355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Ли Смолин » Неприятности с физикой: взлёт теории струн, упадок науки и что за этим следует » Текст книги (страница 15)
Неприятности с физикой: взлёт теории струн, упадок науки и что за этим следует
  • Текст добавлен: 21 октября 2016, 21:44

Текст книги "Неприятности с физикой: взлёт теории струн, упадок науки и что за этим следует"


Автор книги: Ли Смолин


Жанр:

   

Физика


сообщить о нарушении

Текущая страница: 15 (всего у книги 31 страниц)

Сасскайнд, Линде и другие критиковали идею космологического естественного отбора, поскольку они утверждали, что множество вселенных, созданных вечной инфляцией будет превосходить любое число сделанных через чёрные дыры. Чтобы рассматривать это возражение, важно знать, насколько надёжным является предсказание вечной инфляции. Обстоятельства временами складываются так, что тяжело иметь инфляцию совсем без вечной инфляции. Тот факт, что некоторые предсказания инфляционной космологии подтвердились, принимается как свидетельство в её пользу. Однако, двигаясь от инфляции к вечной инфляции, предполагается, что там нет препятствий для распространения заключений, связанных с нашей сегодняшним космологическим масштабом, на безмерно большие масштабы. С этим имеется две проблемы: первая в том, что экстраполяция на большие масштабы в настоящее время подразумевает в некоторых моделях инфляции экстраполяцию к слишком маленьким масштабам в ранней вселенной. (Я не буду объяснять этого здесь, но это верно для нескольких инфляционных моделей.) Это означает, что, чтобы получить инфляционную вселенную, безмерно бо́льшую, чем наша современная вселенная, мы должны распространить описание ранней вселенной до времён безмерно меньших, чем планковское время, до которого эффекты квантовой гравитации доминировали над эволюцией вселенной. Это проблематично, поскольку обычное описание инфляции предполагает, что пространство-время является классическим и в нём нет эффектов квантовой гравитации; более того, некоторые теории квантовой гравитации предсказывают, что не бывает временного интервала, более короткого, чем планковское время. Вторая, имеются указания, что предсказания инфляции не удовлетворяются на самых больших масштабах, которые мы в настоящее время можем наблюдать (см. главу 13). Поэтому экстраполяция от инфляции к вечной инфляции попадает как в теоретические, так и в наблюдательные неприятности, так что она не кажется сильным возражением против космологического естественного отбора.

Несмотря на факт, что антропный принцип не приводит ни к каким реальным предсказаниям, и маловероятно, что приведёт, Сасскайнд, Вайнберг и другие ведущие теоретики приняли его как сигнал о революции не только в физике, но и в нашей концепции того, что такое физическая теория. Вайнберг заявил в недавнем эссе:

Самые большие успехи в истории науки были отмечены открытиями по поводу природы, но с определённого поворотного пункта мы делаем открытия по поводу самой науки… Теперь мы можем быть в новом поворотном пункте, радикальное изменение в котором мы принимаем как допустимое основание физической теории… Чем большее число возможных величин физических параметров обеспечивается струнным ландшафтом, тем больше струнная теория оправдывает антропное обоснование как новый базис физических теорий: Любые учёные, которые изучают природу, должны жить в части ландшафта, где физические параметры принимают значения, подходящие для появления жизни и её эволюции в учёных[64]64
  S. Weiberg, «Living in the Multiverse,» <Жизнь в мультивселенной>, [http://arxiv.org/abs/hep-th/0511037].


[Закрыть]
.

Стивен Вайнберг заслуженно почитается за его вклад в стандартную модель, и его письменные работы обычно выделяются убедительностью и сдержанной рациональностью. Но просто оценим, что, раз уж вы основываетесь на подобном, вы теряете способность отнести свою теорию к тому виду тестов, которые, как снова и снова показывает история науки, требуются для отсеивания правильных теорий из кучи красивых, но неверных. Чтобы делать это, теория должна предлагать особые и точные предсказания, которые можно либо подтвердить, либо отвергнуть. Если имеется высокий риск не получить подтверждения, то подтверждение гораздо выше ценится. Если нет ни того, ни этого риска, тогда нет способа продолжать науку.

