355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Ли Смолин » Неприятности с физикой: взлёт теории струн, упадок науки и что за этим следует » Текст книги (страница 1)
Неприятности с физикой: взлёт теории струн, упадок науки и что за этим следует
  • Текст добавлен: 21 октября 2016, 21:44

Текст книги "Неприятности с физикой: взлёт теории струн, упадок науки и что за этим следует"


Автор книги: Ли Смолин


Жанр:

   

Физика


сообщить о нарушении

Текущая страница: 1 (всего у книги 31 страниц)

Ли Смолин. Неприятности с физикой: Взлёт теории струн, упадок науки и что за этим следует

Посвящается Кэй


Введение

Может быть или может не быть Бога. Или богов. Однако есть что-то облагораживающее в нашем поиске божественного. А также нечто очеловечивающее, что отражается в каждом из путей, которые открывали люди, чтобы привести нас к более глубоким уровням истины. Некоторые отыскивают трансцендентное в медитации и молитве; другие ищут его в служении своим близким людям; ещё другие, кто достаточно счастлив, чтобы иметь талант, ищут запредельное, занимаясь искусством.

Другим путём, затрагивающим самые глубокие вопросы жизни, является наука. Не то, чтобы каждый учёный являлся исследователем; большинство как раз нет. Но в рамках каждой научной дисциплины имеются те, кто страстно стремится узнать что-то самое существенно правильное о своей теме. Если они математики, они хотят знать, что есть числа или какой вид истины описывает математика. Если они биологи, они хотят знать, что есть жизнь и как она возникла. Если они физики, они хотят знать всё о пространстве и времени и что привело мир к существованию. Эти фундаментальные вопросы наиболее тяжелы для ответов, и прогресс редко бывает непрерывным. Только горстка учёных имеет настойчивость для такой работы. Это один из самых рискованных видов деятельности, но велика и награда: когда кто-то отвечает на вопрос об основаниях той или иной темы, он может изменить всё, что мы знаем.

Поскольку добавлять что-то в наше растущее хранилище знаний является их работой, учёные проводят свои дни, борясь с тем, чего они не понимают.

И те учёные, кто работает над основаниями любой заданной области, полностью осознают, что кирпичи в основании здания никогда не бывают так тверды, как склонны верить их коллеги.

Это история о поиске понимания природы не её самом глубоком уровне. Её главными героями являются учёные, которые работали, чтобы расширить наше знание основных законов физики. Период времени, к которому я буду обращаться, – грубо с 1975 года, – является промежутком и моей собственной профессиональной карьеры как физика-теоретика. Он же может быть и самым странным и разочаровывающим периодом в истории физики с тех времён, когда Кеплер и Галилей четыреста лет назад положили начало практике нашего ремесла.

История, о которой я буду говорить, могла бы читаться некоторыми как трагедия. Говоря прямо, – и чтобы обозначить линию удара, – мы потерпели неудачу. Мы унаследовали науку, физику, которая прогрессировала настолько быстро и настолько долго, что часто принималась за образец того, как должны действовать другие области науки. На протяжении более чем двух столетий до сегодняшнего времени наше понимание законов природы быстро расширялось. Но сегодня, несмотря на все усилия, то, что мы достоверно знаем об этих законах, не превышает того, что мы знали о них в 1970-е.

Насколько необычно то, что на протяжении трёх десятков лет в фундаментальной физике не произошло значительного прогресса? Даже если мы посмотрим назад более чем на двести лет, в те времена, когда наука большей частью касалась богатых любителей, это беспрецедентно. По меньшей мере, с конца восемнадцатого века существенный прогресс по ключевым вопросам достигался каждые четверть века.

К 1780 году, когда количественные химические эксперименты Антуана Лавуазье показали, что материя сохраняется, законы движения и гравитации Исаака Ньютона уже существовали почти сто лет. Но, хотя Ньютон дал нам систему для понимания всей природы, граница была широко открыта. Люди ещё только начали изучать основные факты о материи, свете и теплоте, и ещё предстояло прояснить загадочные явления вроде электричества и магнетизма.

