.
В Советским Союзе недавно построен завод– автомат, вырабатывающий тысячи автомобильных поршней за смену. Сложное оборудование завода обслуживают 7 человек!
Создание станков-автоматов и автоматизированных заводов с быстродействующими приборами управления, регулирования и контроля стало возможным лишь благодаря электронике.
Автоматический контроль и управление изменяют и характер производства и самый облик заводских цехов. Мастер может закрыть цех на замок и уйти от станков на такое расстояние, на какое протянуты линии связи, соединяющие приборы управления со станками и машинами. Он может занять пост в центральном командном пункте, как главнокомандующий, и оттуда управлять не одним каким-либо станком, а целой группой станков или механизмов, цехом или даже заводом.
Буржуазные романисты воспользовались этой особенностью технического прогресса как темой для фантастических повестей. Машины, сделавшись «бесконтрольными», якобы могут взбунтоваться и покорить человека. Разумеется, подобная фантастика– сплошной вздор. Романы подобного рода пишутся не для того, чтобы показать успехи автоматики, а для того, чтобы замаскировать капиталистическое рабство, сделать виновным в порабощении человека не капитализм, а технику, как таковую. В капиталистических условиях техника действительно порабощает человека. Там рабочий прикован к конвейеру, он – раб завода.
В условиях социализма техника покорна человеку и освобождает его от тяжелой работы.
Автоматический контроль и автоматическое управление – характерная черта техники великой Сталинской эпохи – эпохи, когда создается материально-техническая база коммунистического общества.
Машины остаются одни
Телеуправление в первую очередь применяется на энергетических предприятиях и в установках, расположенных друг от друга на большом расстоянии. Примером может служить канал имени Москвы.
Это замечательное сооружение является детищем второй Сталинской пятилетки.
Канал обеспечивает столицу нашей Родины чистой питьевой водой, связывает Москву со многими районами страны, а также с Белым, Балтийским и Каспийским морями.
Канал – сложный гидротехнический комплекс. Он состоит примерно из 200 отдельных сооружений, связанных единой цепью, но размещенных на всем протяжении его 128-километровой трассы.
Гидроэлектрические станции канала питают энергией все механизмы, обслуживающие канал, а излишки энергии подают в общее энергетическое кольцо Москвы.
Пять насосных станций перекачивают в канал воду, которая затем наполняет Москву-реку. На этих станциях работает двадцать пропеллерных насосов. Насосы канала являются самыми мощными в мире. Каждый из них перекачивает в минуту по 145 тысяч ведер воды, доставляя ее на высоту 8 метров.
Пароход, идущий из Московского моря в Москву, подымается по пяти водным ступеням-шлюзам на высоту 40 метров и затем опускается к городу по трем таким же ступеням-шлюзам.
Машинные залы всех основных сооружений канала – шлюзов, насосных и гидроэлектрических станций – заперты на замок. Людей там нет. Механики и электрики приходят туда в определенные дни для осмотра и ремонта машин. Машины работают в полном одиночестве.
Контролеры-автоматы следят за состоянием обмоток электрических машин, за температурой подшипников, уровнем масла, числом оборотов валов.
Автоматы управления, повинуясь вахтенному начальнику, самостоятельно включают и выключают механизмы в той последовательности, в которой эти механизмы должны действовать.
Тяжелые щиты опускаются, запирая камеру шлюза. Как только щиты дойдут до дна и наглухо закроют камеру, автоматы включат электродвигатели, и насосы начинают накачивать воду в шлюз. Когда вода заполнит камеру, поплавковый автомат выключает насосы и приводит в действие затворы– выходные «ворота» шлюза. Тяжелые затворы легко опускаются в подводную нишу, открывая дорогу судну. Во время всех этих операций рука человека даже не прикасается к каким-либо рычагам или рубильникам: все делается автоматически.
Провода от контрольных автоматов и приборов, управляющих всеми механизмами шлюза, проведены в помещение вахтенного начальника. Для пропуска судна вахтенный начальник поворачивает только одну рукоятку, – сначала он ставит ее в «положение подготовки», затем, когда приборы доложат об исправности и готовности всех механизмов, переводит рукоятку в «положение судопропуска», – на шлюзных светофорах вспыхивают разрешающие огни.
Центральный пункт управления насосами и гидроэлектрическими станциями расположен от подчиненных ему механизмов еще дальше, чем пульт вахтенного начальника шлюза.
