Текст книги "Неприятности с физикой: взлёт теории струн, упадок науки и что за этим следует"
Автор книги: Ли Смолин
Жанр:
Физика
сообщить о нарушении
Текущая страница: 21 (всего у книги 31 страниц)
15
Физика после теории струн
В последних двух главах мы показали, что имеются основания ожидать значительного прогресса в поиске законов природы. Имеются указания, что удивительные экспериментальные открытия могут быть прямо за углом. И далеко идущее расширение теории относительности предлагает предсказания для осуществляемых экспериментов. Верна двойная СТО или нет, это реальная наука, поскольку эксперименты, которые сейчас на полном ходу, или подтвердят, или отвергнут её основные предсказания.
Теоретики и экспериментаторы, чью работу я описывал в последних двух главах, уже торжественно открыли пост-струнную эру в фундаментальной физике. В этой главе я предприму с вами тур по этому новому миру, освещая самые многообещающие идеи и разработки. Заглянув за пределы теории струн, мы найдём благотворное возрождение фундаментальной теории, сделанное старым способом – через тяжёлое, сконцентрированное размышление об основных вопросах, заботливое по отношению как к математике, так и к экспериментальной физике. Во всех пограничных областях – квантовой гравитации, основаниях квантовой физики, физике элементарных частиц и космологии – смелые новые идеи развиваются в тандеме с захватывающими новыми экспериментами. Эти инициативы должны быть взращены, или они умрут незрелыми, но они показывают большие перспективы.
Начнём с области, в которой мы видели быстрый прогресс: с подходов к квантовой гравитации, которые, скорее, включают в себя великое открытие Эйнштейна, что геометрия пространства-времени является динамической и зависящей от обстоятельств, чем уклоняются от него..
Как я несколько раз подчёркивал, недостаточно иметь теорию с гравитонами, сделанными из струн, шевелящихся в пространстве. Нам нужна теория о том, что составляет пространство, независимая от фона теория. Как описывалось ранее, успех ОТО демонстрирует, что геометрия пространства не фиксирована. Она является динамической и эволюционирует во времени. Это основное открытие, которое не может быть отменено, так что любая будущая теория должна заключать его в себе. Теория струн этого не делает, так что, если теория струн обоснована, за ней должна лежать более фундаментальная теория – которая является фоново-независимой. Другими словами, обоснована теория струн или нет, мы всё ещё должны открыть независимую от фона теорию квантовой гравитации.
К счастью, благодаря трудам последних двадцати лет мы многое знаем о том, как построить такую теорию. Область фоново-независимых подходов к квантовой гравитации берёт начало с 1986 года, точно через два года после первой революции теории струн. Катализатором была публикация физика-теоретика Абэя Аштекара, тогда работавшего в Сиракузском университете, о переформулировке ОТО, которая делает её уравнения намного проще[93]93
A. Ashtekar, «New Variables for Classical and Quantum Gravity,» <Новые переменные для классической и квантовой гравитации>, Phys. Rev. Lett., 57(18): 2244-47 (1986).
[Закрыть]. Достаточно интересно, он сделал это, выразив теорию Эйнштейна в форме, очень близкой к форме калибровочных теорий – теорий, лежащих в основе стандартной модели физики частиц.
К сожалению, большинство струнных теоретиков не уделило внимания выдающемуся прогрессу, сделанному в области квантовой гравитации за эти последние двадцать лет, так что две области развивались отдельно друг от друга. Это отсутствие контактов может показаться странным постороннему. Оно определённо кажется странным мне, поэтому я делал всё, от меня зависящее, чтобы изменить его, убеждая каждое сообщество в достоинствах другого. Но я не могу сказать, что я достиг большого успеха. Отказ людей, которые работают над одной и той же проблемой с разных точек зрения, общаться друг с другом является частью того, что привело меня к уверенности, что физика находится в кризисе – и к тяжёлым раздумьям о том, как её спасти.
Вся атмосфера области квантовой гравитации отличается от атмосферы теории струн. Тут нет грандиозных теорий, нет прихотей или моды. Здесь есть просто немного очень хороших людей, тяжело работающих над несколькими тесно связанными идеями. Имеется несколько направлений исследований, но имеются также некоторые объединяющие идеи, что придаёт этой области слаженность в целом.
