Текст книги "Неприятности с физикой: взлёт теории струн, упадок науки и что за этим следует"
Автор книги: Ли Смолин
Жанр:
Физика
сообщить о нарушении
Текущая страница: 10 (всего у книги 31 страниц)
Новая суперсимметричная теория струн также столкнулась с двумя другими проблемами. В ней не было тахионов, так что главное препятствие к том, чтобы воспринимать струны серьёзно, было устранено. И в ней не было больше двадцати пяти пространственных измерений, а только девять. Девять не три, но уже ближе. Если добавить время, новая суперсимметричная теория струн (или теория суперструн, для краткости) живёт в мире с десятью измерениями. Это на единицу меньше, чем число одиннадцать, которое, что удивительно, является максимальным числом измерений, для которых можно записать теорию супергравитации.
Примерно в то же время второй путь, как приспособить фермионы к струнам, был изобретён Андреем Невье и Джоном Шварцем. Подобно версии Рамона, их версия теории не имела тахионов и жила в мире с девятью пространственными измерениями. Невье и Шварц также нашли и смогли понять, как суперструны взаимодействуют друг с другом, и получили формулы, которые согласуются с принципами квантовой механики и СТО.
Итак, оставалась только одна загадка. Как новая суперсимметричная теория может быть теорией сильного взаимодействия, если она содержит безмассовые частицы? Но, фактически, имеются бозоны без массы. Одним из них является фотон. То же самое верно для гравитона, гипотетической частицы, связанной с гравитационными волнами. В 1972 году Невье и другой французский учёный, Джоэль Шерк, нашли, что суперструны имеют состояния колебаний, соответствующие калибровочным бозонам, включая фотон. Это был шаг в правильном направлении[36]36
Другой чрезвычайно важной статьёй была P. Goddard, J. Goldstone, C.Rebbi, and C. Thorn, «Quantum Dynamics of a Massless Relativistic String,» <Квантовая динамика безмассовой релятивистской струны>, Nucl. Phys., 56: 109-35 (1973).
[Закрыть].
Но ещё больший шаг был сделан двумя годами позднее Шерком и Шварцем. Они нашли, что некоторые из безмассовых частиц, предсказываемых теорией, на самом деле должны быть гравитонами[37]37
J. Scherk and J.H. Schwarz, «Dual Models for Non-Hadrons,» <Дуальные модели для не-адронов>, Nucl. Phys. B, 81(1): 118-44 (1974).
[Закрыть]. (Та же самая идея независимо пришла на ум молодому японскому физику Тамиаки Йонейе.[38]38
T. Yoneya, «Connection of Dual Models to Electrodynamics and Gravidynamics,» <Связь дуальных моделей с электродинамикой и гравидинамикой>, Prog. Theor. Phys., 51(6): 1907-20 (1974).
[Закрыть])
Тот факт, что теория струн содержит калибровочные бозоны и гравитоны, поменял всё. Шерк и Шварц немедленно предположили, что теория струн вместо того, чтобы быть теорией сильных взаимодействий, была фундаментальной теорией – теорией, которая объединяет гравитацию с другими силами. Чтобы увидеть, насколько это красиво и просто, заметьте, что фотоноподобные и гравитоноподобные частицы возникают из струн. Струны могут быть как замкнутыми, так и открытыми. Замкнутая струна представляет собой петлю. Открытая струна является линией; у неё есть концы. Безмассовые частицы, которые могут быть фотонами, происходят из колебаний или открытых, или замкнутых струн. Гравитоны происходят только из колебаний замкнутых струн, или петель.
Концы открытых струн могут рассматриваться как заряженные частицы. Например, один конец мог бы быть отрицательно заряженной частицей, такой как электрон; другой тогда может быть античастицей, позитроном, который заряжен положительно. Безмассовые колебания струны между ними описывают фотон, который переносит электрическую силу между частицей и античастицей. Таким образом, вы одновременно получаете частицы и силы из открытых струн, и, если теория выстроена достаточно хитро, она может произвести все частицы и все силы стандартной модели.
Если бы имелись только открытые струны, не было бы гравитона, так что гравитация казалась бы оставшейся за кадром. Но оказывается, что вы должны включить замкнутые струны. Причина в том, что в природе происходят столкновения между частицами и античастицами. Они аннигилируют, создавая фотон. С точки зрения струн это описывается так, как будто два конца струны сближаются друг с другом и соединяются. Концы исчезают, и вы остаётесь с замкнутой петлёй.
