355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Михаил Ивановский » Покоренный электрон » Текст книги (страница 3)
Покоренный электрон
  • Текст добавлен: 27 июня 2017, 10:00

Текст книги "Покоренный электрон"


Автор книги: Михаил Ивановский



сообщить о нарушении

Текущая страница: 3 (всего у книги 23 страниц)

Движение мельчайших частичек

Трагическая гибель друга не остановила М. В. Ломоносова. Он продолжал опыты.

Ломоносов не был путником, блуждающим в лесу фактов, он не искал ощупью тропинку к научной истине, а шел напрямик к ней, как бы прорубая широкую просеку. Он всегда шел к цели своим путем, не преклоняясь перед иностранными авторитетами.

В апреле 1756 года Ломоносов начал писать большую работу: «Теория електричества, разработанная математическим способом», но успел закончить только две первые главы.

Ломоносов неопровержимо установил электрическую природу молнии, а также доказал, что в атмосфере, независимо от наличия грозовых туч, всегда имеются электрические заряды. Ломоносову принадлежит открытие электрической сущности полярных сияний.

Ломоносов высказал смелое предположение, что обычный свет костра, свечи или солнца – также электрического происхождения. Эта гениальная догадка М. В. Ломоносова подтвердилась только много лет спустя.

Прекрасно понимая, что одному человеку не под силу разрешить задачу о природе электрических явлений, Ломоносов стремился привлечь к ее решению ученых всего мира. По его настоянию Петербургская Академия наук объявила конкурс на лучшую научную работу о сущности электричества. В 1753 году было объявлено:

«Санкт-Петербургская Академия наук всем натуры испытателям при обещании обыкновенного награждения ста червонных на 1755 год к первому числу июня месяца для решения предлагает, чтобы сыскать подлинную електрической силы причину и составить точную ее теорию».

Задача, которую Ломоносов намеревался разрешить в два года, потребовала почти полутораста лет и труда нескольких сот ученых. Среди них первое, почетное место бесспорно принадлежало самому Ломоносову. Он наметил правильный путь решения задачи, он первый указал на родство тепловых и электрических явлений. В основе тех и других лежит общая причина – движение мельчайших частичек, из которых состоят все вещества. «Нельзя также отрицать движение там, где глаз его не видит, – писал Ломоносов, – кто будет отрицать, что движутся листья и ветви деревьев в лесу при сильном ветре, хотя издали он не заметит никакого движения. Как здесь из-за отдаленности, так и в горячих телах вследствие малости частичек движущегося вещества, движение скрывается от взора».

Эта теория помогла Ломоносову создать представление об электричестве более глубокое и более правильное, чем у всех его предшественников и многих ученых, живших после него.

«М. В. Ломоносову по необъятности его интересов принадлежит одно из самых видных мест в истории культуры всего человечества», – писал академик С. И. Вавилов.

Батарея академика Петрова

Новая эпоха в науке об электричестве началась в марте 1800 года, когда итальянский физик Алессандро Вольта изобрел прибор, позволявший получать непрерывный поток электрических зарядов. Это давало громадные преимущества по сравнению с прежними несовершенными способами добывания электричества.

Новый прибор стал известен в науке под названием Вольтова столба (рис. 18).

Рис. 18. Вольтов столб.

Вольтов столб состоял из набора металлических и суконных кружков. Кружки укладывались в таком порядке: на серебряном кружке лежал цинковый, затем – суконный кружок, смоченный водным раствором нашатыря, на нем серебряный и цинковый кружки и снова суконный. Серебро, цинк, сукно, серебро, цинк, сукно… и наконец, серебро, цинк. Первый и последний кружки в этом «первобытном» Вольтовом столбе играли роль проводников и по сути дела были совершенно лишними.

Электричество в Вольтовом столбе возникает непрерывно в результате химического взаимодействия двух различных металлов, смоченных раствором нашатыря.

Вольтов столб был прообразом будущих гальванических элементов, которые служили главным источником электричества в первой половине XIX века.

После изобретения Вольтова столба в распоряжении ученых оказался источник, способный непрерывно поддерживать движение электрических зарядов в проводнике. Такое движение назвали постоянным электрическим током. Изобретение источника тока открыло широкие возможности для новых исследований электричества. Вольтовым столбом спешили обзавестись физики, химики, медики и просто любители науки.