Главная объединяющая идея проста для постановки: не стартовать с пространства или с чего-либо, движущегося в пространстве. Стартовать с чего-либо, что является чисто квантово-механическим и имеет, вместо пространства, некоторый вид чисто квантовой структуры. Если теория верна, тогда пространство должно возникать, представляя некоторые усреднённые свойства структуры, – в том же смысле, как температура возникает как представление усреднённого движения атомов.
Таким образом, многие квантово-гравитационные теоретики уверены, что имеется более глубокий уровень реальности, на котором пространство не существует (это есть доведение фоновой независимости до её логического предела). Поскольку теория струн требует существования фоново-независимой теории, чтобы иметь смысл, многие струнные теоретики указывали, что они согласны. В определённом ограниченном смысле, если сильная форма предположения Малдасены (см. главу 9) окажется верной, девятимерная геометрия возникнет из фиксированной трёхмерной геометрии. Таким образом, не удивительно слышать слова Эдварда Виттена, которые он недавно произнёс в Институте теоретической физики Кавли в Университете Калифорнии, Санта Барбара, что
Некоторые струнные теоретики, наконец, начали принимать во внимание этот момент, и можно только надеяться, что они доведут до конца изучение конкретных результатов, которые уже были получены. Но, фактически, большинство людей в квантовой гравитации имеют в виду нечто более радикальное, чем предположение Малдасены.
Начальная точка не имеет ничего общего с геометрией. Что имеют в виду многие из нас, когда мы говорим, что пространство является эмерджентным, это что континуум пространства является иллюзией. Точно так же, как кажущаяся гладкость воды или шёлка скрывает факт, что вещество сделано из дискретных атомов, мы полагаем, что гладкость пространства не является реальным и что пространство возникает как приближение чего-то, состоящего из строительных блоков, которые мы можем оценить. В некоторых подходах просто предполагается, что пространство сделано из дискретных «атомов»; в других это предположение строго выводится путём комбинирования принципов ОТО и квантовой теории.
Другая объединяющая идея заключается в важности причинности. В ОТО пространственно-временная геометрия говорит лучам света, как распространяться. Поскольку ничто не может двигаться быстрее света, раз уж вы знаете, как распространяется свет, вы можете определить, какие события могут быть причиной отдельных событий. Если даны две происходящие вещи, первая может быть причиной второй, только если частица, распространяющаяся от первой ко второй, движется со скоростью света или медленнее, чем скорость света. Таким образом, пространственно-временная геометрия содержит информацию о том, какие события являются причиной каких других событий. Об этом говорят, как о причинной структуре пространства-времени.
Дело не только в том, что пространственно-временная геометрия определяет, чем являются причинные связи. Это может быть перевёрнуто: причинные связи могут определять пространственно-временную геометрию, поскольку большая часть информации, которая вам нужна, чтобы определить геометрию пространства-времени, фиксирована, если вы знаете, как перемещается свет.
Легко говорить о пространстве или пространстве-времени, возникающем из чего-то более фундаментального, но те, кто попытался развить эту идею, нашли её трудной для реализации на практике. На самом деле несколько ранних подходов потерпели неудачу. Мы теперь уверены, что они потерпели неудачу потому, что они игнорировали роль, которую причинность играет в пространстве-времени. Сегодня многие из нас, работая над квантовой гравитацией, уверены, что причинность сама является фундаментальной – и, таким образом, имеет смысл даже на уровне, где понятия пространства и времени исчезают[95]95
Это не всегда было превалирующим убеждением; придание первоочерёдной роли причинности должно быть приписано Роджеру Пенроузу, Рафаэлю Соркину, Фэй Даукер и Фотини Маркопоулоу.
[Закрыть].
Самые успешные на сегодняшний день подходы к квантовой гравитации объединяют эти три базовые идеи: что пространство является эмерджентным, что более фундаментальное описание дискретно и что это описание содержит причинность в некотором фундаментальном смысле.
Текущее изучение квантовой гравитации в некоторых отношениях аналогично физике столетней давности, когда люди были уверены в атомах, но не знали деталей атомной структуры. Но, несмотря на это неведение, Людвиг Больцман, Эйнштейн и другие смогли довольно много понять о веществе, используя только факт, что оно состоит из атомов. Ничего больше не зная, кроме приблизительного размера атома, они даже смогли сделать предсказания наблюдаемых эффектов. Аналогично, мы смогли вывести важные результаты из простых моделей, основанных только на трёх принципах эмерджентности, дискретности и причинности. Фиксируя наше незнание деталей, эти модели делают простейшие возможные предположения о дискретных единицах пространства-времени, а затем смотрят, что из них может получиться.