Фактически, аннигиляция частиц-античастиц и замыкание струн являются необходимыми, если теория претендует на согласованность с СТО, что означает, что теория требует, чтобы в ней были как открытые, так и замкнутые струны. Но это означает, что она должна включать гравитацию. И различие между гравитацией и другими силами объясняется естественным образом, в терминах различия между открытыми и замкнутыми струнами. Впервые гравитация играла центральную роль в объединении сил.
Это ли не прекрасно? Включение гравитации является столь убедительным, что здравая и разумная персона может легко прийти к уверенности, что теория основывается на нём одном, независимо от того, имеются или нет экспериментальные подтверждения для такого включения. Особенно, если эта персона в течение лет искала способы объединения всех сил, и все другие пути потерпели неудачу.
Но что привело к этому? Разве имеется закон, который требует, чтобы концы струн встречались и объединялись? Здесь лежит одно из самых красивых свойств теории, разновидность унификации движения и сил.
В большинстве теорий движение частиц и фундаментальные силы являются двумя различными вещами. Закон движения говорит, как частицы двигаются в отсутствие внешних сил. Размышляя логически, тут нет связи между этим законом и законами, которые управляют силами.
В теории струн ситуация радикально отличается. Закон движения определяет законы сил. Это происходит потому, что все силы в теории струн имеют одно и то же простое происхождение – они появляются из рвущихся и замыкающихся струн. Раз уж вы описали, как струны двигаются свободно, всё, что вам остаётся сделать, чтобы добавить силы, это добавить вероятность того, что струна может развалиться на две струны. Обращая процесс во времени, вы можете заново соединить две струны в одну (см. Рис. 5). Закон распада и объединения оказывается строго ограниченным, чтобы быть согласованным с СТО и квантовой теорией. Сила и движение унифицируются способом, который был бы невозможен в теории с точечными частицами.
Рисунок 5. Вверху: две открытые струны объединяются своими концами. В середине: два конца открытой струны объединяются, чтобы сделать замкнутую струну. Внизу: две замкнутые струны объединяются, чтобы сделать одну замкнутую струну.
Это объединение сил и движения имеет простое следствие. В теории частиц вы можете свободно добавлять все виды сил, так что нет ничего, что могло бы помешать быстрому увеличению констант, описывающих действие каждой силы. Но в теории струн могут быть только две фундаментальные константы. Одна, называемая натяжением струны, описывает, сколько энергии содержится на единицу длины струны. Другая, называемая струнной константой связи, есть число, означающее вероятность распада струны на две струны, соответственно вызывая силы; поскольку это вероятность, это просто число, без размерных единиц. Все другие константы физики должны быть связаны с этими двумя числами. Например, гравитационная константа Ньютона, оказывается, связана с произведением их величин.
На самом деле струнная константа связи не является свободной константой, но физической степенью свободы. Её величина зависит от решения теории, и, вместо того, чтобы быть параметром законов, она является параметром, который отмечает решения. Можно сказать, что вероятность для струны распасться или соединиться фиксируется не теорией, а окружением струны – что означает, особым многомерным миром, в котором она живёт. (Эта склонность констант мигрировать от свойств теории к свойствам окружения является важным аспектом теории струн, к которому мы снова вернёмся в следующей главе.) В завершении всего этого закон, которому удовлетворяют струны, является красивым и простым. Представьте раздувание пузырька. Он принимает в процессе расширения совершенно сферическую форму. Или посмотрите на пузырьки после того, как вы вспенили ванну. Их формы являются проявлением простого закона, который мы будем называть законом пузырьков. Закон устанавливает, что поверхность пузырька занимает минимально возможную для себя площадь, задавая на ней связи и силы.
Этот принцип оказывается применимым и к струнам тоже. Когда одномерная струна движется через время, она создаёт двумерную поверхность в пространстве-времени (см. Рис. 6). Эта поверхность имеет определённую площадь, грубо определяемую как произведение длины струны на её продолжительность во времени.
Рисунок 6. Распространение и взаимодействие струн определяется тем же законом, который минимизирует площадь поверхности в пространстве-времени. Справа мы видим поверхность в пространстве-времени, рисуемую двумя замкнутыми струнами, которые взаимодействуют путём обмена третьей замкнутой струной. Слева мы видим последовательность конфигураций в пространстве, которые получаются, если взять сечения пространственно-временной картины, показанной справа. Сначала мы видим две замкнутые струны, затем от одной отделяется третья замкнутая струна, которая путешествует, а затем присоединяется ко второй струне.
