Текст книги "Нанонауки. Невидимая революция"
Автор книги: Кристиан Жоаким
Соавторы: Лоранс Плевер
сообщить о нарушении
Текущая страница: 6 (всего у книги 11 страниц)
Глава 4
Строим памятник? Скорее монумент
Стремясь к конструированию таких приборов и установок, в которых работают лишь одиночные молекулы или считаные атомы, нанотехнология затевает самый настоящий переворот в технологии. В самом деле весь унаследованный порядок миниатюризации опрокидывается с ног на голову. Не удивительно, что такие крошечные установки вызвали острое любопытство у ученых, желавших разобраться в нанофизике. Что, если зайти достаточно далеко по этому новому пути и, скажем, увеличивать молекулу, умножая число входящих в нее атомов? Не удастся ли превратить такую огромную молекулу в вычислительную машину? Или механическую? Это же сняло бы все препоны, мешающие дальнейшей миниатюризации в микроэлектронике и микромеханике: все запихиваем внутрь одной-единственной молекулы, и молекула становится целой машиной. Отсюда и название для подобных молекул-машин – монументальные молекулы. Не потому, что они похожи на памятники, а потому, что они – огромны, монументальны. И тем монументальнее, чем сложнее становится машина, в которую такая молекула превращается.
Прежде чем начинать подобную «монументализацию», следовало бы выяснить: а сколько атомов понадобится, чтобы молекула смогла работать как двигатель, или как приемо-передатчик, или как вычислительная машина? А потом понять, какие «части» понадобятся этой молекуле-машине – чтобы не разваливалась и работала, то есть выполняла порученные ей задачи. И наконец придумать для нее такие технические средства, чтобы она могла получать приказы и/или сообщать о своем состоянии, принимать или передавать энергию, словом, чтобы наладить обмен информацией с машиной-молекулой.
Мысль о монументализации возникла в начале 1980-х годов – именно тогда эту идею высказал Форрест Картер, химик из NRL(Исследовательской лаборатории военно-морского флота). Он работал с токопроводящими полимерами, выстраивая внутри объема полимера длинные молекулы и в таком порядке, чтобы получались пластмассы, проводящие электричество. Изучая подобные длинные молекулы, Форрест Картер вспоминал про ту молекулярную электронику, о которой мечтал Ари Авирам. Идеи о сведении любого компонента электронной схемы к одной-единственной молекуле казались необыкновенно заманчивыми – это помогло бы пробить стену вроде той, в которую уткнулась транзисторная электроника со всеми ее технологиями в конце 1950-х годов. В те времена электронные схемы собирались покомпонентно, деталь за деталью, и вообразить, что в один прекрасный день удастся единым махом соединить миллионы деталей, необходимых для создания процессора вычислительной машины, было просто невозможно. Тем не менее Джек Килби решил эту задачу – в 1958 году он изобрел интегральную схему.
Задача, за которую взялся Картер, тоже на первый взгляд не решалась: как собрать воедино миллионы молекул-компонентов, если в такой схеме соединения будут обычными – то есть металлическими проводами, пускай и очень тонкими? И ведь между молекулами должен оставаться какой-то промежуток, ну, хотя бы в десяток нанометров. И как избавиться при таких масштабах и таком построении без квантовых эффектов? А эти явления наверняка осложнят функционирование любой схемы. И соединения-провода займут столько места, а там проблемы теплоотвода, наводок и т. п. Не лучше ли втиснуть все нужные компоненты в одну огромную молекулу – и дело с концом?
И вот подобно тому, как Джек Килби избавился от затруднений с подключениями и соединениями, придумав электронную микросхему, Форрест Картер предложил решить задачу подключения молекул-компонентов, придумав в 1984 году «молекулярную интегральную схему». Чтобы не ломать голову над тем, как свести каждый компонент (диод, транзистор и т. п.) к одной-единственной молекуле, а потом мучиться с их подключением друг к другу, он предложил воплотить всю схему в одной-единственной молекуле, затолкав в нее все компоненты и все соединения между ними. Физики, разумеется, возмутились, а химики впали в оцепенение! Дожили, ничего не скажешь: мало того, что надо соглашаться с тем, что молекула годится на роль детали в электронных устройствах, так еще нужно признать молекулу, в которой умещается вся электронная схема и, значит, кроме нее, этой молекулы, больше-то ничего и не нужно!
