355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Михаил Ивановский » Покоренный электрон » Текст книги (страница 14)
Покоренный электрон
  • Текст добавлен: 27 июня 2017, 10:00

Текст книги "Покоренный электрон"


Автор книги: Михаил Ивановский



сообщить о нарушении

Текущая страница: 14 (всего у книги 23 страниц)

Измерение размеров вирусов

Не видя вирусов даже в самые сильные микроскопы, ученые все же определили приблизительные размеры вирусов по их способности проходить сквозь фильтры с более или менее крупными порами.

Было найдено, что вирус ящура имеет размеры несколько более 75 миллимикронов. Вирус табачной мозаики в два с половиной раза меньше вируса ящура – его размер 30 миллимикронов. Понятно, что его нельзя увидеть, ведь миллимикрон – это чрезвычайно малая величина.

Толщина спички 2 миллиметра. Толщина человеческого волоса измеряется уже не миллиметрами, а тысячными долями миллиметра – микронами. Паутинка еще тоньше волоса. Ее толщина – 5 микронов.

Если одну пятую толщины паутины, то есть один микрон разделить на 1000 частей, мы получим миллимикрон, или одну миллионную долю миллиметра.

Следовательно, шестьдесят пять тысяч вирусов табачной мозаики, уложенных цепочкой один к одному, займут в длину всего-навсего 2 миллиметра, – они поместятся поперек спички.

Через несколько лет после смерти основоположника вирусологии Ивановского (он умер в 1920 году) ученые столкнулись с еще одним таинственным явлением, но уже не вредным, а полезным.

Биологи обнаружили, что в природе существует нечто невидимое, расправляющееся с дизентерийными бактериями, как тигр с ягнятами. В банке с водой кишат дизентерийные бактерии. Достаточно только одной капли жидкости, содержащей таинственное нечто, и в банке не останется ни одной болезнетворной бактерии.

Эта жидкость совершенно прозрачна. При наблюдении в микроскоп в ней решительно ничего не видно. Через самые мелкопористые фильтры целебная жидкость проходит, не теряя своих свойств. Ученые назвали это невидимое «нечто» – бактериофагом, то есть «пожирателем бактерий». Но что такое бактериофаг – было неизвестно.

Ученые причислили бактериофаг к вирусам, но к вирусам полезным, которые уничтожают врагов человека – болезнетворных бактерий.

Эти открытия доказали людям, что имеется многочисленный, разнообразный мир необычайно маленьких существ, из которых одни являются нашими злейшими врагами, другие – друзьями.

Но изучение этого мира было очень затруднено: он был невидим даже в самый лучший микроскоп.

Зоологи, ботаники, медики, ветеринары, агрономы обратились к оптикам с требованием – усовершенствовать микроскопы, сделать их более мощными и помочь науке раскрыть тайну невидимого мира.

В битве с вирусами человечество несет неисчислимые потери. В первой империалистической войне, длившейся с 1914 по 1918 год, было убито и умерло от ран 18 миллионов человек. В битве с вирусами гриппа, длившейся два года – с 1919 по 1920 год, – погибло 20 миллионов человек.

«Дайте же нам оружие для борьбы с этим свирепым и беспощадным врагом! – говорили врачи оптикам. – Дайте нам такой микроскоп, чтобы мы могли разглядеть врага».

Оптики отвечали: «Увы, мы бессильны. Микроскоп, дающий полезное увеличение более чем в 1000 раз, сделать невозможно. Мы, конечно, сумеем построить микроскоп, который будет увеличивать изображение предмета в 2000–3000 раз – даже больше, но, увы, с его помощью вы увидите то же самое, что и при тысячекратном увеличении. Предмет будет казаться больше, крупнее, но нужных деталей или каких-либо подробностей различить не удастся; даже, наоборот, появятся искажения, которые помешают исследованию и будут вводить наблюдателя в заблуждение. 1000 – это предел полезного увеличения, за который не может переступить оптика».