Струна движется так, чтобы минимизировать указанную площадь. Это итоговый закон. Он объясняет движение струн и, раз уж струнам позволено распадаться и соединяться, существование всех сил. Он объединяет все силы, которые мы знаем, с описанием всех частиц. И он намного проще, чем законы, описывающие любую из вещей, которые он объединяет.
Теория струн доводит до конца ещё и другой подвиг унификации. В начале девятнадцатого века Майкл Фарадей представил магнитное и электрическое поля в терминах полевых линий – линий, бегущих между полюсами магнита или между положительным и отрицательным электрическими зарядами. Для Фарадея эти линии были реальными; они были тем, что переносит силы между магнитами или зарядами.
В теории Максвелла полевые линии стали вторичными по отношению к полям, но этот подход не является обязательным. Можно представить, что полевые линии реально существуют и силы между частицами являются растяжением полевых линий между ними. Это не может быть доведено до конца в классической теории, но может быть в квантовой теории.
В сверхпроводнике – что означает материал с низким или отсутствующим электрическим сопротивлением – полевые линии магнитного поля становятся дискретными. Каждая линия переносит определённое минимальное количество магнитного потока. Можно думать об этих полевых линиях как о своего рода атоме магнитного поля. В начале 1970-х три провидца предположили, что та же самая вещь справедлива для линий сил в КХД, которые являются аналогами линий электрического поля в электромагнетизме. Именно таким образом датский физик Хольгер Нильсен стал одним из изобретателей теории струн – он рассмотрел струны как квантованные линии электрического потока. Эта картина была затем развита Кеннетом Вильсоном в Корнелле, и с тех пор всегда линии квантованного электрического поля называются линиями Вильсона. Третьим провидцем был русский физик Александр Поляков, который, вероятно, является нашим самым глубоким мыслителем по поводу взаимосвязи между калибровочными теориями и теориями струн. Поляков дал единственный самый вдохновляющий семинар из тех, что я слушал как аспирант, в котором он заявил своё амбициозное желание решить КХД точно путём перевыражения её как теории струн – струны должны были быть линиями квантованного электрического потока.
Согласно этим провидцам первичным объектом в калибровочных теориях являются полевые линии. Они удовлетворяют простым законам, которые диктуют, как они растягиваются между зарядами. Сами поля возникают только как альтернативное описание. Этот способ размышлений естественным образом встраивается в теорию струн, поскольку полевые линии могут быть приняты за струны.
Это наводит на мысль о некотором виде дуальности описаний: можно думать о полевых линиях как о первичном объекте, а об основных законах как об описании того, как они растягиваются и двигаются, или можно думать о поле как о первичном объекте, а полевые линии считать просто общепринятым способом описания поля. В квантовой теории оба описания работают. Это приводит к принципу, который мы называем дуальностью струн и полей. Оба описания работают. Оба могут быть приняты как фундаментальные.
Пьер Рамон лишился должности в Йейле в 1974 году, несколькими годами позже того, как были решены некоторые центральные проблемы теории струн. Оказалось, что изобретение пути включения фермионов в теорию струн, открытие суперсимметрии и удаление тахионов – всё на одном дыхании – было недостаточным, чтобы убедить его коллег, что он достоин профессорства в институтах «Лиги Плюща»{9}.
Тем временем, Джон Шварц потерял должность в Принстоне в 1972 году, несмотря на его фундаментальный вклад в теорию струн. Затем он переместился в Калтех, где он в течение следующих двенадцати лет был ассоциированным исследователем, поддерживаемым временными фондами, которые периодически обновлялись. Он не преподавал, если он не хотел этого, – но также и не имел должности. Он открыл первую хорошую идею о том, как гравитация и другие силы могут быть объединены, но, видимо, Калтех остался не убеждённым в том, что он подходит для постоянного профессорско-преподавательского состава.