В Петербурге опыты с Вольтовым столбом проводил профессор физики Медико-хирургической Академии Василий Владимирович Петров. Это был талантливый физик и искусный экспериментатор.

Петров заказал 100 цинковых и 100 медных кружков диаметром по 10 дюймов. Каждый кружок весил более фунта. Из них Петров составил Вольтов столб, применив вместо суконных прокладок бумажные кружки, пропитанные водным раствором нашатыря. Однако мощность прибора не удовлетворила Петрова. Для опытов, которые он задумал, эта батарея была слабовата, и ученый заказал другую – «наипаче огромную батарею, состоявшую иногда из 4200 медных и цинковых кружков».

Рис. 19. Батарея В. В. Петрова.

В этой батарее Петров не стал располагать кружки столбиком. Столб из 4200 кружков получался, по расчетам Петрова, высотой в 40 футов, то есть более 12 метров. Обращаться с таким столбом было бы затруднительно, пришлось бы ломать потолки в лаборатории, и батарея поднялась бы над крышей здания, как фабричная труба. А главное, ученый опасался, что под тяжестью столба влага из прокладок в нижней части батареи будет выдавлена, и ожидаемого результата не получится.

Петров заказал ящики из красного дерева, разгороженные на восемь отделений. Внутренние стенки ящика и все перегородки он облил расплавленным сургучом. Когда сургуч застыл, получилась твердая, совершенно водонепроницаемая корка, служившая прекрасной изоляцией.

В каждое отделение Петров уложил по 525 медных и цинковых кружков.

Все секции своей батареи Петров соединил изолированными проводами, употребляя для изоляции шелк, сургуч, воск, лаки. Это было крупной технической новинкой. Но никто из ученых не понимал тогда, как важно тщательно изолировать проводники. Петров доказал, что только надежно изолированная батарея способна дать наиболее сильный ток.

В одном из своих опытов он положил на стеклянную скамеечку два куска угля, проводящего электрический ток; затем двумя металлическими стерженьками (на стеклянных ручках), соединенными с полюсами батареи, он сблизил угольки на расстояние примерно в 1–3 линии (линия – 2,54 миллиметра). Между угольками появился «весьма яркий белого цвета свет или пламя, от которого оные угли скорее или длительнее загораются и от которого темный покой довольно ясно освещен быть может».

Это было великое открытие! Петров создал электрическую дугу, – открыл один из видов электрического разряда – дуговой разряд.

И техника сварки металлов, и металлургия, и осветительная техника теперь широко применяют дугу Петрова.

Впервые в мире Петров исследовал электропроводность различных материалов и установил, что уголь может по-разному пропускать электрический ток: одни сорта угля проводят ток лучше, другие – хуже.

Продолжая свои опыты с электрической дугой, Петров вносил в ее пламя листочки олова, серебра, золота, меди, цинка, и они сгорали, окрашивая пламя в особые, свойственные им цвета.

Петров разложил электрическим током воду на водород и кислород, то есть положил начало еще одному важному применению электрической энергии, которое впоследствии получило название электролиза.

Все эти опыты Петрова служили звеньями его основной работы. Он изучал, какое действие оказывает электрический ток на материалы, сквозь которые он проходит. С этой целью ученый испытывал сначала твердые тела и различные жидкости, а затем перешел к газам.

Ток проходит через газ

На медную тарелку воздушного насоса Петров поставил серебряный стакан, перевернутый вверх дном. Этот стакан он накрыл хрустальным колпаком, имевшим высоту 21,6 сантиметра и ширину 13 сантиметров.

В верхней части колпака было оставлено небольшое отверстие, плотно закрытое медной оправой. Через оправу в особом сальнике, набитом кожаными кольцами, проходил медный прут. Кожаные кольца сальника мешали наружному воздуху проникать внутрь колпака, но позволяли поворачивать, поднимать или опускать медный прут. Нижний конец прута, спускавшийся до дна серебряного стакана, в зависимости от характера опыта оканчивался либо шариком, либо стальной иголкой. Серебряный стакан понадобился Петрову только потому, что медный прут оказался коротковат (рис. 20).

Рис. 20. Прибор Петрова для исследования действия тока на разреженный газ.

Один провод своей батареи Петров присоединил к металлической тарелке насоса, а второй – к верхнему концу медного прута. Затем Петров привел в действие воздушный насос. Когда воздуха под колпаком осталось совсем мало, между иголкой и дном стакана возникло яркое свечение белого цвета, а иголка разогрелась до красного каления.