Удивительный опыт

Известно, что тень от непрозрачного диска, если его держать поперек светового луча, будет иметь форму круга. От квадрата тень получится квадратной, от кольца – кольцевой. Но всегда ли тень предмета соответствует предмету? У всякого ли непрозрачного тела обязательно должна иметься тень?

Был сделан такой опыт. На просторный ровный луг привезли мощный прожектор. Его установили на одном краю луга, а на противоположном – врыли в землю большой щит вроде тех, что ставят на стрельбищах.

Вечером, когда стемнело, запустили мотор прожекторной станции и включили ток. Луч прожектора направили вдоль поверхности земли на щит, стоявший примерно в четырех километрах от прожектора. Щит, выкрашенный белой краской, ярко осветился.

Один из производивших этот опыт вынул из портфеля фанерный диск размером с обыкновенную обеденную тарелку. Диск укрепили на заостренном шесте и понесли по направлению к прожектору. Пройдя примерно 500 метров, воткнули шест в землю так, чтобы диск стал поперек луча прожектора и его тень упала бы на шест.

К великому удивлению прожектористов и местных жителей, заинтересовавшихся опытом, тень от круга не была сплошным кругом. В середине тени от деревянного диска виднелось ярко освещенное пятно, как будто в центре диска имелось отверстие.

Но никакого окошка в диске не было, а его тень получилась почему-то кольцеобразной! (Рис. 73.).

Рис. 73. Дифракция света. Фотография тени руки, которая держит тарелку. На верхнем снимке: тень, получившаяся на расстоянии трех метров между источником света и тарелкой, на втором снимке это расстояние равно примерно двум километрам, а на третьем – семи километрам.

Причина этого, на первый взгляд странного и необъяснимого, явления кроется в самой природе света.

Свет огибает препятствия, встречающиеся на его пути, как огибают их морские волны или звуковые колебания. Именно благодаря своей колебательной, волновой природе свет обладает такой способностью.

Лучи прожектора, скользнувшие возле краев деревянного диска, обогнули их, отклонились от прямолинейного пути и упали на щит в центре тени от диска, образовав там светлое пятно. Тень диска приобрела вид кольца.

Световые лучи, огибающие препятствие, отклоняются от прежнего направления на очень небольшой угол. Поэтому для опыта требуется, чтобы щит стоял на большом удалении от диска и от источника света, но для маленьких предметов это расстояние может быть соответственно меньше.

Теперь мысленно представьте себе совсем маленький диск. Не может ли случиться так, что световые лучи, обогнув его края, сойдутся и тени от диска не получится вовсе?

Действительно, так и происходит. Очень маленькие предметы свет огибает полностью.

Свет как бы «не замечает» очень малых препятствий. И их поэтому нельзя увидеть, и никакое увеличение тут не поможет.[21]21
  Невидимыми остаются все предметы, размеры которых в 2–3 раза меньше длины световой волны, то есть меньше 0,40—0,75 микрона.


[Закрыть]

Предметы, имеющие в поперечнике меньше 0,2 микрона, не отбрасывают тени, свет их огибает со всех сторон, как звуковые волны мебель в комнате, и они остаются невидимыми при любых увеличениях микроскопа.

Предел полезного увеличения

Человеческий глаз очень зорок, он способен заметить паутинку, натянутую между деревьями, особенно если она освещена солнцем, а толщина паутинки – 5 микронов. При обычном освещении мы в состоянии увидеть тонкий волос, толщиной в 25 микронов. Предмет, вчетверо больший, толщиной около 100 микронов – как, например, тире в этой книге – уже виден прекрасно.

Следовательно, чтобы разглядеть предмет диаметром в 0,2 микрона, его видимые размеры надо увеличить до 100 микронов, то есть до размеров, хорошо видимых глазом. А для этого достаточно иметь увеличение всего лишь в 500 раз, так как 100: 0,2 = 500!

Оптики считают, что увеличение в 1000 раз еще помогает различать новые детали или особенности рассматриваемого предмета, но большее увеличение уже совершенно бесполезно. Оно не позволит увидеть более мелких частиц, не позволит различить никаких новых деталей наблюдаемой в микроскоп картины.