Зато Форреста Картера поддержали отдельные калифорнийские биотехнологи, в том числе Кевин Алмер из компании Genex: эти специалисты взялись так запрограммировать генетически бактерии, чтобы те производили не просто белки, но – сразу же и без необходимости каких-то переделок – требующиеся молекулярные электронные структуры. Французские предприятия Roussel-Uclafи Elf Aquitaine, а с ними и Институт Пастера, поспешили поставить на эту же лошадь. Бойкие французы направили своих посланцев на организованный Форрестом Картером первый Конгресс по молекулярной электронике, куда в числе эмиссаров французской науки попал и Жоэль де Роне, бывший тогда директором по прикладным исследованиям в Институте Пастера [17]17
Rosnay J. Les biotransistors: la microélectronique de XXIe siècle. La Recherche, 1981 Juillet – août.
[Закрыть]. Собравшиеся, однако, обнаружили, что дело, за которое они вроде бы не прочь взяться, какое-то непонятное и ненадежное. Ну да, хорошо бы молекулу подключать через провода, которые свяжут ее с макроскопическим миром и по которым будет осуществляться информационный обмен, но непонятно, как это сделать, – задачка кажется нерешаемой. А вот Ари Авирам в конце 1980-х ухватился за эту мысль о молекуле-схеме и попытался двинуться в этом новом направлении, открывшемся в молекулярной электронике.
Тогда в том же направлении заработала и мысль Эрика Дрекслера, задумавшегося о построении сложных механических машин-молекул, которые использовали бы, скажем, межмолекулярные или внутримолекулярные сцепления. Он придумал несколько вариантов вычислительного процессора, объединяющего в себе достижения молекулярного моделирования. Но на этом этапе монументализация происходила без участия химиков, а машины-молекулы оставались виртуальными, то есть нематериальными. Лишь много позже, с изобретением туннельного микроскопа (а он, напомним, умеет манипулировать молекулами), химики получили возможность так обрабатывать молекулы, чтобы они превращались в процессоры. И, дабы найти пути к чаемому синтезу и наделить его плотью, оставалось лишь упрощать и избавляться от сложностей.
ЯВЛЕНИЕ МОЛЕКУЛ-МАШИН
Раз уж появились идеи о монументальных молекулах и о молекулах-машинах, а затем и теоретические разработки «виртуальных» молекул-приборов и молекул-установок, то, надо думать, вскоре должны были появиться и первые молекулы-установки «во плоти». Пока что речь не шла о процессоре для компьютера, но эти молекулы-приборы уже умели выполнять кое-какие измерения в «мире внизу». Давайте для начала откроем учебник по физике середины XX века. Там мы найдем немало приборов, придуманных для изучения еще недостаточно исследованных физических явлений. Вот, к примеру, прибор, замеряющий, как меняется проводимость полупроводника или его способность усиливать электрический сигнал в зависимости от температуры, а сам этот прибор сделан из вживленного в поверхность полупроводника кусочка оргстекла с металлизированной поверхностью – то есть, в сущности, это транзистор. А раз уж нанотехнология переворачивает вверх ногами весь порядок производства, то, значит, есть шанс создать нечто новое, где все монтажные точки и узелки будут заменены одиночными молекулами и каждая такая молекула станет и оборудованием, которое используется в эксперименте, и объектом, изучаемым в этом эксперименте.
ПРОВОД…
Первой молекулой-установкой, созданной для физического опыта, стал молекулярный провод – цепочка молекул с четырьмя молекулярными лапками. Придумали этот проводник в 1997 году я и Андре Гурдон из Центра структурных исследований и разработки материалов ( CEMES). Своему детищу мы дали имя Lander,Приземляющийся, – потому что думали о маленьком роботе Sojourner,которого как раз в то лето НАСА отправило на космическом зонде Mars Pathfinderна Марс. Андре занялся синтезированием молекул чуть позже посадки зонда на Марс.