Нет сомнений, что первые изобретатели теории струн были плохо вознаграждены за свои пионерские открытия. Чтобы разобраться, что это за люди, читатель должен понять, что это означает в реальных терминах. Друзья, с которыми вы шли в аспирантуру, являются сейчас полными профессорами с должностью. Они имеют хорошие оклады, гарантированную занятость, они легко обеспечивают семьи. Они имеют положения с высоким статусом в элитных институтах. Вы не имеете ничего. В лучшем случае вы знаете, что они выбрали лёгкую дорогу, в то время как вы сделали кое-что потенциально намного более важное, что потребовало намного больше творчества и мужества. Они следовали за стадом и делали то, что было модным; вы открыли целый новый вид теории. Но вы всё ещё постдок, или ассоциированный исследователь или младший профессор. У вас нет гарантированной на долгий срок занятости и неопределённые перспективы. И ещё вы можете быть более активны как учёный, – публикуя больше статей и сопровождая больше студентов, – чем другие люди, чей труд в менее рискованном направлении был вознаграждён большей защищённостью.
Теперь, читатель, спросите себя, что бы вы стали делать в этой ситуации.
Джон Шварц не оставил работу над теорией струн, и он продолжил открывать доказательство, что она могла бы быть хорошей объединяющей теорией физики. Хотя он ещё не обеспечил, чтобы теория была математически последовательна, он был уверен, что ему осталось немного до этого{10}. Когда первые струнные теоретики сталкивались даже с грозными препятствиями, они могли вдохновляться, думая обо всех загадках, которые будут решены, если элементарные частицы являются колебаниями струн. Имеется прелестный впечатляющий список:
1. Теория струн даёт нам автоматическое объединение всех элементарных частиц, а также объединяет одни силы с другими. Всё происходит из колебаний одного фундаментального вида объектов.
2. Теория струн автоматически даёт нам калибровочные поля, которые отвечают за электромагнетизм и ядерные силы. Они естественным образом возникают из колебаний открытых струн.
3. Теория струн автоматически даёт нам гравитоны, которые происходят из колебаний замкнутых струн, а любая квантовая теория струн должна содержать замкнутые струны. Как следствие, мы бесплатно получаем автоматическое объединение гравитации с другими силами.
4. Суперсимметричная теория струн объединяет бозоны и фермионы, причём как те, так и другие являются просто колебаниями струн, так что все силы объединяются со всеми частицами.
Более того, хотя суперсимметрия может быть верной, даже если теория струн не верна, теория струн обеспечивает намного более естественный дом для суперсимметрии, чем обычные теории частиц. В то время, как суперсимметричные версии стандартной модели были уродливы и сложны, суперсимметричные теории струн являются очень элегантными объектами.
И, как вершина всего, теория струн без усилий доводит до конца естественное объединение законов движения с законами, которые управляют силами.
Затем имеется мечта, которую теория струн, кажется, делает возможной. Вся стандартная модель с её двенадцатью видами кварков и лептонов и с тремя силами, плюс гравитация, может быть унифицирована в том смысле, что все эти явления возникают из колебаний струн протянутых в пространстве-времени, следуя простейшему из возможных законов: что площадь минимизируется. Все константы стандартной модели могут быть сведены к комбинации ньютоновской гравитационной константы и одного единственного числа, которое является для струны вероятностью распасться на две или соединиться. И второе число даже является не фундаментальным, а свойством окружения.
Установив, что теория струн так много обещает, не удивительно, что Шварц и его несколько сотрудников были убеждены, что она должна быть верной. Если рассматривать проблему объединения, ни одна другая теория не предлагала так много на основе единственной простой идеи. Перед лицом таких перспектив оставалось только два вопроса: это работает? И сколько это стоит?
В 1983 году, когда я всё ещё был постдоком в Институте перспективных исследований в Принстоне, Джон Шварц был приглашён дать две лекции по теории струн в Принстонском университете. Я до того момента не слышал много о теории струн, и что я вспоминаю из его семинара, так это, большей частью, сильную и критическую реакцию аудитории, поддерживаемую в равной степени интересом и скептицизмом. Эдвард Виттен, уже влиятельная фигура в физике элементарных частиц, часто прерывал Шварца, задавая серии настойчивых, тяжёлых вопросов. Я воспринимал это как индикатор скептицизма; только позже я увидел, что это было свидетельством сильного интереса к предмету. Шварц был уверенным в себе, но имелся намёк на упрямство. Я получил впечатление, что он провёл много лет, пытаясь передать другим своё возбуждение по поводу теории струн. Это убедительно сказало мне, что Шварц был мужественным учёным, но это не склонило меня к работе над теорией струн. В то время все, кого я знал, проигнорировали новую теорию и сохранили в прежнем положении свои разные проекты. Немногие их нас поняли, что мы доживали последние дни той физики, какой мы её всегда знали.