На протяжении следующих двадцати пяти лет главные открытия были сделаны в каждой из этих областей. Мы начали понимать, что свет есть волна. Мы открыли закон, который управляет силами между электрически заряженными частицами. И мы сделали гигантский скачок в нашем понимании материи с атомной теорией Джона Дальтона. Было введено понятие энергии, интерференция и дифракция были объяснены в терминах волновой теории света, было обнаружено электрическое сопротивление и взаимосвязь между электричеством и магнетизмом.

В следующую четверть века, с 1830 по 1855 годы, возникло несколько основных концепций, лежащих в основе современной физики. Майкл Фарадей осознал, что силы передаются полями; использованная им идея привела к величайшему продвижению нашего понимания электричества и магнетизма. В течение того же периода было предложено сохранение энергии, а также второй закон термодинамики.

В следующей четверти века пионерские идеи Фарадея о полях были применены Джеймсом Клерком Максвеллом в нашей современной теории электромагнетизма. Максвелл не только объединил электричество и магнетизм, он объяснил свет как электромагнитную волну. В 1867 году он объяснил поведение газов в терминах атомной теории. В течение того же периода Рудольф Клаузиус ввёл понятие энтропии.

Период с 1880 по 1905 годы отметился открытиями электрона и X-лучей. В несколько этапов было проведено изучение теплового излучения, которое привело в 1900 году к открытию Максом Планком правильной формулы для описания тепловых свойств радиации – формулы, которая воспламенит квантовую революцию.

В 1905 году Альберту Эйнштейну было двадцать шесть лет. Он не смог получить академическую работу, несмотря на тот факт, что одни его ранние труды по физике теплового излучения могли бы рассматриваться как важный вклад в науку. Но это была только разминка. Вскоре он сосредоточился на фундаментальных вопросах физики: и первое, как относительность движения могла бы согласовываться с законами электричества и магнетизма Максвелла? Об этом он рассказал нам в своей специальной теории относительности (СТО). Должны ли мы думать о химических элементах как о ньютоновских атомах? Эйнштейн доказал нам, что должны. Как мы можем согласовать теории света с существованием атомов? Эйнштейн сказал нам, как, и в процессе показал, что свет является как волной, так и частицами. И всё это в 1905-м, во время, выкроенное из его работы в должности патентного поверенного.

Результаты эйнштейновских прозрений сказались в следующей четверти века. К 1930 году мы имели его общую теорию относительности (ОТО), которая сделала революционное утверждение, что геометрия пространства не фиксирована, а развивается во времени. Корпускулярно-волновой дуализм, открытый Эйнштейном в 1905-м, стал полностью реализованной квантовой теорией, которая дала нам детальное понимание атомов, химии, материи и радиации. К 1930-м мы также знали, что вселенная содержит гигантские количества галактик, подобных нашей собственной, и мы узнали, что они удаляются прочь друг от друга. Следствия ещё не были ясны, но мы узнали, что мы живём в расширяющейся вселенной.

С созданием квантовой теории и ОТО как части нашего понимания мира закончился первый этап революции в физике двадцатого века. Многие профессора физики, некомфортно чувствовавшие себя из-за революции в их областях компетентности, успокаивались мыслью, что мы должны бы вернуться назад к развитию науки нормальным путём, без обращения на каждом повороте к вопросам о наших основополагающих представлениях. Но это успокоение было преждевременным.

Эйнштейн умер в конце следующей четверти века, в 1955 году. К тому моменту мы узнали, как последовательно объединить квантовую теорию с СТО; это было великое достижение поколения Фримена Дайсона и Ричарда Фейнмана. Мы открыли нейтрон и нейтрино, а также сотни других предположительно элементарных частиц. Мы также поняли, что мириады явлений в природе управляются всего четырьмя силами: электромагнетизмом, гравитацией, сильными ядерными силами (которые удерживают как целое атомные ядра) и слабыми ядерными силами (ответственными за радиоактивный распад).