В своем эксперименте мы хотели измерить электропроводность молекулярного проводника. А четыре ножки, которые мы приделали к этому проводку, приподнимали его над металлической поверхностью, чтобы не возникали токи утечки. Да и игле туннельного микроскопа легче перемещать этот проводок на лапках по ровной металлической поверхности. Зато стало куда труднее установить электрический контакт с обоими кончиками проводка. Ничего не поделаешь, трудности бывают всегда – не одно, так другое. Чтобы обойти это препятствие, мы решили воспользоваться неким свойством процесса обработки металлических поверхностей: дело в том, что по ходу подготовки металлической поверхности фазы прокаливания чередуются с фазами протравливания, и в итоге получаются большие и ровные, но ступенчатые плоскости. Если подобрать температуру обработки, то можно получить площадку, кончающуюся уступом высотой в один слой атомов (то есть высотой в один атом). Обнаружение такой ступеньки с помощью туннельного микроскопа труда не составит. А если мы отыщем такую тонюсенькую ступеньку, то, наверное, удастся, манипулируя иглой микроскопа, расположить молекулярный проводок поперек этой ступеньки, а потом, понемногу толкая проводок, добиться, чтобы его кончик оказался над ступенькой. Напомним, что проводник – на лапках и потому не прикасается к поверхности. Но кончик над ступенькой изгибается и, следовательно, взаимодействует с нею. То есть один электрический контакт – проводника с металлической поверхностью – есть. Второй контакт возникает между вторым концом проводка и иглой туннельного микроскопа – если ее кончик установить точно над кончиком провода.
В этом опыте металлическая поверхность служила лабораторным столиком, а молекула – экспериментальной установкой, позволяющей так расположить молекулярный проводок, чтобы можно было замерить его сопротивление, тогда как игла микроскопа продолжала руку физика-экспериментатора. Первым сумел переместить наш LanderДжим Гимжевски в 1998 году, в своей лаборатории IBMпод Цюрихом. Он смог передвинуть проводник, как и предлагалось, на ступеньку и замерить электрическое сопротивление контакта между ступенькой и кончиком молекулярного проводка. Сопротивление оказалось слишком высоким, чтобы ток надежно протекал по проводку. Иначе говоря – контакт скверный, и это из-за ножек: уж очень они высокие, и потому проводок оказывается излишне приподнятым над поверхностью. И из-за этого близ кончика провода происходят ненужные химические реакции, затрудняющие надежный обмен электронами. Изменив химический состав контакта, мы смогли уменьшить его сопротивление раз в десять. Еще сильнее оно уменьшилось, когда мы укоротили ножки проводка, а затем мы постарались получше наладить контакт со вторым концом провода – чтобы измерить сопротивление как можно точнее.
А потом мы придумали молекулу-прибор посложнее. Речь идет о молекуле, которая стала амперметром, то есть прибором, способным замерить силу тока, протекающего, для примера, через молекулярный проводок. Молекулу эту надо подключить к металлическому электроду – для каждой из двух концов молекулы, следовательно, понадобится свой электрод. Принцип таков: электрический ток протекает по главной ветви, достаточно длинной, чтобы в нее можно было вставить маленькое химическое соединение, способное вращаться, – ротор. Когда электрон проходит через молекулу, перемещаясь от электрода на одном конце молекулы к электроду второго ее конца, то внутри молекулярного проводника рассеивается некоторое, пусть очень малое, количество энергии. Этой энергии, однако, хватает на нагрев химического ротора, который под воздействием тепла поворачивается. Угол поворота удается замерить, если поместить еще один – третий – электрод сбоку от ротора. А зная угол, на который повернулся ротор, экспериментатор может оценить силу тока, протекающего через главную ветвь цепи, то есть через молекулу-провод.
У молекулы-амперметра тоже должны быть ножки или лапки – чтобы она немного приподнималась над поверхностью: ведь если амперметр «ляжет брюхом» на металлическую плоскость, то химический ротор просто не сможет поворачиваться. А еще нужны три электрода, три электрических контакта. Лучше всего было бы изготовить с атомной точностью пару металлических контактов на твердой поверхности и сбросить на них молекулу, которая замкнула бы эти контакты (третий контакт можно было бы организовать через иглу микроскопа); однако такой технологии пока нет. Ее, конечно, пытаются разработать и, понятно, раньше или позже она появится, и скорее раньше, чем позже, – хотя бы потому, что без нее невозможно создать «вычисляющую молекулу», то есть молекулу, умеющую складывать два числа или вычитать одно число из другого; впрочем, об этом – чуть позже.