Мне кажется, что полемика о том, как наука сталкивается с недавним огромным струнным ландшафтом, сводится к трём возможностям:

1. Теория струн верна и хаотическая мультивселенная верна, так что, чтобы приспособиться к ним, мы должны поменять правила, которыми управляется научная деятельность, поскольку в соответствии с обычной научной этикой мы не должны позволять себе верить в теорию, которая не делает однозначных предсказаний, на основании которых её можно было бы подтвердить или опровергнуть.

2. В конце концов будет найден некоторый путь, чтобы вывести истинные и проверяемые предсказания из теории струн. Это может быть сделано либо через демонстрацию, что реально имеется однозначная теория, или через другую, нехаотическую теорию мультивселенной, которая приведёт к подлинным проверяемым предсказаниям.

3. Теория струн не является правильной теорией природы. Природу лучше описывать другой теорией, которая должна быть ещё открыта или должна быть ещё принята, которая приводит к истинным предсказаниям, которые эксперимент в итоге подтвердит.

Для меня поразительным является число различных учёных, кто кажется не в состоянии принять возможность того, что как теория струн, так и гипотеза хаотической мультивселенной являются ложными. Вот подборка соответствующих комментариев:

«Антропный принцип настолько сильно идёт против исторических целей теоретической физики, что я долго сопротивлялся ему даже после осознания его вероятной необходимости. Но сейчас я побеждён.»

ДЖОЗЕФ ПОЛЧИНСКИ

«Те, кому не нравится антропный принцип, просто не хотят признавать очевидного.»

АНДРЕЙ ЛИНДЕ

«Возможное существование гигантского ландшафта является восхитительным развитием в теоретической физике, которое заставляет нас радикально переосмыслить многие из наших представлений. Моё инстинктивное чувство говорит, что это вполне может быть верным.»

НИМА АРКАНИ-ХАМЕД (Гарвардский университет)

«Я думаю, вполне правдоподобно, что ландшафт реален.»

МАКС ТЕГМАРК (Массачусетский технологический институт)

Даже Эдвард Виттен кажется поставленным в тупик:

«Я в самом деле не могу сказать ничего резкого. Я думаю, мы узнаем больше.»[65]65
  Из недавнего обозрения в Seed Magazine по поводу взаимосвязи между антропным принципом и разрастанием теорий струн: http://www.seedmagazine.com/news/2005/12/.


[Закрыть]

Среди процитированных здесь нет ни одной личности, кем бы я глубоко не восхищался. Тем не менее, мне кажется, что любая непредубеждённая персона, не запятнавшая себя иррациональной верой в теорию струн, должна бы ясно видеть эту ситуацию. Теория не способна сделать ни одного предсказания, через которые она может быть проверена, а некоторые из её сторонников вместо того, чтобы согласиться с этим, пытаются изменить правила так, что их теория не будет нуждаться в проведении обычных испытаний, которым мы подвергаем научные идеи.

Кажется рациональным отвергнуть эти притязания и настоять на том, что мы не должны изменять правила науки только чтобы сохранить теорию, которая не смогла выполнить ожиданий, которые мы исходно к ней питали. Если теория струн не делает однозначных предсказаний для экспериментов и если она не объясняет по поводу стандартной модели физики частиц ничего такого, что ранее было загадочным, – оставляя в стороне очевидную установку, что мы должны жить во вселенной, где мы можем жить, – не кажется, что она может оказаться очень хорошей теорией. История науки видела множество падений многообещающих теорий. Почему это не ещё один такой случай?