8
Первая суперструнная революция
Первая суперструнная революция имела место в конце 1984 года. Название её революцией звучит немного претенциозно, но термин подходящий. За шесть месяцев до этого только горстка бесстрашных физиков работали в теории струн. Они игнорировались всеми, кроме немногочисленных коллег. Как говорит об этом Джон Шварц, он и новый сотрудник, английский физик Майкл Грин,
«опубликовали довольно много статей, и в каждом случае я был совершенно возбуждён результатами… В каждом случае мы чувствовали, что люди должны теперь заинтересоваться, поскольку они смогут увидеть, насколько возбуждающей является тема. Но, однако, реакции опять не было.»[39]39
J.H. Schwarz, в интервью Саре Липпинкотт, 21 и 26 июля 2000, http://oralhistories.library.caltech.edu/116/01/Schwarz_OHO.pdf.
[Закрыть]
Шесть месяцев спустя некоторые самые шумные критики теории струн начали над ней работать. В новой атмосфере стало мужеством не забросить то, чем вы занимались, и не последовать за ними.
Поворотным пунктом стал расчёт, проведённый Шварцем и Грином и обеспечивший строгое доказательство того, что теория струн является конечной и последовательной теорией. Чуть более точно, им в конце концов удалось успешно показать, что определённые опасные патологии, беспокоящие многие единые теории и называющиеся аномалиями, отсутствовали в суперсимметричной теории струн, по меньшей мере, в десяти пространственных измерениях[40]40
M.B. Green and J.H. Schwarz, «Anomaly Cancellations in Supersymmetric D=10 Gauge Theory and Superstring Theory,» <Сокращение аномалий в суперсимметричной D=10 калибровочной теории и теории суперструн>, Phys. Lett. B, 149(1–3): 117-22 (1984).
[Закрыть]. Я вспоминаю, что реакция на эту статью была как шоком, так и ликованием: шок потому, что некоторые люди сомневались, что теория струн сможет когда-либо быть согласованной с квантовой механикой на любом уровне; ликование потому, что, показав ошибочность таких сомнений, Грин и Шварц открыли возможность того, что конечная теория, объединяющая физику, находится в наших руках.
Ни одно изменение не могло бы произойти быстрее. Как вспоминает об этом Шварц,
Прежде чем мы даже завершили записывать это, мы получили телефонный звонок от Эда Виттена, сказавшего, что он слышал… что мы получили результат, уничтожающий аномалии. И он попросил, не могли бы мы показать ему наш труд. Так как у нас был черновик нашей рукописи по этому вопросу, мы послали его ему через FedEx{11}. Тогда ещё не было e-mail, но FedEx существовала. Так что мы послали труд ему, и он получил его на следующий день. И нам говорили, что на следующий день каждый в Принстонском университете и в Институте перспективных исследований, все физики-теоретики, а там их было большое количество, работали над этим… Так что за ночь это стало главной индустрией [смех], по крайней мере, в Принстоне – и очень скоро в остальном мире. В этом был элемент странности, так как мы так много лет публиковали наши результаты и никого это не заботило. Теперь же внезапно каждый оказался чрезвычайно заинтересованным. Это был переход из одной крайности в другую: из крайности, когда никто не принимал тему всерьёз, в другую крайность…[41]41
Интервью Шварца.
[Закрыть]
Теория струн пообещала то, что ни одна другая теория до того не могла – квантовую теорию гравитации, которая также является истинным объединением сил и вещества. Она одним смелым и красивым ударом смогла предложить решение, по меньшей мере, трёх из пяти великих проблем теоретической физики. Таким образом, неожиданно после многих неудач мы обнаружили золото. (Шварц, это забавно отметить, быстро продвинулся от старшего участника исследований до полного профессора в Калтехе.)
Томас Кун в своей известной книге «Структура научных революций» предложил нам новый способ размышлений о событиях в истории науки, о которых мы думаем как о революциях. Согласно Куну научная революция предваряется накоплением экспериментальных аномалий. В результате люди начинают задавать вопросы к установленной теории. Некоторые изобретают альтернативные теории. Революция достигает пика в экспериментальных результатах, которые поддерживают одну из новых альтернатив по сравнению со старой установленной теорией[42]42
Thomas S. Kuhn, The Structure of Scientific Revolutions <Структура научных революций> (Chicago: Univ. of Chicago Press, 1962).