Именно поэтому тысячекратное увеличение оказалось пределом полезного увеличения обычного микроскопа; и именно поэтому такой микроскоп не дает возможности видеть вирусы, размеры которых много меньше 0,2 микрона.

Но раз все дело в длине волны, естественно возник вопрос – нельзя ли воспользоваться такими электромагнитными колебаниями, у которых длина волны меньше, чем у видимого света?

Прежде всего обратились к ультрафиолетовым лучам. Ультрафиолетовый микроскоп, в особенности тот тип его, который был разработан в Советском Союзе Е. М. Брумбергом по идее академика С. И. Вавилова и под его руководством, оказался очень полезным для многих исследований. Многие биологические препараты, в тонких срезах слишком прозрачные для видимого света, гораздо сильнее поглощают ультрафиолетовые лучи. Поэтому в ультрафиолетовом микроскопе такие препараты дают гораздо более контрастную картину, чем в обычном микроскопе.[22]22
  В ультрафиолетовом микроскопе увеличенная картина препарата изображается на экране, который светится видимым светом под воздействием ультрафиолетовых лучей или на фотографической пластинке, чувствительной к ультрафиолетовым лучам.


[Закрыть]

Однако волны света, применяемые в ультрафиолетовом микроскопе, только немногим короче волн видимого света, и поэтому наблюдать вирусы и другие столь же мелкие объекты ультрафиолетовый микроскоп не позволяет.

У рентгеновских лучей длины волн в тысячи раз меньше. Но они почти не преломляются, и поэтому для них нельзя изготовить линз, дающих увеличенное изображение. Кроме того, большинство веществ для рентгеновских лучей прозрачно, и сквозь какой-нибудь вирус они пройдут без задержки, не давая никакой тени от него.

Задачу решают электроны

Не помогут ли электроны увидеть невидимое? На первый взгляд электроны здесь бесполезны Ведь мы представляем их себе в виде мельчайших частичек. Разве могут частички соперничать со световым лучом и даже заменять его? А почему бы и нет?

Если сыпать из сита муку на руку, то на столе образуется «тень» руки – место, куда мука не насыпалась (рис. 74).

Рис. 74. Сравнение тени от руки, полученной в световом потоке и в потоке мелких просеянных сквозь сито, частиц муки.

Художники иногда вместо кисти пользуются пульверизатором. Выдувая краску из пульверизатора мелкой пылью и прикладывая к окрашиваемой поверхности заранее заготовленные шаблоны – трафареты, они быстро получают нужный узор.

Там, где в трафарете вырезаны отверстия, распыленная краска ложится на раскрашиваемый предмет, где отверстий нет, остается «тень» – незакрашенное место.

Распыленной краской можно рисовать не хуже, чем кистью.

Наука пока еще имеет весьма смутные представления о размерах электрона. Известно лишь только то, что они очень малы. Их поперечник по всей вероятности определяется миллионными долями миллимикрона. Не миллиметра, а именно миллимикрона! Это значит, что вирус табачной мозаики во много миллионов раз крупнее электрона!

Если мысленно увеличить электрон до размеров маленькой дробинки, то вирус табачной мозаики придется представить себе в виде огромной горы.

Дробинка, выпущенная из ружья, не может облететь гору стороной, подобно птице. Так и электроны, вылетевшие из электронной пушки, не смогут обогнуть «гору» – вирус. Электроны могут пронизать его насквозь в миллионе мест и долететь к экрану. Но не все электроны беспрепятственно пролетят сквозь вирус. Для электронов вещество почти не прозрачно и только сквозь тончайшие слои могут пролетать быстрые электроны.

Некоторые из электронов, пролетая близко от атомов (а вирусы, как и все тела в природе, состоят из атомов), будут отклонены электромагнитными полями атомов и изменят свой путь.

Там, где у вируса имеется какое-либо утолщение или уплотнение, электроны встретят больше атомов и многие из них отлетят в стороны, то есть рассеются, не достигнув экрана.