Петров заменил иглу шариком и наблюдал, что при большом разрежении воздуха в колпаке, возле шарика появилось свечение белого цвета, но у дна стакана оно было фиолетовое, а между ними – розово-красное.

Наибольшее разрежение, которого мог добиться Петров с помощью своего воздушного насоса, разнялось 1,5 миллиметрам ртутного столба, то есть 1/500 доле нормального атмосферного давления. Большего разрежения насос тогда дать не мог.

Петров был первым ученым, пропустившим электрический ток через разреженный газ. Этим он положил начало исследованию явлений, которые впоследствии раскрыли перед наукой и техникой невиданно широкие перспективы. Петров был пионером той обширной области электротехники, которая стала называться электроникой и развернулась в полном блеске только в самые последние десятилетия.

По стопам великого Ломоносова

В годы, когда В. В. Петров начинал свои исторические опыты, в переплетную мастерскую лондонского книготорговца Жоржа Рибо поступил учеником двенадцатилетний мальчик Михаил Фарадей. Заработков его отца – кузнеца не хватало на жизнь. Семья была большая. Мальчику пришлось оставить начальную школу и пойти работать.

Разлуку со школой Михаил Фарадей переживал очень тяжело. Он всячески старался пополнить свое образование, читал книги, которые приносили переплетать.

По вечерам, а также в воскресные дни, будущий ученый посещал публичные лекции по физике. Однажды ему удалось попасть на лекцию одного из крупнейших английских ученых того времени – Гемфри Дэви. Эта лекция произвела на Фарадея очень сильное впечатление.

Чтобы углубить свои знания по физике и химии, молодой переплетчик поступил слугой в лабораторию Дэви; там он мыл посуду, подметал пол и заменял Дэви в тех опытах, которые грозили взрывом.

Спустя некоторое время Фарадей начал сам производить опыты. В 1816 году он опубликовал свою первую научную работу.

В 1824 году Гемфри Дэви – президент Королевского общества (английская Академия наук) с возмущением узнал, что его бывший слуга выдвинут кандидатом в академики. Дэви потребовал, чтобы Фарадей снял свою кандидатуру. Фарадей отказался, и его единодушно избрали в члены Королевского общества при одном только голосе против. Этот единственный голос «против» принадлежал по всей вероятности Дэви.

В своей научной деятельности Фарадей развивал и углублял идеи, высказанные гениальным русским ученым – М. В. Ломоносовым.

Одной из самых любимых книг Фарадея, оказавшей большое влияние на его творчество, была книга русского академика Леонарда Эйлера: «Письма к немецкой принцессе». История этой книги такова.

В пятидесятых годах XVIII столетия Эйлер жил за границей. Между ним и Ломоносовым завязалась дружеская переписка. Взгляды Ломоносова и Эйлера во многом совпадали. Эйлер горячо поддерживал Ломоносова во всех его научных начинаниях.

В 1766 году Эйлер вернулся в Петербург и вскоре подготовил к печати книгу, высказав в ней те взгляды на природу, которые возникли у него в результате переписки с Ломоносовым и своих собственных исследований. Эта книга называлась «Письма о разных физических и философических материях, писанные к некоторой немецкой принцессе».

Читала ли какая-нибудь принцесса «Письма» Эйлера, поняла ли она в них что-нибудь – неизвестно. Но Фарадей их не только читал, но и внимательно изучал.

Эйлер, разделяя материалистические взгляду Ломоносова, предлагал решительно изгнать из науки всякие вздорные представления об «электрических жидкостях», «флюидах» и «теплородах».

Как и Ломоносов, Эйлер был убежден, что все тела, все вещества состоят из мельчайших «нечувствительных» частичек – корпускул или атомов. Следуя Ломоносову, он пришел к мысли о единстве явлений: механической силы, теплоты, света электричества, магнетизма.

Фарадей также был убежден в единстве магнитных и электрических явлений и решил доказать это на опыте.

Единство магнитных и электрических явлений

Еще задолго до Фарадея было известно, что молния может намагничивать и размагничивать стальные предметы. Например, в июле 1681 года молния ударила в корабль. Кроме обычных повреждений, причиненных ею, было замечено, что все три корабельных компаса испортились: два– размагнитились, у третьего северный конец стрелки стал показывать юг.

Однажды молния ударила в лавку торговца металлическими изделиями и разбила ящик, в котором лежали ножи и вилки. Некоторые ножи и вилки оплавились, другие оказались намагниченными.