Самая успешная из этих моделей была придумана Ренатой Лолл и Яном Aмбьорном и названа причинными динамическими триангуляциями[96]96
См., например, R. Loll, J. Ambjorn, and J. Jurkiewicz, «The Universe from Scratch,» <Вселенная с самого начала>, [http://arxiv.org/abs/hep-th/0509010].
[Закрыть]. Это, возможно, слишком техническое название для подхода с очень простой стратегией, которая заключается в представлении базовых причинных процессов простыми строительными блоками, которые на самом деле выглядят как кубики, с которыми играют дети (см. Рис. 14). Это может быть названо подходом Бакминстера Фуллера{21}. Главная идея в том, что пространственно-временная геометрия выстроена в виде кучи большого количества блоков, каждый из которых представляет простой причинный процесс. Имеется несколько простых правил, которые управляют тем, как блоки могут свалиться в кучу, и простая формула, которая даёт квантово-механическую вероятность для каждой такой модели квантового пространства-времени.
Одно из правил, которые постулировали Лолл и Амбьорн, заключается в том, что каждое квантовое пространство-время должно рассматриваться как последовательность возможных пространств, которые сменяются одно за другим, подобно тиканью универсальных часов. Утверждается, что временная координата произвольна, как и в ОТО, но факт, что история мира может рассматриваться как последовательность геометрий, которые сменяют одна другую во времени, отсутствует.
Рисунок 14. Модель квантовой вселенной в соответствии с программой причинной динамической триангуляции. Рисунок изображает историю модельной квантовой вселенной с тремя пространственными измерениями, одно из которых направлено горизонтально, и одним временным, которое направлено вертикально. Любезно предоставлено Ренатой Лолл.
Задавая это ограничение плюс несколько простых правил, они получили существенное свидетельство, что классическое пространство-время с его тремя измерениями пространства и одним времени возникает из простой игры по собиранию кубиков. Это до сих пор лучшее свидетельство в фоново-независимой квантовой теории гравитации, что классическое пространство-время с тремя измерениями пространства может появляться из чисто квантового мира, основанного только на дискретности и причинности. В особенности, Амбьорном и другими было показано, что если не установлено ограничение в отношении причинности, то классическая пространственно-временная геометрия не возникает.
Одним из следствий этих результатов было то, что большинство широко распространённых идей по поводу квантовой гравитации, фактически, были неправильными. Например, Стивен Хокинг и другие использовали утверждение, что причинная структура является несущественной, и что вычисления в квантовой гравитации могут быть проведены при игнорировании разницы между временем и пространством – разницы, которая существует даже в теории относительности, – и трактовке времени, как если бы оно было просто другим измерением пространства. Это Хокинг и имел в виду в тех таинственных заявлениях в своей книге «Краткая история времени», что время является «воображаемым». Результаты Амбьорна и Лолл показывают, что эта идея неверна.
До их работы некоторые люди исследовали идею, что фундаментальные строительные кирпичики пространства-времени должны содержать причинность, но никто не дошёл до теории, из которой можно было бы показать появление классического пространства-времени. Одна такая формулировка, названная теорией причинного ряда, выбирала фундаментальные единицы пространства-времени в виде голых событий, чьими единственными атрибутами были списки других событий, которые могли бы быть их причиной и причиной которых могли бы быть они. Эти идеи были даже проще, чем модели Лолл и Амбьорна, поскольку тут не было требования глобальной последовательности во времени. До сих пор было невозможно показать возникновение классического пространства-времени из этой теории.
Однако имелся один важный триумф теории причинного ряда, который заключался в том, что она, кажется, решила проблему космологической константы. Путём простого предположения, что классический мир возникает из теории причинного ряда, физик Сиракузского университета Рафаэль Д. Соркин и его сотрудники предсказали, что космологическая константа должна быть примерно столь же мала, как впоследствии и показали наблюдения. Насколько я осведомлён, до сегодняшнего дня это единственное чистое решение проблемы космологической константы. Одно это решение плюс добавление теории, базирующейся на таких простых предположениях, делает это исследовательской программой, которая заслуживает продолжения поддержки.