Первый транзистор, изобретенный в конце 1940-х годов, убедительно показал, что твердотельный прибор способен усиливать электрический ток. Пятьдесят лет спустя труды таких первопроходцев, как Ари Авирам и Марк Ратнер, поставили вопрос о возможности такого явления, как молекулярная электроника. Ответ представлялся очевидным: если окажется, что одиночная молекула тоже может усиливать ток, есть смысл работать над созданием молекулярной электроники. Поэтому заинтересованные исследователи принялись изучать возможности молекулярных структур, которые вроде бы обещали какое-то решение возникшей задачи. В 1997 году мы с Джимом Гимжевски показали одиночную молекулу, усиливающую электрический сигнал. Это, конечно, не привело к свержению микроэлектроники с ее престола, но стало, по крайней мере для нас, заметным и значительным шагом вперед.
Собственно, мы собрали электрическую схему, в которой молекула фуллерена находится под иглой туннельного микроскопа. Мы знали, что, если слегка надавить иглой на молекулу, ее сопротивление резко снизится. Небольшое изменение одного параметра (здесь – расстояния между иглой и поверхностью) оборачивается большим изменением другого параметра (в нашем случае – сопротивления молекулы). Воспользовавшись этим эффектом, мы построили усилитель, в котором приращение напряжения на выходе в четыре раза превышает приращение напряжения на входе.
Мы думали о том, чтобы выстроить несколько таких молекул-усилителей в линейку, соединив их последовательно или параллельно, чтобы возникла настоящая электронная схема, способная, к примеру, вычислять. Жалко, но значения электрических сопротивлений, при которых молекула-усилитель оказывается работоспособной, таковы, что соединительные проводники просто не могут быть молекулами. Это значит, что соединительные провода будут макроскопическими, то есть их размеры заставят вынести все провода «за ограду», расположив их вне той площадки, которую занимает туннельный микроскоп. Мы попробовали сделать провода помельче, чтобы они поместились в ограде, но вся наша миниатюризация ни к чему не привела. Тогда, вместо того чтобы мучиться с миниатюризацией оборудования, окружающего молекулу, мы решили поменять само оружие и отказались от идеи гибридизации – не хотелось нам совмещать в одной схеме молекулярные компоненты с какими-то микроскопическими деталями. И задались вопросом: а нельзя ли так «раздуть» молекулу, чтобы она вместила в себя все необходимые сопротивления и провода, их соединяющие? И чтобы получилась полная электрическая схема. Вот как мы вступили на дорожку «монументализации».
И этот разрыв с исторической идеей гибридной молекулярной электроники вывел нас на колею, проложенную Форрестом Картером. Не то чтобы я просто и безболезненно расстался с молекулярной электроникой – как-никак, я отдал ей добрых двадцать лет жизни, начав еще в конце 1970-х. Я изучил немало меленьких молекул, которые, если их разместить на поверхности металла или полупроводника, демонстрируют самые разные ориентации (хотя значения энергии почти одинаковы). И оказываются «естественными» выключателями (прерывателями тока). В самом деле нетрудно, перемещая иглу микроскопа, переходить от одной ориентации к другой, получая, таким образом, переключатель на одиночной молекуле. Но попытка собрать из таких молекул-переключателей серьезную схему наталкивается на то же препятствие, которое мешало нашему усилителю на молекуле. Отныне главным для нас стал новый вопрос: а какова вычислительная мощность одиночной молекулы – по сравнению с аналогичным показателем цепи, объединившей мириады подобных молекул?
Мысль – или мечта – о новой молекулярной электронике, которая бы позволяла объединять все нужные функции в одной-единственной молекуле, должна была избавить ученых от предрассудка, мешавшего признать за единичной молекулой способность выступать в качестве чего-то более сложного, чем простейший прибор. Освобождение от шор расширяет поле зрения, так что, при желании, можно увидеть, что одиночной молекуле по плечу и куда более сложные обязанности. Мы убедимся, еще в этой главе, что за этим прорывом прячется иной, более глубокий, прорыв, и природа его – количественная, точнее, квантовая. Как бы то ни было, я продолжал в том же духе, хватаясь за все более громоздкие молекулы и превращая их во все более сложные установки и приборы. Пример тому – «молекула-морзянка».
КОРОМЫСЛО… ИЛИ КАЧЕЛИ?