Следовательно, электрический разряд способен придавать стали магнитные свойства и отнимать их.

Несколько важных наблюдений сделали ученые, искавшие связь между магнитными и электрическими явлениями. Один из них – датский физик Эрстед заметил, что электрический ток влияет на магнитную стрелку. Эрстед натянул провод от батареи в направлении с севера на юг. Под проводом он положил компас и пропустил по проводу ток. Стрелка компаса немедленно отклонилась в сторону.

Эрстед записал свое наблюдение: «гальваническое электричество, идущее с севера на юг над свободно подвешенной магнитной иглой, отклоняет ее северный конец к востоку, а, проходя в том же направлении под иглой, отклоняет ее к западу».

Известие об этом открытии Эрстед опубликовал 21 июля 1820 года.

Два месяца спустя – 25 сентября 1820 года – французский ученый Араго намотал на стеклянную трубочку несколько витков проволоки и положил в трубочку стальную иглу.

Когда по проволоке пропустили сильный электрический ток, игла намагнитилась.

Одновременно с Араго другой французский ученый – Ампер показал, что электрический ток, текущий по проводам, обладает магнитными свойствами. Он изобрел особый прибор, устройство которого показано на рис. 21: два прочных проводника разной длины изогнуты в виде буквы Г и укреплены вертикально.

Рис. 21. Прибор Ампера.

В верхней части этих Г-образных стоек сделаны чашечки. Обе стойки укреплены в приборе так, чтобы чашечки находились одна над другой.

В чашечки Ампер налил ртуть и опустил в них иголки, служившие опорой для проволочной четырехугольной рамки. Ртуть обеспечивала надежный контакт, а на иголках рамка могла вращаться очень легко, почти без всякого трения.

Перед опытом рамка была повернута так, чтобы один ее край находился против стойки, соединенной с плюсом батареи. Как только Ампер включил ток, рамка тотчас повернулась. Ее край отодвинулся от стойки, присоединенной к плюсу батареи, и приблизился к стойке, соединенной с минусом батареи. Сколько Ампер ни поворачивал рамку, она неизменно и упорно возвращалась к стойке, соединенной с минусом батареи.

Ампер установил, что электрический ток обладает магнитными свойствами: рамка, по которой течет ток, становится как бы магнитом. Токи, текущие в одном направлении, взаимно притягиваются, а токи, текущие в противоположных направлениях, отталкиваются.

Эрстед, Араго и Ампер неопровержимо доказали существование связи между магнитными и электрическими явлениями.

Фарадей же был убежден в большем. Он считал, что электричество и магнетизм, – как орел и решка из монете, – две стороны одного и того же явления. А чтобы доказать это – требовалось «превратить электричество в магнетизм и магнетизм в электричество». Так и было записано в 1821 году в дневнике Фарадея.

Через неудачи к победе

Вот как Фарадей выполнил свою задачу. Он намотал на деревянный барабан кусок медной проволоки длиной около 8 метров; чтобы витки не соприкасались между собой, Фарадей изолировал их тонким шнурком, который он наматывал вместе с проволокой (изолированных проводников тогда делать не умели).

Первый слой своей катушки ученый обернул коленкоровой лентой и поверх нее стал наматывать второй слой. Надежно изолировав второй слой, Фарадей намотал третий. Так была изготовлена проволочная катушка из 12 слоев, изолированных один от другого.

Первый, третий, пятый… – все нечетные слои Фарадей соединил последовательно, и они составили одну общую катушку. Точно так же были соединены вторая, четвертая, шестая – все четные слои обмотки. В результате у Фарадея получились как бы две катушки, намотанные одна внутри другой и надежно изолированные друг от друга. Концы проводов от одной катушки были присоединены к чувствительному гальванометру, а концы другой катушки – к батарее.

Из опытов Ампера Фарадей знал, что наибольшим магнитным действием обладает проводник, свернутый спиралью или намотанный катушкой.

Поэтому он предполагал, что ток, пройдя по одной катушке, окажет свое действие на другую, причем настолько сильное, что в ней возникнет ток, который отклонит стрелку гальванометра.

Присоединив катушку к батарее, Фарадей посмотрел на стрелку гальванометра, она стояла на нуле.

Ток шел по одной катушке и на другую катушку никакого влияния не оказывал (рис. 22).