Он находится в 42 километрах от самой дальней насосной станции и в 65 километрах от Иваньковской ГЭС, построенной на берегу Московского моря.
Иваньковская ГЭС была первой в СССР полностью автоматизированной, «безлюдной» электрической станцией.
На диспетчерском пульте перед глазами дежурного горят светящиеся разноцветные сигналы – кружочки, квадратики, треугольники. Они сообщают диспетчеру о состоянии и работе всех механизмов на всех станциях.
Диспетчер видит: одна группа сигналов погашена, – одна станция не работает, находится в резерве. Но вот возникла необходимость увеличить выработку электрической энергии. Диспетчер принимает решение – пустить в ход резервную станцию. На панели резервной станции он нажимает кнопку «пуск».
Тотчас приходят в действие сложные приборы телемеханического управления. Они включают все вспомогательные механизмы. На пульте загораются зеленоватым мигающим огнем сигналы: кружок, означающий, что подготовлен турбогенератор; квадратики – включены масляные выключатели. Механизмы приняли команду, «поняли» ее и «доложили» о своей готовности.
На станции щелкают реле и контакторы, приходят в действие вспомогательные электродвигатели, поворачиваются направляющие лопасти турбины. Ротор турбогенератора начинает вращаться.
Теперь на диспетчерском пульте зеленый мигающий свет в кружочке сменяется красным. Это – донесение автоматов о том, что турбогенератор работает с полной нагрузкой. Ток включен в общую сеть.
На все это уходит 30–35 секунд, не более!
Частица техники будущего
Автоматы управляют работой электрических подстанций лучшего в мире – Московского метрополитена имени Л. М. Кагановича. Все тяговые подстанции закрыты на замок. Диспетчер находится на центральном посту за несколько километров. Телемеханическое устройство позволяет диспетчеру мгновенно передавать по линиям связи до 150 различных команд всем механизмам подстанций. Диспетчер – полновластный хозяин сложного энергетического оборудования метро.
Один из участков Казанской железной дороги еще несколько лет назад был полностью переведен на автоматическую систему управления. На перегоне длиной в 65 километров нет ни стрелочников, ни сигналистов. Управление стрелками и движением поездов сосредоточено здесь в руках одного человека – дежурного диспетчера. Перед ним на диспетчерском пульте изображен план всего участка и находятся кнопки и рукоятки, управляющие стрелками и светофорами. Огоньки сигнальных лампочек говорят диспетчеру о положении каждой стрелки, каждого светофора. Поворот рукоятки, нажим кнопки, и – стрелка переведена, зажегся или погас разрешающий огонь светофора.
Контрольно-защитные приборы оберегают механизмы от случайных ошибок. Неправильно поданный приказ не будет выполнен, и на пульте загорится предупреждающий сигнальный огонек. В дождь, в буран, ночью и днем автоматы исправно несут службу, не зная усталости и ошибок.
Телемеханика и автоматика – враги аварий, которые возникают вследствие неправильно расслышанных, ошибочно понятых или, что хуже всего, превратно истолкованных и несвоевременно выполненных приказаний. Механизмы принимают команду мгновенно и тотчас же сигнализируют об исполнении. Если приказ почему-либо не исполнен, это немедленно станет известно диспетчеру. Сложные автоматизированные механизмы безусловно покорны воле и руке управляющего ими человека!
На участках железных дорог с телемеханическим управлением почти полностью предотвращены аварии: наезды, столкновения, разрезы стрелок. Значит, ускорилось прохождение составов, увеличилось число поездов, повысилась безопасность движения.
Механизированные хлебозаводы, предприятия нефтяной промышленности, заводы, обрабатывающие пластмассы, электрические станции и линии электрических передач, отдельные механизированные цехи автотракторных и станкостроительных заводов, а также химические заводы и предприятия, где производственный процесс опасен для здоровья обслуживающего персонала, широко используют приборы управления на расстоянии.
Телемеханика и автоматика немыслимы без электронных приборов. Только мгновенность действия, исключительная чувствительность электронных, ламп, тиратронов, фотоэлементов, электронных реле гарантируют быстроту, безукоризненную четкость передачи приказаний или сигналов, мгновенность и автоматичность их выполнения.
В советских условиях автоматизация и механизация производства способствуют увеличению производительности труда и содействуют воспитанию многочисленных кадров высококвалифицированных инженеров, техников, рабочих. В условиях социализма новая электронная техника способствует стиранию грани между умственным и физическим трудом.