Про азбуку Морзе и радистов, «работающих на ключе», знает всякий поклонник фильмов о Диком Западе: оператор в высокой кепке козырьком назад с бешеной скоростью выстукивает на телеграфном ключе сообщение, передающееся из здания вокзала по телеграфным проводам куда-то в синюю даль. Сам телеграфный ключ – это такое коромысло, качающееся туда-сюда: оператор давит на рукоятку этого рычага-коромысла, под которым установлена пружина, и рычаг замыкает электрические контакты, а когда давление на рукоятку ослабнет, пружина вернет рычаг в исходное положение, и контакты разомкнутся. Таким образом, возникает вереница электрических импульсов, длинных и коротких, они и передаются по проводам.
Не так давно придумали молекулу, которая годится на роль телеграфного ключа. Коромыслом служит веточка молекулы, удерживаемая в положении, параллельном поверхности. Конец этой ветви закреплен с помощью химической связи (вот вам и пружина) на молекуле с четырьмя ножками, поддерживающими саму молекулу на центральной площадке. Второй конец коромысла висит в воздухе – и, касаясь его иглой микроскопа, оператор превращается в телеграфиста позапрошлого века.
Сама молекула длиной менее 1,5 нм – из ряда самых сложных на сегодня молекул-приборов, а ее химический синтез занял несколько лет. Работоспособна она только на металлической поверхности: когда крошечное химическое соединение на свободном конце коромысла приближается к поверхности, то электронное состояние какого-то участка соединения меняется, и это вызывает модуляцию электронной плотности в коромысле, что обнаруживается и на поверхности, даже на немного большем удалении от того участка, который находится непосредственно под концом коромысла.
Выходит, мало сказать, что молекула – это лаборатория, в которой ставится эксперимент: на самом деле опыт производится с атомами, с группами атомов, находящимися на некоторой поверхности. Число этих атомов можно увеличить, но если оно и возрастет, то не намного превысит то количество, которое требуется для создания экспериментальной установки. Так, Дон Эйглер поставил эксперимент с атомным магнетизмом внутри эллиптической ограды, построенной на поверхности медного кристалла из 36 атомов кобальта: игла туннельного микроскопа передвигала по этой поверхности атом за атомом, пока не возник замкнутый овал. Атомы кобальта были выбраны на роль штакетин в заборе, потому что они отражают квантовые волны, возникающие из-за беспорядочного передвижения несвязанных электронов, блуждающих по медной поверхности. Длина такой волны 1,5 нм, и это удобно для наблюдения волновой интерференции внутри загородки размером в несколько нанометров, огражденной атомами кобальта. И Дон Эйглер получил изображения этой интерференции электронных волн на своем туннельном микроскопе – вроде кругов, расходящихся по воде: концентрические окружности разного диаметра. Картинки победоносно облетели всю планету. Еще бы – более чем убедительное доказательство волнового характера тех состояний, в которых пребывают электроны на поверхности металла. А потом Дон Эйглер слегка изменил условия опыта, поместив, с помощью той же иглы микроскопа, в фокус эллипса намагниченный атом. И обнаружил магнитное эхо… в другом фокусе, где никакого атома не было. Налицо магнитный мираж – это эффектное явление возникает благодаря переносу магнетизма из одного фокуса эллипса в другой через электронное облако, висящее над металлической поверхностью. Разумеется, подобное явление можно воспроизвести в любых масштабах и с любыми длинами волн, хоть световых, хоть звуковых. Достаточно подобрать эллиптический резонатор подходящего размера: желательно, чтобы величина резонатора была соизмерима с длинами интерферирующих волн (и чтобы вдоль резонатора укладывалось целое число четвертей волны).