Английский математический физик Роджер Пенроуз также предложил подход к квантовому пространству-времени, базирующийся на принципе, что на самом деле фундаментальными являются отношения причинности. Его подход называется теорией твисторов. Он и несколько приверженцев работали над ним с 1960-х. Подход базируется на обращении обычного способа рассмотрения событий в пространстве-времени. Традиционно рассматривают, что происходит как исходное, и взаимоотношения между ним и тем, что происходит как вторичное. Таким образом, события реальны, а причинные взаимоотношения между событиями являются просто свойствами событий. Пенроуз нашёл, что этот способ взгляда на вещи может быть перевёрнут. Вы можете принять элементарные причинные процессы как фундаментальные, а затем определять события в терминах соответствий между причинными процессами. Более точно, вы можете создать новое пространство, состоящее из всех световых лучей в пространстве-времени. Затем вы можете перенести всю физику в это пространство световых лучей. Результатом является немыслимо красивая конструкция, которую Пенроуз назвал пространством твисторов.
Первые двадцать лет после того, как Пенроуз её предложил, теория твисторов быстро развивалась. Удивительным и красивым образом многие из основных уравнений физики смогли быть переписаны в терминах пространства твисторов. На самом деле казалось, как если бы вы могли рассматривать световые лучи как самые фундаментальные вещи, а пространство и время просто как аспекты отношений между ними. Тут имелся также прогресс в унификации, поскольку уравнения, описывающие разные виды частиц, приобретали одну и ту же простую форму, когда записывались в терминах пространства твисторов. Теория твисторов частично реализовала идею, что пространство-время может возникать из другой структуры. События нашего пространства-времени оказываются определёнными поверхностями, подвешенными в пространстве твисторов. Геометрия нашего пространства-времени также возникает из структуры пространства твисторов.
Но с этой картиной имеются проблемы. Главная из них в том, что пространство твисторов понято только в отсутствие квантовой теории. И, хотя пространство твисторов очень отличается от пространства-времени, оно является гладкой геометрической структурой. До сих пор никто не знает, на что похоже квантовое пространство твисторов. Имеет ли смысл квантовая теория твисторов и будет ли возникать из него пространство-время, ещё нужно показать.
Центром теории твисторов в 1970-е был Оксфорд, и я был одним из многих, кто выкраивал время, чтобы провести его здесь. Я находил тут пьянящую атмосферу, не похожую на атмосферу, которая позже выработалась в центрах по струнной теории. Пенроузом глубоко восхищались, как будут позже Эдвардом Виттеном. Я сталкивался с экстремально талантливыми молодыми физиками и математиками, которые пылко верили в теорию твисторов. Некоторые пришли к известности как математики.
Теория твисторов определённо привела к важным успехам в математике. Она дала нам более глубокое понимание некоторых важных уравнений физики, включая главные уравнения теории Янга-Миллса, которые являются основой стандартной модели физики частиц. Теория твисторов также дала нам глубокое и ошеломляюще красивое понимание определённого набора решений ОТО Эйнштейна. Эти прозрения оказались важными в некоторых других разработках, включая петлевую квантовую гравитацию.
Но теория твисторов до сих пор не развилась в жизнеспособный подход к квантовой гравитации – главным образом, потому, что она не нашла способа включить в себя большую часть ОТО. Однако, Пенроуз и несколько коллег всё ещё не отбрасывают её. И несколько струнных теоретиков, возглавляемых Виттеном, недавно начали работать над ней, привнеся в пространство твисторов некоторые новые методы, которые быстро двинули вещи вперёд. Этот подход до настоящего времени не помог теории твисторов развиться в квантовую теорию гравитации, но он революционизировал изучение калибровочных теорий – указание, если это кому-нибудь нужно, на то, что было ошибкой так долго пренебрегать теорией твисторов.