Следующая четверть века приводит нас к 1980-м. К этому моменту мы сконструировали теорию, объясняющую результаты всех наших экспериментов над элементарными частицами и силами на тот момент, – теорию, названную стандартной моделью физики элементарных частиц. Например, стандартная модель точно говорила нам, как протоны и нейтроны собираются из кварков, которые удерживаются вместе глюонами, носителями сильного ядерного взаимодействия. Впервые в истории фундаментальной физики теория совпала с экспериментом. С этого момента не было сделано ни одного эксперимента, который бы не соответствовал этой модели или ОТО.

Двигаясь от очень малого к очень большому, наше знание физики теперь распространилось к новой науке о космологии, где общепринятым взглядом стала теория Большого Взрыва. Мы осознали, что наша вселенная содержит не только звёзды и галактики, но и экзотические объекты, такие как нейтронные звёзды, квазары, сверхновые и чёрные дыры. К 1980 году Cтивен Хокинг уже сделал фантастическое предсказание о том что чёрные дыры излучают. Астрономы также получили доказательства, что вселенная содержит много тёмной материи – что означает, материи в форме, которая не излучает и не отражает свет.

В 1981 году космолог Алан Гут предложил сценарий для очень ранней истории вселенной, названный инфляцией. Грубо говоря, эта теория утверждает, что вселенная в очень ранний момент своей жизни прошла через рывок гигантского роста, и это объясняет, почему вселенная выглядит почти совсем одинаково в каждом направлении. Теория инфляции сделала предсказания, которые казались сомнительными до момента десятилетней давности, когда к ней начали поступать доказательства. Как об этом пишут, осталось несколько загадок, но весь объём доказательств поддерживает предсказания инфляции.

Таким образом, к 1981 году физики отпраздновали двести лет взрывного роста. Открытие за открытием углубляли наше понимание природы, поскольку в каждом случае теория и эксперимент маршировали рука об руку. Новые идеи проверялись и подтверждались, а новые экспериментальные открытия объяснялись в терминах теории. Затем в начале 1980-х ситуация вынужденно встала.

Я принадлежал к первому поколению физиков, образовавшемуся с момента установления стандартной модели физики частиц. Когда я встречаю старых друзей из колледжа и высшей школы, мы иногда спрашиваем друг друга: «Что такого мы открыли, чем бы наше поколение могло гордиться?» Если мы имеем в виду новые фундаментальные открытия, установленные экспериментом и объяснённые теорией, – открытия на уровне тех, которые только что упоминались, – ответ, который мы должны признать, таков: «Ничего!» Марк Визе является ведущим теоретиком, работающим в физике частиц за пределами стандартной модели. На недавнем семинаре в Пограничном институте теоретической физики в Ватерлоо, Онтарио, где я работаю, он говорил о проблеме, откуда взялась масса элементарных частиц. Он сказал:

«Мы были необыкновенно безуспешны в решении этой проблемы. Если я должен был бы рассказать о проблеме массы фермионов сейчас, я, вероятно, закончил бы рассказ вещами, которые я мог бы иметь в 1980-х».[1]1
  Mark Wise, «Modifications to the Properties of the Higgs Boson,» <Изменения к свойствам бозона Хиггса>, сообщение на семинаре, Март, 23, 2006. Доступно на http://streamer.perimeterinstitute.ca/mediasite/viewer/FrontEnd/Front.aspx?&shouldResize=False.


[Закрыть]

Он рассказал историю о том, как он и Джон Прескилл, другой ведущий теоретик, прибыли в 1983 году в Калифорнийский технологический институт, чтобы встретиться со своим факультетом.

«Джон Прескилл и я сидели вместе в его офисе, разговаривали… Джон сказал: „Ты знаешь, в Калтехе были боги физики, а теперь тут мы! Я стараюсь не забыть, что является важным, чтобы продолжать работать над ним.“ Затем он заговорил о том, что было известно о массах кварков и лептонов, записал это на страничке жёлтой бумаги и приколол её к своей доске для заметок… так же, чтобы не забыть поработать над ним. Через пятнадцать лет я прохожу через его офис… и мы разговариваем о чём-то, и я бросаю взгляд на его доску для заметок, и (обратите внимание!) этот листок бумаги всё ещё здесь, только всё, что было на нём написано, выгорело на солнце. Так решались проблемы!»