Мы с прискорбием пришли к заключению, что теория струн не делает новых, точных и фальсифицируемых предсказаний. Но, однако, она делает некоторые изумительные утверждения о мире. Смогут ли эксперимент или наблюдение однажды обнаружить доказательство для любого из этих удивительных свойств? Даже если нет определённых предсказаний за и против – предсказаний такого сорта, которые могли бы убить или подтвердить теорию, – не можем ли мы увидеть доказательство свойства, которое является центральным для струнного взгляда на природу. Самым очевидным нововведением теории струн являются сами струны. Если бы мы могли исследовать струнный масштаб, не было бы проблем увидеть обильные свидетельства струнной теории, если она верна. Мы могли бы увидеть указания на то, что фундаментальные объекты одномерны, а не подобны точкам. Но мы не в состоянии провести эксперименты на ускорителях в пределах требуемых энергий. Есть ли иной путь, следуя которым, мы могли бы обнаружить сами струны? Могут ли струны быть как-то инициированы, чтобы стать больше, так что мы смогли бы их увидеть?

Один из таких сценариев был недавно предложен Эдмундом Копелэндом, Робертом Майерсом и Джозефом Полчински. При определённых очень специальных предположениях по поводу космологии может оказаться правильным, что некоторые очень длинные струны были созданы в ранней вселенной и продолжают существовать[66]66
  E.J. Copeland, R.C. Myers, and J. Polchinski, «Cosmic F– and D-Strings,» <Космические F– и D-струны>, Jour. High Energy Phys., Art. no. 013, June 2004.


[Закрыть]
. Расширение вселенной расширило их до таких размеров, что сейчас их длина составляет миллионы световых лет.

Это явление не ограничивается теорией струн. Некоторое время популярная теория о формировании галактик предполагала, что они начинаются от присутствия гигантских струн электромагнитного потока, оставшихся со времён Большого Взрыва. Эти космические струны, как их называют, никогда не работали с теорией струн, они были следствиями структуры калибровочных теорий. Они являются аналогами квантованных линий магнитного потока в сверхпроводниках, и они могут формироваться в ранней вселенной как следствие прохождения вселенной через фазовые переходы при её охлаждении. Сегодня мы имеем определённые свидетельства из космологических наблюдений, что такие струны не были главной составляющей в формировании структуры вселенной, но несколько космический струн после Большого Взрыва всё ещё могли бы остаться. Астрономы ищут их через поиск их влияния на свет от удалённых галактик. Если космическая струна проходит через линию зрения, соединяющую наш взгляд и удалённую галактику, гравитационное поле струны будет действовать как линза, удваивая изображение галактики особым образом. Другие объекты, такие как тёмная материя или другие галактики, могут иметь сходный эффект, но астрономы знают, как провести различия между генерируемыми ими образами и изображениями, которые производятся космической струной. Недавно было сообщение, что такая линза могла быть обнаружена. Её оптимистично назвали CSL-1 (Cosmic String Lens – линза на космической струне), но, когда на неё посмотрели через космический телескоп «Хаббл», оказалось, что это две близко расположенные друг к другу галактики[67]67
  M. Sazhin et al., «CSL-1: Chance Projection Effect or Serendipitous Discovery of a Gravitational Lens Induced by a Cosmic String?» < CSL-1: Эффект случайной проекции или связанное со счастливым случаем открытие гравитационной линзы, индуцированной космической струной?> Mon. Not. R. Astron. Soc., 343: 353-59 (2003).


[Закрыть]
.

Что нашли Копелэнд и его коллеги, так это то, что при определённых специальных условиях фундаментальные струны, растянутые расширением вселенной до огромных длин, могли бы иметь сходство с космическими струнами. Так что их можно было бы наблюдать через их действие, подобное линзам. Такие фундаментальные космические струны могли бы также быть очень большими излучателями гравитационных волн, которые могли бы наблюдаться на LIGO (Laser Interferometer Gravitational-wave Observatory – обсерватория гравитационных волн на лазерных интерферометрах).