В тех местах, где вирус тоньше, где атомов меньше, электроны пройдут более свободно. И на экране получится тень вируса – более темная там, где вещество уплотнено, и более светлая, где веществе тонко.

Однако пытаться разглядеть электронную тень вируса – дело совершенно бессмысленное. Тень вируса будет почти столь же мала и так же невидима, как и сам вирус, – портрет этого врага человека, сделанный в натуральную величину, бесполезен.

Получить сильно увеличенные изображения вирусов и других мельчайших телец можно только в том случае, если найдется способ подчинить электронный луч законам оптики, то есть заставить его преломляться и фокусироваться – давать увеличенное изображение предмета.

Само собой разумеется, что применить для этой цели стеклянные линзы не удастся. Не только стекло, но даже воздух почти непроницаем для электронного луча. Налетая на атомы и молекулы газов или других веществ, электроны отскакивают от них, почти как мячи, и рассеиваются в окружающем пространстве.

Следовательно, электронный микроскоп должен быть безвоздушным. Условия нелегкие, – только в сказках бывают такие загадки. Но все же эту трудность удалось преодолеть. Воздух из корпуса микроскопа откачали, а линзами послужили электрические или магнитные поля.

Магнитным полем можно заставить электрон лететь по спирали, проделывать сложные сальто и петли.

Поэтому магнитные поля, создаваемые катушками определенной формы, оказались прекрасными линзами для электронного луча (рис. 75).

Рис. 75. Магнитное поле служит линзой для электронных лучей.

Теоретические расчеты показывали, что электронный микроскоп при достаточном его усовершенствовании способен дать полезное увеличение не в тысячу раз, как оптический микроскоп, а в миллионы раз. Он должен позволить четко различать частицы размером в сотые доли миллимикрона. Электронный микроскоп может снять «шапку-невидимку» с вирусов, со всего необъятного мира ничтожно-малых телец и даже с молекул.

Советский электронный микроскоп

В начале 1940 года академик А. А. Лебедев вместе со своими сотрудниками В. Н. Верцнером и Н. Г. Зандиным начал проектировать и строить первый советский электронный микроскоп.

В обычном световом микроскопе в его нижней части помещается источник света или зеркальце, отражающее лучи какого-либо источника света. Его лучи проходят сквозь стеклянную линзу, которая называется конденсорной или собирательной. Она собирает световые лучи в конический пучок и направляет их на стеклянную пластинку, на которой лежит исследуемый предмет.

Световые лучи, прошедшие сквозь этот предмет, попадают в первую увеличительную линзу микроскопа, которая называется объективной линзой, так как обращена к объекту исследования.

Объективная линза увеличивает изображение предмета примерно в 50 раз.

Это увеличенное изображение исследователь рассматривает сквозь окулярную линзу, тоже дающую увеличение в 10–20 раз.

В результате общее увеличение обеих линз – объективной и окулярной – получается равным произведению этих чисел, то есть от 500 до 1000 раз.

В электронном микроскопе вместо источника света имеется электронная пушка. Она посылает пучок электронных лучей, который попадает в первую – конденсорную линзу микроскопа.

Разумеется, эта линза не стеклянная, стекло было бы тут только помехой, и ее форма ничем не напоминает увеличительное стекло. Это всего лишь электромагнитная катушка с отверстием по оси. Сквозь это отверстие проходит электронный луч. Внутри катушки нет ни стекол, ни воздуха, так как из электронного микроскопа выкачан почти весь воздух. Но называется такая катушка – линзой, потому что ее действие на электронный луч подобно действию стеклянной линзы на световой луч (рис. 76).

Рис. 76. Устройство электронного микроскопа подобно устройству оптического микроскопа.

Световые лучи, выходящие из одной точки, пройдя сквозь двояковыпуклую линзу, преломляются в стекле, отклоняются от прежнего направления и собираются коническим пучком на объекте.

Точно также и электроны, пролетев сквозь отверстие катушки-линзы, фокусируются – сходятся конусом и попадают на предметный «столик», создавая на нем яркое «электронное освещение». В центре «столика» вырезано круглое отверстие. Поверх этого отверстия натягивают тончайшую (толщиной 0,1–0,2 микрона) прозрачную пленку коллодия, на которой помещают то, что хотят исследовать.