МЕХАНИЧЕСКИЕ МОЛЕКУЛЫ-МАШИНЫ
Обратимся теперь к механике. Чтобы молекула смогла стать механической установкой, ее следует оснастить всеми деталями, необходимыми для выполнения стоящих перед нею задач. Это означает, что такие молекулы будут сложнее тех, что уже описаны нами, потому что понадобятся различные механические узлы (и для их закрепления сильные химические связи). В 2001 году мы придумали молекулу-тележку с ручкой и назвали ее «молекулярной тачкой». Длина этого агрегата – 1,2 нм. У нее спереди два молекулярных колеса диаметром 0,7 нм, и крепятся они, как положено, на оси; сзади же – ножки, такие же, как у макроскопической тачки. И наконец, два рукава сзади – вместо рукояток. Вот что удается смастерить с помощью всего лишь одной иглы туннельного микроскопа. Первым такую тележку соорудил Гвеналь Рапенн в CEMESв Тулузе, потом Леонгард Гриль и Франческа Мореско из Берлинского университета, начавшие «предпусковые и пусковые испытания», по ходу которых испытывались качества тележек. Предвыпускная фаза состояла в выпаривании молекул – чаще всего это выглядело как прокаливание порошка в небольшом тигле. Тигель обычно разогревали до 150–250 °C, размещая его так, чтобы часть молекул попадала на поверхность. Но чтобы прокаливать молекулы побольше и получать молекулярные тачки, нужны температуры порядка 350–450 °C. В таких условиях, однако, 95 % молекул-тележек ломается или на выходе из тигля, или уже на поверхности. А из тех молекул, которые все-таки целыми добираются до поверхности, есть такие, которые выглядят тележками с двумя, тремя, а то и четырьмя колесами. Многие, хоть и целы, но все равно не годятся, из-за слишком короткой оси, например. Словом, все это – сломанные или полуразобранные «тачки», с теми или иными дефектами. А поскольку эти осколки и обломки тележек оставляют тигель сильно раскаленным, то, попадая на поверхность, они не только образуют беспорядочные нагромождения атомов, но и взаимодействуют между собой, в том числе химически, в результате чего возникают все новые и новые – и совсем малые – молекулы.
К счастью, довольно много тележек все-таки благополучно добирается до поверхности. И мы попробовали подтолкнуть одну такую тачку сзади – иголкой туннельного микроскопа. Надеялись, что колеса станут вращаться, а тележка продвинется вперед. Куда там! После нескольких попыток – мы очень старались, чтобы ножки были наклонены и не мешали движению – стало ясно, что передние колеса никак не хотят поворачиваться. Потом, но много позже, мы поняли, что, наверное, колеса слишком сильно сцепляются с металлической поверхностью. Эта неудача – красноречивое свидетельство трудностей, с которыми сопряжены попытки воспроизвести в «мире внизу» строение машин, работающих в нашем макроскопическом мире, то есть строить механические молекулы-машины такими же, как известные нам механизмы, только в наномасштабе, очень непросто.
Тем временем профессор химии в Университете Райса в Техасе Джеймс Тур занялся изучением молекулы-коляски. Он синтезировал нанокарету – молекулу длиной 1,5 нм. И снабдил экипаж четырьмя колесами – каждое колесо представляло собой молекулу фуллерена. Колесико крутилось на молекулярной оси – такой же, что у молекулярных тачек. И карета двигалась! Можно было ее подтолкнуть иглой туннельного микроскопа, но, оказалось, что есть способ куда проще: профессор нагревал золотую поверхность, на которой стояла молекулярная карета: тепловой энергии вполне хватало для самопроизвольного перемещения кареты. Выглядело это так, что карета беспорядочно передвигается по поверхности – в общем, слоняется, как попало. Хорошо, конечно, что хоть как-то движется, но вот колеса-то у нее не крутятся! О вращении колес можно судить по силе тока, протекающего через иглу туннельного микроскопа: если внутренняя структура молекулы меняется, то будет меняться и ток, и по характеру этих изменений видно, крутятся колеса или же тепло просто тащит карету невесть куда, а колеса так и остаются неподвижными. Просто скользят по поверхности – наверное, для фуллереновых колес золотая гладь оказалась слишком скользкой.
Трудности трудностями, но, как известно, прогресс неудержим, и потому можно не сомневаться: рано или поздно, но наноколеса наноэкипажей завертятся. И наверняка сразу же на повестку дня встанут другие требования: большей автономности молекулярных повозок, например. В смысле: а давайте поставим на тележку двигатель. Джеймс Тур уже поставил на свою молекулу-карету маленькую защелку – посередине рамы. Если на эту защелку попадет луч света, она опустится на поверхность и станет опорой, отталкиваясь от которой карете будет легче начать движение. Пока что эта молекула не совсем готова – работы над ее синтезированием продолжаются. А в лаборатории в Тулузе Гвеналь Рапенн и Жан-Пьер Лоне придумали и синтезировали молекулу-моторчик – диаметр ротора этого двигателя меньше 2 нм. Теперь они рассчитывают мощность своего движка и придумывают для него коробку передач – чтобы можно было встроить его в молекулу-карету.