Чтобы быть честным, мы сделали два экспериментальных открытия в последние два десятилетия: что нейтрино имеет массу и что во вселенной доминирует загадочная тёмная энергия, которая, кажется, ускоряет расширение вселенной. Но у нас нет идей, почему нейтрино (или любая из других частиц) имеет массу или что объясняет величину их массы. Так же и с тёмной энергией, она не объясняется в терминах любой существующей теории. Поэтому, её открытие нельзя расценивать как успех, оно наводит на мысль, что имеется некоторый важнейший факт, которого нам всем не хватает. А исключая тёмную энергию, не было открыто новых частиц, не были найдены новые силы, мы не столкнулись ни с одним новым явлением, которое не было бы известно и понято двадцать пять лет назад.

Не поймите меня неправильно. Последние двадцать пять лет мы определённо были очень заняты. Достигнут гигантский прогресс в приложениях установленных теорий для различных объектов: свойств материалов, молекулярно-физических основ биологии, динамики обширных звёздных скоплений. Но когда мы подходим к расширению нашего знания о законах природы, мы не имеем настоящего прогресса. Были исследованы многие прекрасные идеи, и были выдающиеся эксперименты на ускорителях частиц и космологические наблюдения, но они, большей частью, служили для подтверждения существующих теорий. Имелось несколько скачков вперёд, но ни одного столь же определяющего или важного, как в предыдущие двести лет. Когда что-то похожее происходит в спорте или бизнесе, это называется упереться в стену.

Почему физика вдруг оказалась в затруднении? И что мы можем с этим сделать? Это центральные вопросы моей книги.

Я по натуре оптимист, и долгое время я боролся с заключением, что этот период в физике – период моей собственной карьеры – был необычно бесплодным. Для меня и многих моих друзей, кто пошёл в науку в надежде сделать важный вклад в то, что было быстро растущей областью, это был шокирующий факт, к которому мы вынуждены подойти со словами: в отличие от предыдущих поколений, мы не достигли ничего, что мы могли бы завещать пережившим нас. Это даёт начало персональным кризисам. Но, что более важно, это вызывает кризис в физике.

Главная задача для теоретической физики частиц на протяжении последних трёх десятилетий состояла в более глубоком объяснении стандартной модели. Здесь было очень много активности. Постулировались и анализировались новые теории, некоторые очень детально, но ни одна не была подтверждена экспериментально. И здесь центр проблемы: в науке, чтобы мы были уверенными в теории, она должна делать новые предсказания – отличающиеся от тех, что делали предыдущие теории, – для ещё не выполненных экспериментов. Чтобы эксперимент был осмысленным, мы должны быть в состоянии получить ответ, который расходится с этими предсказаниями. Когда это так, мы говорим, что теория фальсифицируема – уязвима по отношению к тому, чтобы оказаться опровергнутой. Теория также должна быть подтверждаема, должно быть возможным проверить новые предсказания, которые делает только эта теория. Только когда теория проверена и результаты с ней согласуются, мы можем продвинуть теорию в разряд верных теорий.

Текущий кризис в физике частиц вытекает из факта, что теории, которые предлагались за пределами стандартной модели в последние тридцать лет, распадаются на две категории. Некоторые были фальсифицируемы, и они были опровергнуты. Остаток теорий проверке не подвергался – или потому, что они не делают чистых предсказаний, или потому, что сделанные ими предсказания не проверяемы на сегодняшнем уровне технологии.