Роджер Пенроуз не единственный первоклассный математик, который придумал свой собственный подход к квантовой гравитации. Возможно, величайший из живущих математиков – и, определённо, самый странный – это Ален Конне, который является сыном руководителя детективов из Марселя и работает большую часть своей жизни в Париже. Я люблю разговаривать с Аленом. Я не всегда понимаю всего, что он говорит, но я ухожу с головокружением как от глубины его идей, так и от абсурдности его шуточек. (К этому склоняются все разговоры, даже когда они идут о чёрных дырах или ужасных многообразиях Калаби-Яу.) Однажды он прервал выступление на конференции по квантовой космологии требованием, чтобы для оказания почтения мы все должны вставать всякий раз, когда упоминается вселенная. Но если я не всегда понимаю Алена, он всегда понимает меня; он один из тех людей, которые думают так быстро, что они заканчивают ваше высказывание за вас и постоянно усовершенствуют то, о чём вы собирались говорить. Ещё он настолько расслаблен и уверен в себе и своих идеях, что в нём нет ни грамма соперничества, и он проявляет искреннее любопытство к идеям других.
Подход Алена к квантовой гравитации восходил к основам и к изобретению новой математики, которая полностью объединяет математические структуры геометрии и квантовую теорию. Это математика, на которую я ссылался в главе 14, названа некоммутативной геометрией. Слово «некоммутативная» указывает на тот факт, что величины в квантовой теории представляются объектами, которые не коммутируют: То есть, A∙B не равно B∙A. Некоммутативность квантовой теории тесно связана с фактом, что вы не можете измерить положение частицы и её импульс одновременно. Но это кажется противоречащим сущности геометрии, которая стартует от наглядного образа поверхности. Именно способность формировать наглядный образ подразумевает полную определённость и полное знание. Сделать версию чего-то, подобного геометрии, построенной на вещах, которые не могут быть известны одновременно, на самом деле являлось основательным шагом. Что убеждает в ней, так это то, что она предлагает новую унификацию некоторых областей математики, одновременно продвигаясь вперёд как подходящая математика для следующего этапа в физике.
Некоммутативная геометрия обнаруживалась в нескольких подходах к квантовой гравитации, включая теорию струн, DSR и петлевую квантовую гравитацию. Но ни один подход не охватил глубины оригинальной концепции Конне, которую он и несколько математиков, большей частью во Франции, продолжают развивать[97]97
См., например, Alain Connes, Noncommutative Geometry, <Некоммутативная геометрия>, (San Diego: Academic Press, 1994).
[Закрыть]. Различные её версии, которые появляются в других программах, основываются на поверхностных идеях, таких как выразить координаты пространства и времени в некоммутативных величинах. Идея Конне намного глубже; она заключается в унификации оснований алгебры и геометрии. Она могла бы быть изобретением только того, кто не просто изучает математику, но стратегически и творчески мыслит по поводу структуры математического знания и его будущего.
Подобно старым твисторным теоретикам, несколько последователей, которыми обзавёлся Конне, являются его ярыми сторонниками. Для конференции по различным подходам к квантовой гравитации в Университете штата Пенсильвания Ален порекомендовал известного старейшего французского физика по имени Дэниэл Кастлер. Джентльмен за неделю до конференции прервал своё путешествие, попав в велокатастрофу, но он выкарабкался из госпиталя и добрался до Марсельского аэропорта, прибыв точно вовремя, чтобы открыть заседание следующим заявлением: «Имеется один истинный Ален, и я пророк его». Струнные теоретики являются не единственными, кто имеет своих истинных верующих, но некоммутативные геометры, несомненно, имеют лучшее чувство юмора.
Один из успехов некоммутативной геометрии в том, что она приводит непосредственно к стандартной модели физики частиц. Как открыли Ален и его коллеги, если вы берёте максвелловскую теорию электромагнетизма и записываете её в простейшей возможной некоммутативной геометрии, выскакивает модель Вайнберга-Салама, объединяющая электромагнетизм со слабыми ядерными силами. Другими словами, слабые взаимодействия вместе с Хиггсовыми полями обнаруживаются автоматически и корректно.
Вспомним из главы 2, что один из способов сказать, является ли особое объединение успешным, заключается в том, что там немедленно появляется обоснование, что теория согласуется с природой. Тот факт, что правильная унификация слабой и электромагнитной сил происходит из простейшей версии идеи Конне, является неотразимым. Это разновидность вещи, которая могла бы произойти с теорией струн, но не произошла.