МОЛЕКУЛЫ ВЫЧИСЛЯЮТ
Тем временем, точнее, в 1997 году, Джим Гимзуски построил маленькие молекулярные счеты, собирая их из присоединяемых одна за одной молекул фуллерена. Джим располагал фуллереновый ряд вдоль ступеньки высотой в один атом – этот слой естественным образом возник на поверхности золотого кристалла. В 2002 году Дон Эйглер построил из сотни молекул моноксида углерода, которые он перемещал иглой туннельного микроскопа, логические вентили, выполнявшие функции «ИЛИ» и «И». У каждого вентиля было два входа, на которые поступали сигналы со значениями 0 или 1, и один выход. Если на одном из входов появится единица (1), то и на выходе схемы «ИЛИ» будет единица, а вот на выходе схемы «И» единица появится только тогда, когда на оба ее входа поступят единичные сигналы. Дон Эйглер построил из своих молекул два ряда, соприкасающиеся в одной точке поверхности. Эти два ряда служат двумя входами молекулярного логического вентиля, а каждая молекула похожа на косточку домино, которая или стоит, или упала (1 или 0). Если опрокинуть первую с краю молекулу, то возникает хорошо известный «эффект домино»: опрокидывание распространяется вдоль линейки (опрокинутая косточка обрушивает свою соседку). Так что состояние всего ряда может быть только одинаковым: или нулевым, или единичным, и соответственно и последняя косточка ряда – это выход вентиля – тоже опрокидывается или остается в исходном положении, чем и моделируется двоичность состояний (0 или 1). Вот как работает логическая схема, собранная из молекул. Однако схема может выполнить логическое сложение (ИЛИ) или логическое умножение (И) только один раз. Чтобы повторить логическую операцию, необходимо вернуть вентиль в исходное состояние, а это означает, что снова приходится выстраивать ряд из молекул «вручную» (пусть и с помощью иглы микроскопа): все косточки домино упали, и теперь надо их поднять. Поэтому Дон Эйглер и называет свое устройство не процессором, а счетами – операция выполняется механически.
Выходит, что молекулы можно собирать в группы, выполняющие вычисления, или механическим образом, или пользуясь электронами. Возможность синтеза молекулы-вентиля уже показана, но пока что невозможно гарантировать надежное функционирование такого логического вентиля – потому что нет технологии подключения вентилей к контактным площадкам.
В 1990-е годы верили в электронную литографию: мол, ее методами удастся сформировать нужные металлические электроды, которые будут настолько малы, что к ним без особых хлопот подключится одиночная молекула. Но ничего подобного не получилось. С одной стороны, электронная литография, опробованная в мезоскопической физике, недостаточно точна, чтобы формировать крайне миниатюрные электроды, размеры которых сопоставимы с размерами атомов. Кроме того, эта методика строится на использовании смолы (она служит для нанесения рисунка – например, металлических контактов, вживляемых в поверхность), и смолу после формирования схемы удаляют до последней молекулы. А соскребая смолу, очень даже можно удалить и нужные молекулы-приборы. Так что вся надежда на туннельный микроскоп: орудуя его иголкой, быть может, удастся так обработать маленькие, в несколько десятков нанометров, металлические площадки, сформированные методом осаждения, что из них получатся нужные наноконтакты.
Так как эта новая технология пока что только на подходе, исследователи тем временем придумывают новые молекулы, умеющие вычислять. В сущности, такие молекулы, судя хотя бы по тому, что предлагал Форрест Картер, должны быть огромными, чтобы вместить в свой объем всю ту сложность, без которой ни о каких вычислениях не может быть и речи.
Но это порождает множество проблем. Во-первых, синтез таких молекул – дело нелегкое. Да и манипулировать исполинскими молекулами, передвигая их поштучно, одну за одной, очень непросто: надо же так подвинуть громадную молекулу, чтобы ее отросток – и именно тот, что нужно – точно лег на малюсенькую площадку металлического контакта. И еще, сила тока, протекающего через очень уж длинную молекулу, не может быть слишком большой – не то молекуле несдобровать. Речь, видимо, идет о величинах менее аттоампера, a 1 аА = 10 -18А, то есть аттоампер в миллиард миллиардов раз меньше ампера. Электроника, особенно быстродействующая, такой слаботочной быть не может. Значит, нужны новые вычислительные молекулы с новыми структурами, и родиться они должны как плод союза молекулярной электроники с квантовыми калькуляторами.