[Закрыть]. Можно оспорить описание науки Куна, и я это сделаю в заключительной части книги. Но, поскольку он описал, что происходило в некоторых случаях, это служит удобной точкой для сравнения.
События 1984 года не следуют структуре Куна. Никогда не было установленной теории, которая обращалась бы к проблемам, к которым обращается теория струн. Не было экспериментальных аномалий; стандартная модель физики частиц и ОТО совместно были достаточными, чтобы объяснить результаты всех экспериментов, сделанных до того времени. Даже при этих условиях, как можно было не назвать это революцией? Неожиданно у нас оказался хороший кандидат на конечную теорию, которая могла бы объяснить вселенную и наше место в ней.
В течение четырёх или пяти лет после суперструнной революции 1984 года был большой прогресс, и интерес к теории струн быстро рос. Это была самая горячая игра в городе{12}. Те, кто пошёл в неё, активно начал эту деятельность с амбициями и гордостью. Имелось много технических инструментов для изучения, так что, чтобы работать в теории струн, необходимо было потратить от нескольких месяцев до года, что является большим сроком для физика-теоретика. Те, кто сделал это, смотрели свысока на тех, кто не стал или (намёк всегда был здесь) не смог. Очень быстро выработалась почти культовая атмосфера. Вы или были струнным теоретиком, или нет. Некоторые из нас пытались сохранить подход с точки зрения здравого смысла: Есть интересная идея; я буду над ней немного работать, но я также буду заниматься другими направлениями. Было тяжело сдержать такое слово, поскольку те, кто впрыгнул, больше не интересовались разговорами с теми из нас, кто не объявил себя частью новой волны.
Как приличествует новой области, немедленно возникли академические конференции по теории струн. Они проходили в атмосфере триумфального празднования. Было ощущение, что открыта правильная теория номер один. Ничто другое было неважно и не достойно размышлений о нём. Семинары, посвящённые струнной теории, возникли во многих из главных университетов и исследовательских институтов. В Гарварде семинар по струнной теории был назван Семинаром Физики Будущего.
Это название не имело иронического смысла. Одна из вещей, которая редко обсуждалась на семинарах и конференциях по теории струн, была как проверить теорию экспериментально. Хотя несколько людей беспокоились по этому поводу, были другие, кто думал, что это не является необходимым. Было ощущение, что может быть только одна последовательная теория, которая объединяет всю физику, и, поскольку теория струн казалась таковой, она должна была быть верной. Больше нет надежды на эксперимент, чтобы проверить наши теории. Это всё хлам Галилея. Математики отныне достаточно, чтобы объяснить законы природы. Мы вошли в период физики будущего.
Очень быстро физики поняли, что теория струн, тем не менее, не является однозначной теорией. Вместо единственной последовательной теории мы скоро открыли, что имеется пять последовательных теорий суперструн в десятимерном пространстве-времени. Это вызвало проблему, которая не поддавалась решению в течение следующих десяти лет или около того. Однако, это была не совсем плохая новость. Вспомним, что теория Калуцы-Кляйна имела фатальную проблему: что вселенные, которые она описывает, являются слишком симметричными, не согласуясь с фактом, что природа и её отражение в зеркале не одинаковы. Некоторые из пяти суперструнных теорий оказались в состоянии избежать такой судьбы и описывали столь же асимметричные миры, как и наш собственный. И имелось дальнейшее развитие, которое подтверждало, что теория струн является конечной (что означает, что она должна давать только конечные числа в качестве предсказаний результатов любого эксперимента). В бозонных струнах, без фермионов, легко показать, что не имеется бесконечных выражений, аналогичных имеющимся в теории гравитонов, но когда вы вычисляете вероятности с большей степенью точности, бесконечности могут возникнуть, что связано с нестабильностью тахионов. Поскольку суперструны тахионов не имеют, это повышает возможность, что теория не имеет бесконечностей.