Рис. 22. Прибор для повторения опыта Фарадея. В момент включения или выключения рубильника во внешней катушке проходит кратковременный ток.

Фарадей повторял опыт несколько раз, менял концы проводов у гальванометра и батарей. Все было безрезультатно.

Ожидания Фарадея не оправдались.

Ученого, который слепо преклоняется перед опытом, эта неудача заставила бы бросить начатую работу. Опыт не удается – ничего не поделаешь! Но Фарадей не принадлежал к таким ученым. «Если опыт не удался, – рассуждал Фарадей, – значит я не сумел его поставить. Ток должен влиять! Ток в одной катушке должен вызвать ответный ток во второй катушке!»

Фарадей упрямо продолжал опыты, кропотливо отыскивая причину неудач. Он продумывал каждую мелочь, каждое свое движение. На опыты ушло несколько лет настойчивого труда. Уже потеряв надежду на успех, Фарадей случайно обратил внимание на то, что он сначала присоединяет провода к батарее, а потом смотрит на гальванометр!

Оплошность!

Фарадей прикрутил провод катушки к одному полюсу батареи, поставил гальванометр так, чтобы можно было одновременно и присоединить второй провод и видеть стрелку гальванометра. Не сводя глаз со стрелки, Фарадей коснулся проводом полюса батареи. В момент соприкосновения стрелка гальванометра едва заметно вздрогнула.

Первый успех!

Фарадей коренным образом изменил свой прибор. Он намотал две медные изолированные спирали не на деревянный цилиндр, а на кольцо, сваренное из мягкого железа. Одна спираль охватывала правую половину кольца, вторая – левую. Между спиралями оставались небольшие промежутки железа. Иначе говоря, он сделал два электромагнита, для которых железное кольцо служило общим сердечником.

Концы проволок от одной спирали Фарадей прикрепил к гальванометру, затем, внимательно глядя на прибор, он подключил батарею ко второй спирали. Стрелка гальванометра не только дрогнула, она прыгнула, заметалась из стороны в сторону, далеко отлетая каждый раз от нуля. Стрелка как бы повторяла движения концов проводника, которые Фарадей держал в руках, и успокоилась только тогда, когда ученый поплотнее скрутил провода.

Это была долгожданная победа – плод беспримерного терпения, настойчивости и глубокого убеждения в правоте своей идеи.

После работ Ломоносова и Петрова открытие Фарадея было крупнейшим успехом науки об электричестве.

Единство магнитных и электрических явлений стало очевидным.

Явление, открытое Фарадеем, получило название электромагнитной индукции, то есть электромагнитного наведения или влияния.

Магнитное поле электрического тока

Опыт с магнитом и железными опилками известен с давних пор: магнит прикрывают бумажкой, а на бумагу насыпают железные опилки, и они, падая на бумагу, ложатся не бесформенной грудой, а собираются над полюсами магнита, составляя фигуру, слегка напоминающую двух многоногих пауков.

Опилки размещаются между полюсами и вокруг них по каким-то дорожкам. Магнитные силы заставляют частички металла сцепляться, укладываться вдоль магнитных «дорожек» цепочками, образуя симметричные узоры, состоящие из отдельных, правильно изогнутых линий (рис. 23).

Рис. 23. Магнит заставляет железные опилки располагаться вдоль магнитных силовых линий.

Если передвигать магнит под бумажкой с места на место, то и опилки будут перекатываться вслед за ним и располагаться в прежнем порядке вдоль дугообразных линий, окружающих полюсы магнита.

Эти дорожки-линии, по которым выстраиваются железные опилки, указывают направления, по которым действует магнитная сила.

Узор, составленный из опилок, дает наглядное представление о расположении магнитных силовых линий и доказывает, что магнит окружен магнитным полем, подобно тому, как электрический заряд окружен электрическим полем.

Магнитное поле представляет собой как бы продолжение магнита, его невидимую, но совершенно реальную материальную «оболочку». Если к северному полюсу магнита приближать северный полюс другого магнита, то сопротивление магнитных полей становится ощутимым – они пружинят, отталкивают, мешают соприкосновению одноименных полюсов.

Фарадей обнаружил, что не только природные магниты, но и каждый отрезок провода, по которому движутся электрические заряды, окружен со всех сторон кольцевыми силовыми линиями магнитного поля. Ученый доказал, что электрический ток всегда порождает магнитное поле вокруг проводника, по которому течет.