За последние тридцать лет теоретики предложили, по меньшей мере, дюжину новых подходов. Каждый подход был мотивирован убедительными гипотезами, но ни один до сегодняшнего дня не был успешен. В области физики частиц эти подходы включали техниколор, преонные модели и суперсимметрию. В области пространства-времени эти подходы включали теорию твисторов, причинные ряды, супергравитацию, динамические триангуляции и петлевую квантовую гравитацию. Некоторые из этих идей столь же экзотичны, как и их названия.

Одна теория привлекла больше внимания, чем все остальные вместе: теория струн. Причину её популярности нетрудно понять. Она претендовала на корректное описание большого и малого – как гравитации, так и элементарных частиц, – и, чтобы сделать это, она выдвинула самую смелую гипотезу из всех теорий: она постулировала, что мир содержит до сих пор не виданные измерения и намного больше частиц, чем известно в настоящее время. В то же время, она предположила, что все элементарные частицы возникают из колебаний единственной сущности – струны, – которая подчиняется простым и красивым законам. Она претендовала на роль единственной теории, которая объединяет все частицы и все силы в природе. По существу, она обещала сделать чистые и недвусмысленные предсказания для любого эксперимента, который когда-либо будет или мог бы быть сделан. В последние двадцать лет в теорию струн было направлено много усилий, но мы всё ещё не знаем, является ли она правильной. Даже после всех этих трудов теория не делает новые предсказания, которые являются проверяемыми сегодняшними – или даже мыслимыми сегодня – экспериментами. Несколько чистых предсказаний, которые она делает, уже были сделаны другими, хорошо признанными теориями.

Часть причин, по которым теория струн не делает новых предсказаний, заключается в том, что она предстаёт перед нами в бесконечном количестве версий. Даже если мы ограничимся теориями, которые согласуются с некоторыми базовыми наблюдаемыми фактами о нашей вселенной, такими как её огромный размер и существование тёмной энергии, мы останемся примерно с 10 в степени 500 различными струнными теориями, – что означает единицу с 500 нулями после неё, больше, чем количество всех атомов в известной вселенной. С таким чудовищным числом теорий почти нет надежды, что мы сможем идентифицировать результат эксперимента, который не был бы выполнен одной из них. Таким образом, что бы ни показывал эксперимент, теория струн не может быть опровергнута. Но обратное тоже имеет место: не будет сделано когда-либо никаких экспериментов, которые смогли бы проверить её правильность.

В то же время, мы очень мало понимаем в большинстве из этих теорий струн. И лишь малое число мы понимаем во всех деталях, каждая такая отдельная теория расходится с сегодняшними экспериментальными данными, обычно, по меньшей мере, в двух отношениях.

Так что мы стоим перед парадоксом. Те теории струн, которые мы знаем как изучать, известны как ошибочные. Те же, которые мы не можем изучить, мыслятся существующими в таких гигантских количествах, что ни один мыслимый эксперимент никогда не сможет их все опровергнуть.

Это не единственная проблема. Теория струн покоится на нескольких ключевых предположениях, для которых имеются некоторые основания, но нет доказательств. Даже хуже, после всех научных усилий, потраченных на её изучение, мы всё ещё не знаем, имеется ли полная и последовательная теория, которая как раз и могла бы отзываться на имя «теория струн». Фактически, то, что мы имеем, совсем не является теорией, а лишь большой коллекцией приблизительных расчётов вместе с сетью догадок, которые, если они верны, указывают на существование теории. Мы не знаем, каковы её фундаментальные принципы. Мы не знаем, на каком математическом языке она должна быть выражена – возможно, в будущем должен быть изобретён новый язык, чтобы описать её. В отсутствие обоих фундаментальных принципов (подтверждаемость, фальсифицируемость) и математической формулировки мы не можем сказать, что мы даже знаем, что провозглашает теория струн.

Вот как струнный теоретик Брайан Грин представляет это в своей последней книге «Ткань космоса»:

«Даже сегодня, более чем через три десятилетия после её первоначального озвучивания большинство струнных практиков уверены, что мы всё ещё не имеем всестороннего ответа на элементарный вопрос: что есть теория струн?… [Б]ольшинство исследователей чувствует, что наша сегодняшняя формулировка теории струн всё ещё нуждается в некой разновидности центральных принципов, которые мы нашли в основании других великих достижений».[2]2
  Brian Greene, The Fabric of the Cosmos: Space, Time and the Texture of Reality, <Ткань космоса: Пространство, время и структура реальности> (New York: Alfred A. Knopf, 2005), стр. 376.