Это было легко проверить в низшем порядке приближения. За его пределами имелись интуитивные аргументы, что теория должна быть конечной в любом порядке приближения. Я вспоминаю видного струнного теоретика, который сказал, что это настолько очевидно, что теория струн конечна, что он не будет изучать доказательства, даже если они есть. Но некоторые люди стремились обеспечить конечность теории струн за пределами низшего приближения. Наконец, в 1992 году Стэнли Мандельштам, высоко уважаемый математический физик в Беркли, опубликовал статью, которая полагала, что доказала, что суперструнные теории конечны во всех порядках определённой аппроксимационной схемы[43]43
S. Mandelstam, «The N-loop String Amplitude – Explicit Formulas, Finiteness and Absence of Ambiguities,» < N-петлевая амплитуда струны – явные формулы, конечность и отсутствие неопределённостей>, Phys. Lett. B, 277(1–2): 82–88 (1992).
[Закрыть].
Не удивительно, что люди были столь оптимистичны. Обещания теории струн намного превосходили всё, что до того времени предлагала любая из единых теорий. В то же время, мы могли видеть, что остаётся пройти ещё длинный путь до выполнения всех её обещаний. Например, рассмотрим проблему объяснения констант стандартной модели. Теория струн, как отмечалось в последней главе, имеет только одну константу, которая может быть подогнана руками. Если теория струн верна, двадцать констант стандартной модели должны быть объяснены в терминах этой одной константы. Это было бы безусловно изумительно, если бы все эти константы можно было бы рассчитать как функции единственной константы теории струн – это был бы триумф, более великий, чем любой другой в истории физики. Но мы ещё этого не достигли.
Кроме этого, был вопрос, который, как обсуждалось ранее, всегда должен задаваться единым теориям. Как должны объясняться видимые отличия между унифицированными частицами и силами? Теория струн объединяет все частицы и силы, что означает, она должна также объяснить нам, почему они различаются.
Итак, как это всегда бывает, всё свелось к деталям. Это на самом деле работает, или имеются сноски мелким шрифтом, которые уменьшают чудо? Если это работает, как на самом деле такая простая теория объясняет так много? Что мы должны думать о природе, если теория струн верна? Во всяком случае, что мы потеряли по пути?
Когда я узнал о теории больше, я начал думать о предлагаемых ею проблемах как об очень похожих на те, с которыми мы сталкиваемся, когда покупаем новый автомобиль. Вы идёте к дилеру со списком опций, которые вы хотите. Дилер рад продать вам автомобиль с такими опциями. Показывает несколько моделей. После некоторого времени вы осознаёте, что каждый автомобиль, который был вам показан, имеет некоторые опции, которых нет в вашем списке. Вы хотели противоблокирующее устройство тормозной системы и по-настоящему хорошую аудиосистему с CD-проигрывателем. Автомобили наряду с этим имеют также люк в крыше, причудливые хромированные бамперы, титановые колпаки ступиц, восемь держателей для стаканов и сделанные на заказ гоночные полосы.
Это то, что известно как комплексная сделка{13}. Оказывается, что вы не можете получить автомобиль только с теми опциями, которые вы хотите. Вы получите комплект опций, который включает вещи, которые вы не хотите или которые вам не нужны. Эти дополнения значительно увеличивают цену, но выбора нет. Если вы хотите антиблокировку тормозов и CD-плейер, вы должны взять весь комплект.
Теория струн, кажется, тоже предлагается только как комплексная сделка. Вы можете желать простую единую теорию всех частиц и сил, но вы получаете несколько дополнительных свойств, по меньшей мере, два из которых при переговорах не обсуждались.
Первое есть суперсимметрия. Были теории струн без суперсимметрии, но все они оказались нестабильными вследствие присутствия всё тех же надоедливых тахионов. Суперсимметрия уничтожает тахионы, но имеется загвоздка. Суперсимметричная теория струн может быть последовательной только если вселенная имеет девять измерений пространства. Нет такой опции для теории, чтобы она работала в трёхмерном пространстве. Если вы хотите получить другие свойства, вы должны будете принять опцию с шестью дополнительными измерениями. Не остаётся ничего иного, как свернуть их так, чтобы они оказались слишком малыми для восприятия. Таким образом, вы вынуждены воскресить главные идеи старых теорий единого поля.
Это создаёт большие возможности, но и большие проблемы. Как мы видели, ранние попытки использовать высшие измерения для объединения физики потерпели неудачу, поскольку там имелось слишком много решений; введение высших измерений приводит к гигантской проблеме неоднозначности. Это также приводит к проблемам нестабильности, поскольку имеются процессы, посредством которых геометрия внешних измерений распутывается, измерения становятся больши́ми, и другие процессы, в результате которых геометрия коллапсирует в сингулярность. Если бы теория струн преуспела, она должна была бы решить эти проблемы.