Предсказания этого вида дают нам некоторую надежду, что теория струн однажды может быть проверена через наблюдения. Хотя открытие космических струн само по себе не может проверить теорию струн, поскольку несколько других теорий также предсказывают существование таких струн. Неудача в поиске таких струн не может привести к фальсификации теории струн, поскольку условия, при которые космические струны существуют, были выбраны специально, и нет причин думать, что они могут существовать в нашей вселенной.

Кроме существования струн есть три другие общие особенности струнного мира. Все осмысленные струнные теории согласуются с тем, что имеются дополнительные измерения, что все силы объединяются в одну силу и что существует суперсимметрия. Так что, даже если мы не имеем детальных предсказаний, мы можем увидеть, сможет ли эксперимент подтвердить эти гипотезы. Поскольку они независимы от теории струн, нахождение доказательств для любой из них не доказывает, что теория струн верна. Но противоположное здесь не имеет места: если мы узнаем, что нет суперсимметрии, или нет высших измерений или нет объединения всех сил, тогда теория струн является неверной.

Начнём с дополнительных измерений. Мы не в состоянии их увидеть, но мы определённо можем поискать их проявления. Одним из путей сделать это является поиск дополнительных сил, которые предсказываются всеми теориями с высшими измерениями. Эти силы передаются полями, которые заключают в себе геометрию дополнительных измерений. Такие поля должны быть здесь, поскольку вы не можете ограничить дополнительные измерения, чтобы они производили только те поля и силы, которые мы до сегодняшнего дня наблюдаем.

Силы, которые возникают из таких полей, ожидаются грубо столь же сильными, как и гравитация, но они могут отличаться от гравитации одним или многими свойствами: они могут иметь конечную область распространения, и они могут не взаимодействовать одинаково со всеми формами энергии. Некоторые текущие эксперименты экстраординарно чувствительны к таким гипотетическим силам. Около десяти лет назад один эксперимент показал предварительное свидетельство для такой силы, которую назвали пятой силой. Дальнейшие эксперименты не поддержали это утверждение, и на настоящий момент нет доказательств для таких сил.

Струнные теоретики обычно предполагали, что дополнительные измерения мизерны, но несколько предприимчивых физиков поняли в 1990-х, что это не являлось обязательным условием – что дополнительные измерения могли бы быть большими или даже бесконечными. Это возможно в сценарии миров на бране. В такой картине наше трёхмерное пространство на самом деле является браной – то есть чем-то, подобным мембране, но трёхмерной – подвешенной в мире с четырьмя или более измерениями пространства. Частицы и силы стандартной модели – электроны, кварки, протоны вместе с силами, которыми они взаимодействуют, – ограничены в пределах трёхмерной браны, составляющей наш мир. Так что, используя только эти силы, вы не сможете увидеть свидетельств дополнительных измерений. Единственное исключение составляет гравитационная сила. Гравитация, будучи универсальной, распространяется через все измерения пространства.

Этот вид сценария был впервые сконструирован в деталях тремя физиками, работающими в SLAC (Стэнфордском Линейном Ускорительном Центре), Нимой Аркани-Хамедом, Гиа Двали и Савасом Диопоулосом. На удивление, они нашли, что дополнительные измерения могли бы быть совсем большими без конфликта с известными экспериментами. Если имеется два дополнительных измерения, они могли бы быть порядка миллиметра в поперечнике[68]68
  N. Arkani-Hamed, G. Dvali, and S. Dimopoulos, «The Hierarchy Problem and New Dimensions at a Millimeter,» <Проблема иерархии и новые размерности на миллиметровом масштабе>, Phys. Lett. B, 429: 263-72 (1998).


[Закрыть]
.