В существовании такого поля можно убедиться на опыте: проколоть кусок плотной бумаги иглой, продеть сквозь прокол провод и пропустить по нему сильный электрический ток (рис. 24).

Рис. 24. Электрический ток заставляет мелкие железные опилки укладываться возле проводника правильными кругами.

Если в это время сыпать на бумагу мелкие железные опилки, то они улягутся вокруг провода правильными концентрическими кольцами.

Теперь становится понятным опыт Эрстеда – магнитная стрелка под проводом, по которому бежит ток, отклоняется в сторону, потому что на нее действует магнитное поле электрического тока.

Магнитные свойства тока можно показать и более эффектным способом. Если к свободно подвешенному проводнику, по которому течет постоянный ток, поднести подковообразный магнит, проводник будет либо– втягиваться в подкову, либо выталкиваться из нее, в зависимости от направления тока и положения полюсов магнита (рис. 25).

Рис. 25. Подковообразный магнит втягивает в промежуток между полюсами проводник с током или выталкивает его в зависимости от положения полюсов магнита.

Открытие магнитного поля вокруг тока навело Фарадея на новую мысль.

Постоянный ток, текущий по проводу, хотя и окружен магнитным полем, но никакого влияния на соседний провод не оказывает. Индуктивного тока в нем не образуется. Он возникает только тогда, когда ток включают или выключают, то есть когда магнитное поле вокруг проводника либо разрастается, либо спадает. Следовательно, индуктивный ток порождается только изменяющимся магнитным полем.

При этом, когда в первичную обмотку включают ток, то во вторичной обмотке возникает «наведенный» индуктивный ток, он всегда течет навстречу току в первичной обмотке.

При размыкании – наоборот: во вторичной обмотке появляется индуктивный ток, текущий в том же самом направлении, что и в первичной обмотке.

Фарадей доказал, что «наведенный», индуктивный ток вторичной обмотки, в свою очередь, тоже влияет на первичную обмотку, он тоже вызывает в ней индуктивный ток. Подобное же явление наблюдается и в том случае, если для опыта возьмем только одну катушку.

Как только присоединим ее к полюсам батареи, по проводу катушки пойдет ток и в ней возникнет магнитное поле, усиливающееся вместе с током.

Усиление магнитного поля внутри катушки должно было бы индуктировать в ней же самой «встречный» ток, то есть противоположного направления. Однако по одному проводу ток одновременно в двух противоположных направлениях течь не может, и индукция будет лишь ослаблять включаемый ток. Значит, при включении тока возникающее магнитное поле замедляет нарастание его. Включенный ток достигает своей наибольшей силы не сразу, а постепенно.

Такое явление – влияние изменений силы тока в проводнике на самого себя – называется самоиндукцией. Самоиндукция имеет большое сходство с инерцией. Инерция препятствует мгновенному изменению скорости тела, а самоиндукция замедляет всякое изменение силы тока.

Особенно сильно проявляется самоиндукция у катушек с железными сердечниками. Когда включают большой электромагнит, ток в нем нарастает очень медленно – в течение нескольких секунд, и поэтому при включении в рубильнике проскакивает совсем маленькая искра, а то и вовсе ее не бывает. Зато когда выключают большой электромагнит, проскакивает сильная яркая искра, так как ток, поддерживаемый самоиндукцией, продолжает идти даже через воздушный промежуток, образующийся при разъединении контактов рубильника (рис. 26).

Рис. 26. Ток продолжает идти некоторое время после размыкания рубильника и образует яркую искру.

Явление самоиндукции особенно заметно, когда пропускают переменный ток по катушке с железным сердечником. При переменном токе движение зарядов происходит то в одну, то в другую сторону. Ток последовательно сначала нарастает, потом убывает, меняет направление и нарастает в другом направлении, вновь убывает, опять меняет направление и т. д. Он, а следовательно, и образуемое им магнитное поле все время меняются, а индуктивное действие поля все время мешает этим изменениям. Оно ослабляет ток.

Если включить в цепь лампочки накаливания, питаемой переменным током, катушку с железным сердечником, то она настолько ослабит ток, что лампочка почти потухнет. Если же сердечник вынуть, магнитное поле ослабеет, индуктивное действие его уменьшится, ток усилится и лампочка загорится (рис. 27).

Рис. 27. Железный стержень, вложенный в катушку, настолько увеличивает ее сопротивление переменному току, что лампочка гаснет.


    Ваша оценка произведения:

Популярные книги за неделю