Имеется другой набор подходов, которые фокусируются на том, как могли бы классическое пространство-время и физика частиц возникнуть из лежащей в основании дискретной структуры. Эти модели разрабатывались физиками из теории конденсированной материи, такими как Роберт Лафлин из Стэнфорда, Григорий Воловик из Хельсинкского технологического университета и Ксао-Гань Вэн из Массачусетского технологического института. Недавно эти подходы были подхвачены молодыми людьми в квантовой гравитации, такими как Олаф Дрейер. Эти модели примитивны, но они показывают, что аспекты СТО, такие как универсальность и верхний предел скорости, могут появляться из определённых видов дискретных квантовых систем. Одно провокационное утверждение Воловика и Дрейера заключается в том, что проблема космологической константы решена – поскольку, прежде всего, она никогда не была на самом деле проблемой. Они утверждают, что идея, что здесь была проблема, была ошибкой, следствием слишком серьёзного восприятия фоново-зависимых теорий. Ошибка, утверждают они, возникает из разделения на части основных переменных теории и трактовки некоторых из них как замороженного фона, а других как квантовых полей[98]98
O. Dreyer, «Background-Independent Quantum Field Theory and the Cosmological Constant Problem,» <Независимая от фона квантовая теория поля и проблема космологической константы>, [http://arxiv.org/abs/hep-th/0409048].
[Закрыть]. Если они правы в отношении этого, это будет самым важным результатом, который был получен от квантовой гравитации за много лет.
Рисунок 15. Спиновая сеть, которая является состоянием квантовой геометрии в петлевой квантовой гравитации и связанных с ней теориях. Показаны кванты объёма, ассоциированные с вершинами, и кванты площади, ассоциированные с рёбрами.
Рисунок 16. Спиновые сети эволюционируют во времени через серии локальных изменений, подобных этим.
Все подходы, которые я описал, являются независимыми от фона. Некоторые начинают с предположения, что пространство-время составлено из дискретных строительных кирпичиков. Одному подходу удалось сделать лучше и показать, что дискретность пространства и времени является следствием соединения вместе принципов квантовой теории и теории относительности. Это то, чего достигла петлевая квантовая гравитация. Она так и начала с революционной переформулировки Аштекаром эйнштейновской ОТО в 1986 году. Мы нашли, что, не добавляя входных данных, но просто переписав теорию Эйнштейна в терминах нового набора переменных, стало возможным точно вывести, что такое квантовое пространство-время.
Ключевая идея, стоящая за петлевой квантовой гравитацией, на самом деле стара, что мы уже обсуждали в главе 7. Это идея описания поля, подобного электромагнитному полю, прямо в терминах линий этого поля. (Слово «петлевая» возникает из того факта, что в отсутствие вещества линии поля могут замыкаться, формируя петли.) Это было предвидение Хольгера Нильсена, Александра Полякова и Кеннета Вильсона, и это была одна из идей, которая привела к теории струн. В своей основе теория струн является развитием этой провидческой идеи в контексте фиксированного фона пространства и времени. Петлевая квантовая гравитация есть та же самая идея, но развитая в полностью фоново-независимой теории.
Этот труд стал возможным благодаря великому открытию Аштекара, что ОТО могла бы быть выражена на языке, подобном языку калибровочных полей. Метрика пространства-времени тогда оказывается чем-то подобным электрическому полю. Когда мы пытаемся рассмотреть соответствующие силовые линии квантово-механически, мы вынуждены рассматривать их без фона, поскольку его нет – полевые линии уже описывают геометрию пространства. Раз уж мы сделали их квантово-механически, классической геометрии не остаётся. Так что мы заново изобрели квантовую теорию поля, чтобы работать без фоновой метрики. Чтобы сократить длинную историю, это пытались сделать многие люди с различными уровнями по физике и математике, но мы преуспели. Результат является петлевой квантовой гравитацией.
Итоговая картина очень проста. Квантовая геометрия есть определённый вид графа (см. Рис. 15). Квантовое пространство-время есть последовательность событий, по которым эволюционирует граф через локальные изменения в своей структуре. Это лучше всего иллюстрируется примерами, которые показаны на Рис. 16.
Теория приводит ко многим успехам. Она оказывается конечной в трёх смыслах:
1. Квантовая геометрия конечна, так что площади и объёмы выражаются в дискретных единицах.
2. Когда вы вычисляете вероятности для квантовой геометрии эволюционировать в направлении различных историй, они всегда предстают конечными (по меньшей мере, в определённой формулировке теории, именуемой моделью Барретта-Гране).