Главный эффект от добавления таких больших дополнительных измерений в том, что гравитационная сила в четырёх– или пятимерном мире, оказывается, может быть намного сильнее, чем это проявляется на трёхмерной бране, так что эффекты квантовой гравитации происходят на намного большем масштабе длин, чем всегда ожидалось. В квантовой теории больший масштаб длин означает меньшую энергию. Делая дополнительные измерения размером в миллиметр, можно понизить масштаб энергий, при котором должны быть видны эффекты квантовой гравитации – от планковской энергии, которая есть 1019 ГэВ, всего лишь к 1000 ГэВ. Это разрешает один из самых стойких вопросов по поводу параметров стандартной модели, а именно: почему планковская энергия на столько порядков величины больше, чем масса протона? Но что на самом деле возбуждает, так это то, что это делает квантово-гравитационные явления наблюдаемыми в диапазоне, который достижим на Большом Адронном Коллайдере (LHC), запускающемся в 2007 году{17}. Среди этих эффектов могло бы быть рождение квантовых чёрных дыр в соударениях элементарных частиц. Это было бы значительное открытие.

Другой вид сценария мира на бране был разработан Лайзой Рэндалл из Гарварда и Раманом Сундрумом из Университета Джонса Гопкинса.

Они нашли, что дополнительные измерения могли бы быть бесконечными по размерам, пока в высокоразмерном мире имелась отрицательная космологическая константа[69]69
  L. Randall, and R. Sundrum, «An Alternative to Compactification,» <Альтернатива компактификации>, [http://arxiv.org/abs/hep-th/9906064]; Phys. Rev. Lett., 83: 4690-93 (1999).


[Закрыть]
. Поразительно, это также согласуется со всеми наблюдениями на сегодняшний день и даже делает предсказания для новых наблюдений.

Это весьма смелые идеи и забавно подумать о них, и я глубоко восхищаюсь их изобретателями. Как упоминалось, мне с трудом даются сценарии мира на бране. Они уязвимы для тех же проблем, которые приговорили оригинальные попытки объединения через высшие размерности. Сценарии мира на бране работают, только если вы делаете специальные предположения о геометрии дополнительных измерений и способе, которым трёхмерная поверхность, которая является нашим миром, помещается внутри них. В добавление ко всем проблемам, от которых страдали старые теории Калуцы-Кляйна, имеются новые проблемы. Если может быть одна брана, плавающая в высокоразмерном мире, почему их не может быть много? И если имеются другие, то как часто они сталкиваются? В самом деле, имеются предположения, по которым Большой Взрыв возник из-за столкновения миров на бранах. Но, если это может произойти один раз, почему с тех пор это больше не происходило? Прошло около 14 миллиардов лет. Ответ может быть в том, что браны встречаются редко, но в этом случае мы опять получаем тончайше настроенные условия.

Помимо этих проблем, я настроен скептически, поскольку эти сценарии зависят от специального выбора фоновой геометрии, а это противоречит главному открытию Эйнштейна, как изложено в его ОТО, что геометрия пространства-времени является динамической и что физика должна быть выражена независимым от фона способом. Тем не менее, это наука, какая она и должна быть: смелые идеи, которые можно протестировать возможными экспериментами. Однако, поясним. Если любое из предсказаний миров на бране окажется верным, это не будет означать подтверждения теории струн. Теории миров на бране стоят особняком, они не нуждаются в струнной теории. Также нет полностью разработанного понимания модели мира на бране в рамках теории струн. Наоборот, если ни одно из предсказаний миров на бране не обнаружится, это не фальсифицирует теорию струн. Миры на бране являются просто одним из способов, которым могли бы проявиться дополнительные измерения теории струн.

Второе общее предсказание теории струн в том, что мир суперсимметричен. Здесь тоже нет фальсифицируемых предсказаний, поскольку мы знаем, что суперсимметрия, если она верно описывает мир, который мы видим, должна быть нарушена. В главе 5 мы отмечали, что суперсимметрия может быть обнаружена на LHC. Это возможно, но при этом не гарантировано, даже если суперсимметрия верна.