[Закрыть]

Герард т′Хоофт, обладатель нобелевской премии за его труды в физике элементарных частиц, охарактеризовал состояние теории струн следующим образом:

«На самом деле, я не стал бы даже пытаться называть теорию струн теорией, а не моделью или даже так: просто предчувствием. В конце концов, теория должна выйти с инструкциями о том, как действовать в её рамках, чтобы идентифицировать вещи, которые она хочет описать, в нашем случае элементарные частицы, и она должна быть в состоянии, по меньшей мере, в принципе, сформулировать правила для расчётов свойств этих частиц и как делать новые предсказания для них. Представим, что я даю вам кресло, одновременно объясняя, что ножки всё ещё отсутствуют, и что сидение, спинка и подлокотники будут, вероятно, в ближайшее время доставлены. Что бы я вам ни дал, могу ли я всё ещё называть это креслом?»[3]3
  Gerard T'Hooft, In Search of the Ultimate Building Blocks, <В поиске первичных строительных блоков> (Cambridge: Cambridge University Press, 1996), стр. 163.


[Закрыть]

Дэвид Гросс, нобелевский лауреат за его труды по стандартной модели, стал с тех пор одним из самых агрессивных и грозных защитников теории струн. Даже он, закрывая недавнюю конференцию, намеревался отпраздновать прогресс теории словами:

«Мы не знаем, о чём мы говорим… Состояние физики сегодня подобно тому, что было, когда мы были озадачены радиоактивностью… Они потеряли что-то абсолютно фундаментальное. Мы потеряли, возможно, что-то столь же основательное, как и они в те времена.»[4]4
  Цитируется по New Scientist, «Nobel Laureate Admits String Theory Is in Trouble», <Нобелевские лауреаты признают, что теория струн в неприятностях>, Декабрь, 10, 2005. Это вызвало некоторую полемику, как пояснил Гросс в своём замечании на открытии 23й Иерусалимской зимней школы по теоретической физике, (полный текст доступен на http://www.as.huji.ac.il/schools/):
  «Что я на самом деле об этом думаю, так это то, что мы ещё не знаем ответа как на то, что есть теория струн, так и на то, является ли она окончательной теорией или в ней что-то пропускается, и мы, кажется, стоим перед необходимостью глубоких концептуальных изменений… именно в отношении природы пространства и времени. Но [это] далеко не доказательство, что мы должны остановить разработку теории струн – она потерпела неудачу, она закончилась, – это замечательный период.»


[Закрыть]

Но, хотя теория струн столь неполна, что даже само её существование является недоказанной гипотезой, это не останавливает многих, кто работает над ней, от уверенности, что она представляет собой единственный путь вперёд для теоретической физики. Одного известного струнного теоретика, Джозефа Полчински из Института теоретической физики Кавли в Калифорнийском университете, Санта Барбара, не так давно просили рассказать об «альтернативах струнной теории». Его первой реакцией были слова:

«оказалось, что всё это глупости, не имеется альтернатив… Все хорошие идеи являются частью теории струн.»[5]5
  J. Polchinski, сообщение на 26 м Летнем институте по физике частиц Стэнфордского линейного ускорительного центра, 1998, [http://arxiv.org/abs/hep-th/9812104].


[Закрыть]

Любош Мотль, доцент в Гарварде, недавно заявил на своём блоге, что

«наиболее вероятная причина, почему ни один… человек не убедил других в альтернативах к теории струн, заключается в том, что, вероятно, не существует альтернатив теории струн.»[6]6
  http://motls.blogspot.com/2005/09/why-no-new-einstein-ii.html.