Объектом исследования могут служить колонии вирусов или бактерий, частицы какого-либо вещества, мельчайшие кристаллы и т. п.

Электроны, летящие со скоростью в несколько тысяч километров в секунд}у, пронизывают предметы, лежащие на пленке.

В тех местах, где вещество более плотно или имеется какое-либо утолщение, электроны встречают больше препятствий и, рассеиваясь, несут большие потери в своих рядах. Места менее плотные электроны преодолевают с меньшим отсевом: электронный поток получается здесь плотнее, гуще.

Чтобы изображение предметов получилось увеличенным, электронный пучок по пути от предметного столика до экрана проходит сквозь две магнитные линзы.

Сразу же за предметным столиком электронный ноток перехватывает объективная катушка-линза.

Она собирает электроны, выходящие из каждой точки предмета, и таким образом дает промежуточное, сильно увеличенное изображение.

Следующая линза, которая в оптическом микроскопе называется окулярной, потому что посылает лучи в глаз наблюдателя (по-латински окулюс – глаз), в электронном микроскопе получила название проекционной, потому что она отбрасывает изображение на светящийся под ударами электронов экран.

Проекционная линза еще больше увеличивает изображение.

Экран электронного микроскопа будет светиться не везде одинаково. Где электронов упадет побольше, там и свечение будет поярче, а где электронный поток потерял значительную часть электронов, экран будет светиться слабее. На экране вырисуется изображение предмета.

Кроме линз на пути электронного пучка стоят еще диафрагмы – металлические пластинки с отверстиями, ограничивающими ширину пучка. Электроны, которые в результате встреч с атомами рассматриваемого предмета слишком сильно отклонились в сторону, натыкаются на диафрагмы и не проходят сквозь их отверстия. Диафрагмы служат возле линз как бы привратниками: они пропускают вперед только ту часть пучка электронных лучей, которая несет к экрану правильное, неискаженное изображение.

Кроме того, в электронном микроскопе имеется несколько вспомогательных механизмов – два насоса, которые откачивают воздух из внутренней полости прибора, электрооборудование, которое подает высокое напряжение, фотокамера для фотографирования изображений, приборы управления.

Первый образец советского электронного микроскопа был готов в середине 1940 года и давал увеличение в десять тысяч раз, то есть вдесятеро больше своего оптического собрата.

Ободренные первым успехом, ученые стали строить вторую модель, которая должна была дать увеличение в 25 тысяч раз!

Увеличение в сто тысяч раз

Создателям первого советского электронного микроскопа академику А. А. Лебедеву, В. Н. Верцнеру и Н. Г. Зандину была присуждена Сталинская премия.

В модели 1947 года, законченной к тридцатилетию Советской власти, изобретатели применили много новых усовершенствований.

Рис. 77. Расположение основных частей электронного микроскопа.

Так как электронный микроскоп увеличивает изображение в 25 тысяч раз, а фотографию можно увеличить еще в 4 раза – общее увеличение достигло 100 000 раз!

И это далеко не предел. Электронный микроскоп еще далек от совершенства и пока только «учится» смотреть.

Но учится он быстро, быстрей своего предшественника. За 300 лет оптический микроскоп достиг наибольшего полезного увеличения в тысячу раз. Электронный микроскоп уже дал увеличение в 100 000 раз.

Когда электронный микроскоп приобретет полную меру своей зоркости, он поможет науке еще глубже проникнуть в мир ничтожно-малых существ и даже молекул.

Уже самые первые наблюдения, сделанные с помощью электронного микроскопа, раскрыли загадки, перед которыми наука стояла до сих пор как бы с завязанными глазами.

До изобретения электронного микроскопа врачи не знали, почему человек, заболевший туберкулезом, несмотря на самое энергичное лечение, иногда буквально сгорает в несколько недель; в других же случаях он сравнительно быстро поправляется. Иногда туберкулезные палочки оказываются невероятно живучими и зловредными, а иногда настолько слабыми, что гибнут сами собой.