К счастью, имеется другой способ протестировать суперсимметрию. Одна из возможностей включает тёмную материю. Во многих суперсимметричных расширениях стандартной модели самые лёгкие новые частицы стабильны и не заряжены. Эти новые частицы могли бы быть тёмной материей. Они должны будут взаимодействовать с обычной материей, но только через гравитацию и слабые ядерные силы. Такие частицы называют ВИМПы (WIMPs – weakly interacting massive particles – слабо взаимодействующие массивные частицы), и готовится несколько экспериментов для их обнаружения. Эти детекторы используют идею, что частицы тёмной материи будут взаимодействовать с обычной материей через слабые силы. Это делает их очень похожими на тяжёлые версии нейтрино, которые тоже взаимодействуют с веществом только через гравитацию и слабые силы.

К несчастью, поскольку суперсимметричные теории имеют так много свободных параметров, нет особого предсказания, что за массу должны иметь ВИМПы или точно, насколько сильно они должны взаимодействовать. Но, если тёмная материя на самом деле состоит из них, мы можем вывести, какой диапазон допустим для их масс, предполагая, что они играют ту роль в формировании галактик, как мы думаем. Предсказанный диапазон совпадает с тем, что теория и эксперимент предполагают для легчайших суперпартнёров.

Экспериментаторы ищут ВИМПы, используя детекторы, подобные тем, которые использовались для обнаружения солнечных нейтрино и нейтрино, приходящих от удалённых сверхновых. Были проведены всесторонние поиски, но до сегодняшнего дня ВИМПы не найдены. Это, конечно, не окончательно – это означает только, что, если они существуют, они взаимодействуют слишком слабо, чтобы инициировать отклик детектора. Можно сказать, что если они взаимодействуют с веществом так же сильно, как нейтрино, они должны были бы быть видны к этому времени. Тем не менее, открытие суперсимметрии любым способом было бы впечатляющим триумфом для физики.

Главная вещь, которую надо держать в уме, что даже если теория струн требует, чтобы мир был суперсимметричным на некотором масштабе, она не даёт предсказания, что это за масштаб. Таким образом, если суперсимметрия не будет найдена на LHC, это не фальсифицирует теорию струн, поскольку масштаб, на котором она может быть обнаружена, полностью подгоняется. С другой стороны, обнаружение суперсимметрии не подтвердит теорию струн. Имеются обычные теории, которые требуют суперсимметрию, такие как минимальное суперсимметричное расширение стандартной модели. Даже среди квантовых теорий гравитации суперсимметрия не однозначно связана с теорией струн; например, альтернативный подход, именуемый петлевая квантовая гравитация, полностью согласуется с суперсимметрией.

Теперь мы подошли к третьему общему предсказанию теории струн: что все фундаментальные силы становятся едиными на некотором масштабе. Как и в других случаях, эта идея шире теории струн, так что её подтверждение не докажет, что теория струн верна; на самом деле, теория струн допускает несколько возможных форм объединения. Но имеется одна форма, которая, как уверены большинство теоретиков, представляет великое объединение. Как мы обсуждали в главе 3, великое объединение делает общее предсказание, до сих пор не верифицированное, что протоны должны быть нестабильны и должны распадаться на некотором временном масштабе. Эксперименты искали распад протона и не нашли его. Эти результаты (или их отсутствие) убивают определённые теории великого объединения, но не общую идею. Однако, неудача поисков распада протона остаётся ограничением на возможные теории, включая суперсимметричные теории.

Большое число теоретиков верят, что все три из этих общих предсказаний будут подтверждены. Следовательно, экспериментаторы предпринимают огромные усилия в поиске свидетельств, которые поддерживают эти предсказания. Не является преувеличением сказать, что сотни карьер и сотни миллионов долларов были исчерпаны за последние тридцать лет в поиске знаков великого объединения, суперсимметрии и дополнительных измерений. Несмотря на эти попытки, не было обнаружено доказательств ни одной из этих гипотез. Подтверждение каждой из этих идей, даже если оно не могло бы быть принято за прямое подтверждение теории струн, было бы первым указанием, что, по меньшей мере, некоторая часть комплексной сделки, которую требует теория струн, скорее, подводит нас ближе к реальности, чем удаляет от неё.


    Ваша оценка произведения:

Популярные книги за неделю