[Закрыть]

Что тут происходит? Обычно в науке под термином теория имеется в виду нечто вполне определённое. Лайза Рэндалл, влиятельный теоретик в области частиц и коллега Мотля по Гарварду, определяет теорию как

«определённую физическую систему взглядов, которая воплощается в наборе фундаментальных предположений о мире, – и экономную систему взглядов, которая включает в себя широкое разнообразие явлений. Теория даёт особый набор уравнений и предсказаний – тех, которые подтверждаются успешным согласием с экспериментальными результатами».[7]7
  Lisa Randall, «Designing Words,» <Интригующие слова>, в Intelligent Thought: Science Versus the Intelligent Design Movement <Умные мысли: наука против движения в поддержку разумного плана>, ed. John Brockman (New York: Vintage, 2006).


[Закрыть]

Теория струн не подходит под это определение – по меньшей мере, пока не подходит. Как тогда некоторые эксперты могут быть уверены, что альтернатив теории струн нет, если они точно не знают, что она собой представляет? Что такое в точности то, чему, как они уверены, нет альтернативы? Таковы некоторые вопросы, которые заставили меня написать эту книгу.

Теоретическая физика трудна. Очень трудна. Не потому, что она содержит определённое количество математики, а потому, что она содержит большие риски. Как мы увидим снова и снова, когда будем исследовать историю современной физики, наука такого рода не может делаться без риска. Если большое количество людей много лет работает над вопросом, а ответ остаётся неизвестным, это может означать, что ответ не лёгок или не очевиден. Или это может быть вопрос, на который нет ответа.

Теория струн в тех пределах, в которых она понята, постулирует, что мир фундаментально отличается от мира, который мы знаем. Если теория струн верна, мир имеет больше измерений и намного больше частиц и сил, чем мы до сих пор наблюдали. Многие струнные теоретики говорят и пишут так, как если бы существование этих дополнительных измерений и частиц было установленным фактом, в чём не может не сомневаться хороший учёный. Неоднократно струнные теоретики говорили мне нечто вроде «Но ты имеешь в виду, что ты полагаешь возможным, что нет никаких дополнительных измерений?» Фактически, ни теория, ни эксперимент не предлагают совсем никаких доказательств существования дополнительных измерений. Одна из целей этой книги заключается в демистификации утверждений теории струн. Идеи прекрасны и хорошо мотивированы. Но чтобы понять, почему они не привели к большему прогрессу, мы должны точно выяснить, что поддержано доказательствами, а что всё ещё нет.

Поскольку теория струн является таким высокорисковым предприятием, – не поддержанным экспериментом, хотя очень щедро поддержанным академическими и научными сообществами, – имеются только два пути окончания этой истории. Если теория струн окажется верной, струнные теоретики окажутся величайшими героями в истории науки. На основе горсти рассуждений, – ни одно из которых не имеет недвусмысленного прочтения, – они смогли открыть, что реальность намного более безбрежна, чем это раньше воображалось. Колумб открыл новый континент, не известный королю и королеве Испании (равно как испанские монархи были неизвестны жителям Нового Света). Галилей открыл новые звёзды и луны, а затем астрономы открыли новые планеты. Всё это побледнеет перед открытием новых измерений. Более того, многие струнные теоретики верят, что мириады миров, описываемых гигантским числом струнных теорий, реально существуют – как другие вселенные, которые нам невозможно увидеть непосредственно. Если они правы, мы видим намного меньшую часть реальности, чем часть земли, которую когда-либо видела любая группа обитателей пещеры. Никто в человеческой истории не мог когда-либо точно догадаться о таком огромном расширении известного мира.

С другой стороны, если струнные теоретики ошибаются, они не могут просто немножко ошибаться. Если новые размерности и симметрии не существуют, мы должны будем считать струнных теоретиков среди величайших неудачников науки, вроде тех, кто продолжал работать над эпициклами Птолемея, когда выдвинулись вперёд Кеплер и Галилей. Их пример будет предостерегающим рассказом о том, как не надо делать науку, как не надо упускать теоретические гипотезы далеко за пределы того, что рационально можно утверждать как начало привлекательной фантазии.