3. Когда теория присоединяется к главной теории, такой как стандартная модель физики частиц, бесконечности, которые исходно возникают, переводятся в конечные величины: то есть, без гравитации вы должны проводить специальную процедуру, чтобы изолировать бесконечные выражения и перевести их в разряд ненаблюдаемых; с гравитацией просто нет бесконечных выражений.
Нужно подчеркнуть, что тут нет неопределённости, связанной с предварительными установками. Главные результаты петлевой квантовой гравитации обеспечиваются строгими теоремами.
Самый большой вызов, который с самого начала стоял перед петлевой квантовой гравитацией, заключался в объяснении, как возникает классическое пространство-время. В последние несколько лет был достигнут важный прогресс в этой проблеме, частично благодаря изобретению новых приблизительных процедур. Они показали, что теория имеет квантовые состояния, описывающие вселенные, где геометрия является в хорошем приближении классической. Важный шаг был предпринят год назад Карло Ровелли из Центра теоретической физики в Марселе и его коллегами, они нашли строгое подтверждение, что петлевая квантовая гравитация предсказывает, что две массы должны притягиваться друг к другу в точности тем образом, как это установлено законом Ньютона[99]99
См., например, Carlo Rovelli, «Graviton Propagator from Background-Independent Quantum Gravity,» <Функция распространения гравитона из фоново-независимой квантовой гравитации>, [http://arxiv.org/abs/gr-qc/0508124].
[Закрыть]. Эти результаты также указывают, что при низких энергиях теория имеет гравитоны, так что петлевая квантовая гравитация на самом деле является теорией гравитации.
Сегодня предпринимается много усилий, чтобы применить петлевую квантовую гравитацию к явлениям реального мира. Имеется точное описание горизонта чёрной дыры, в рамках которого получается правильная энтропия. Эти результаты согласуются со старыми предсказаниями Бекенштейна и Хокинга, что чёрные дыры имеют энтропию и температуру (см. главу 6). Как я писал, одной из горячих тем среди аспирантов и постдоков является предсказание модификаций результата Хокинга для термодинамики чёрных дыр, которые, когда будут измерены при некотором будущем изучении физической чёрной дыры, смогли бы подтвердить или фальсифицировать петлевую квантовую гравитацию.
Петлевая квантовая гравитация является также основой для моделей, которые позволяют изучать сильно изменяющиеся во времени геометрии внутри чёрных дыр. Несколько вычислений дают свидетельство, что сингулярности внутри чёрных дыр удаляются. Таким образом, время может продолжаться и за пределами точки, в которой классическая ОТО предсказывает, что оно должно закончиться. Где это происходит? Это, кажется, происходит внутри вновь созданных областей пространства-времени. Сингулярность заменяется тем, что мы называем пространственно-временным отскоком. Прямо перед отскоком материя внутри чёрной дыры сжимается. Сразу после отскока она расширяется, но внутрь нового региона, который не существовал ранее. Это очень удовлетворительный результат, так как он подтверждает ранние рассуждения Брюса ДеВитта и Джона Арчибальда Уилера. Та же самая техника использовалась, чтобы изучить, что происходит в самой ранней вселенной. И опять теоретики нашли подтверждение, что сингулярность устраняется, что означает, что вселенная существовала и до Большого Взрыва.
Устранение сингулярности в чёрных дырах обеспечивает естественный ответ на информационный парадокс Хокинга для чёрных дыр. Как отмечалось в главе 6, информация не теряется; она переходит в новый регион пространства-времени.
Проверка того, что петлевая квантовая гравитация даёт нам по поводу очень ранней вселенной, заключается в возможности рассчитать предсказания для реальных наблюдений. Два постдока в Пограничном институте, Стефан Хофманн и Оливер Винклер, недавно смогли вывести точные предсказания для квантово-гравитационных эффектов, которые могут быть обнаружены в будущих наблюдениях космического микроволнового фона[100]100
S. Hofmann and O. Winkler, «The Spectrum of Fluctuations in Singularity-free Inflationary Quantum Cosmology,» <Спектр флуктуаций в инфляционной квантовой космологии без сингулярностей>, [http://arxiv.org/abs/astro-ph/0411124].
[Закрыть].