Электронный микроскоп раскрыл секрет этого злейшего врага человека. Оказалось, что туберкулезные бациллы способны надевать на себя панцырь – плотную жировосковую оболочку, которая оберегает их от действия лекарств и защитных сил организма. Тайна панцыря этого маленького чудовища теперь раскрыта, и медицина нашла способ борьбы с опаснейшей болезнью человека.

С помощью электронного микроскопа удалось увидеть бактериофагов. Эти таинственные друзья– невидимки оказались маленькими шариками с длинными хвостиками. Длина хвостика бактериофага равна примерно 100 или 120 миллимикронам, а его круглое тельце раза в 2–3 меньше хвостика. Поперек самой тонкой, паутинной, нити уляжется 30 телец бактериофагов.

«Почуяв» присутствие дизентерийной бактерии, бактериофаги устремляются к ней со всех сторон и облепляют ее, как муравьи гусеницу, забравшуюся в муравейник. Присосавшиеся бактериофаги вызывают быстрый распад болезнетворной бактерии (рис. 78).

Рис. 78. Бактериофаги атакуют возбудителя дизентерии. Увеличение 28 000 раз.

К сожалению, в безвоздушном пространстве электронного микроскопа под воздействием электронного луча гибнет все живое. Поэтому на снимке видны не живые бактериофаги, а мертвые.

Они погибли вместе с дизентерийным микробом в тот момент, когда шли на него в атаку.

Возможно, что ученым удастся преодолеть этот недостаток электронного микроскопа, и тогда можно будет понаблюдать, как движутся бактериофаги и как они нападают и уничтожают микробов.

Особенно поразительные результаты дали наблюдения вирусов. Рисунок 79 изображает вирусы гриппа – оказывается, они имеют вид шариков.

Рис. 79. Снимок вирусов гриппа. Увеличение 35 000 раз.

Об их размерах позволяет судить масштаб, – на рисунке нарисована черная линия, длина которой соответствует одной десятитысячной доле сантиметра – микрону.

Некоторые вирусы, выделенные из зараженных тканей, кристаллизуются почти так же, как кристаллизуются соль, сахар или квасцы. В кристаллическом виде это полупрозрачное белковое вещество. Его можно несколько раз подряд растворять в воде и снова кристаллизировать. Никаких признаков жизни оно не подает.

Попадая в живые ткани растений, это вещество заражает его. Кристаллы вируса начинают увеличиваться в числе, проявляя тем самым способность размножаться.

Белковые вещества, из которых состоят вирусы, – это особая форма организованной материи, которая, как предполагают биологи, стоит на грани живой и мертвой природы.

В течение многих веков в науке господствовало убеждение, внушенное религией, будто бы жизнь, все живое, способное питаться, дышать, расти и размножаться, есть творение божественных сил и что оно резко отличается от неживого, неспособного питаться, расти и размножаться.

Идеалистическая философия учила, что между живой и мертвой природой лежит непреодолимая пропасть, разграничивающая эти два противоположных мира. Никакого звена, связывающего живое с неживым, она не допускала.

Против порочного идеалистического мировоззрения, увлекавшего науку на ложный путь, страстно боролся Владимир Ильич Ленин. Еще в 1908 году он писал: «Все грани в природе условны, относительны, подвижны, выражают приближение нашего ума к познанию материи».[23]23
  В. И. Ленин, Соч., т. 14, стр. 265


[Закрыть]

Электроника заставила воочию убедиться в справедливости гениального предвидения В. И. Ленина. Она подвела исследователей к грани между живой и неживой природой, и никакой пропасти там не оказалось. Грань между живым и неживым действительно условна, относительна, подвижна.

Изучение нуклеопротеидов, возможно, позволит ученым разгадать еще одну тайну природы – создать своими руками молекулы живого белка, способного питаться, дышать, расти и размножаться.

И это будет величайшим открытием, грандиозной победой человеческого ума, равной которой не было за всю историю науки.


    Ваша оценка произведения:

Популярные книги за неделю