Один результат взлёта теории струн заключается в том, что сообщество людей, которые работают в фундаментальной физике, оказалось расколотым. Многие учёные продолжают работать над теорией струн, и за работу в этой области ежегодно присуждается, возможно, порядка пятидесяти новых степеней докторов философии{1}. Но имеются некоторые физики, которые настроены глубоко скептически, – кто или никогда не видел смысла, или кто к настоящему моменту отказался от ожидания знака, что теория имеет последовательную формулировку или делает реальные экспериментальные предсказания. Стороны раскола не всегда дружелюбны. С каждой стороны выражаются сомнения в профессиональной компетентности и этических стандартах другой стороны, и поддерживать дружеские отношения через имеющееся разделение – это настоящая работа.

В соответствии с картиной науки, которую мы изучали в школе, ситуации, подобные этой, не предполагают развития. Вся суть современной науки, как мы учились, в том, что она есть метод, который приводит к прогрессу в нашем понимании природы. Несогласие и противостояние, конечно, необходимы науке, чтобы прогрессировать, но при этом всегда предполагается, что имеется путь разрешения споров посредством эксперимента или математики. В случае теории струн, однако, кажется, что этот механизм отказал. Многие сторонники и критики теории струн настолько утвердились в своих взглядах, что тяжело получить радушное обсуждение проблемы даже среди друзей. «Как ты можешь не видеть красоту теории? Как теория могла бы делать всё это и не быть верной?» – говорят струнные теоретики. Это провоцирует не менее горячий ответ от скептиков: «Вы потеряли свой ум? Как вы можете верить так сильно в какую бы то ни было теорию при полном отсутствии экспериментальной проверки? Вы забыли, как наука допускает к результату? Как вы можете быть уверены, что вы правы, когда вы даже не знаете, что из себя представляет теория?»

Я писал эту книгу в надежде, что она внесёт вклад в честную и полезную дискуссию как среди экспертов, так и среди читателей-непрофессионалов. Несмотря на то, что я видел в последние несколько лет, я верю в науку. Я верю в способность научного сообщества подняться над раздражительностью и разрешить противоречия через рациональные аргументы, основывающиеся на стоящих перед нами доказательствах. Я сознаю, что даже только поднимая эти проблемы, я вызову гнев некоторых моих друзей и коллег, которые работают в теории струн. Я могу только настаивать, что я пишу эту книгу не для атаки на теорию струн или тех, кто в неё верит, но и без восхищения перед ней, и, главным образом, как выражение веры в физическое научное сообщество.

Так что это книга не про «нас» против «них». В течение моей карьеры я работал как над струнной теорией, так и над другими подходами к квантовой гравитации (то есть, к согласованию ОТО Эйнштейна с квантовой теорией). Даже если большая часть моих усилий прошла в этих других подходах, были периоды, когда я жадно верил в теорию струн и посвящал себя решению её ключевых проблем. Хотя я не решил их, я написал восемнадцать статей по этой теме; таким образом, ошибки, которые я буду обсуждать, являются моими ошибками в той же мере, как и любого другого. Я буду говорить о гипотезах, в правильности которых была широкая уверенность, несмотря на то, что ни одна не была подтверждена. Но я находился среди верующих, и я выбирал направление своих исследований, основываясь на этой вере. Я буду говорить о давлении, которое чувствуют юные учёные и которое принуждает их для получения достойной карьеры заняться темами, санкционированными генеральным направлением. Я чувствовал это давление на себе, и было время, когда я позволил своей карьере управляться им. Конфликт между необходимостью независимо выражать научное мнение и делать это способом, который не отчуждает тебя от главного потока, был ещё одним, что я также испытал. Я написал эту книгу не для того, чтобы критиковать учёных, кто сделал отличные от моего выборы, а для изучения вопроса, почему учёные вообще должны конфликтовать из-за таких выборов.


    Ваша оценка произведения:

Популярные книги за неделю