355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Кристиан Жоаким » Нанонауки. Невидимая революция » Текст книги (страница 5)
Нанонауки. Невидимая революция
  • Текст добавлен: 24 сентября 2016, 01:04

Текст книги "Нанонауки. Невидимая революция"


Автор книги: Кристиан Жоаким


Соавторы: Лоранс Плевер

Жанры:

   

Научпоп

,

сообщить о нарушении

Текущая страница: 5 (всего у книги 11 страниц)

На этот раз и дрейф иглы удалось уменьшить – как бы то ни было, ее кончик продержался над молекулой достаточно долго, чтобы мы успели замерить ее электрические характеристики! Увы, ничего особенного мы не обнаружили – молекула как молекула, а мы-то хотели, чтобы она работала как выключатель. Мы принялись вновь и вновь подводить к ней иглу, менять расположение молекул, но ток не менялся – во всяком случае, совсем не так сильно, как его меняет любой выключатель, даже плохой. Наконец, после самой кропотливой подготовки иглы и медленного повышения напряженности электрического поля между иглой и поверхностью подложки, сила тока вдруг резко возросла! Ток пошел! Выключатель замкнулся. Итак, мы сумели пропустить электрический ток через наш молекулярный выключатель.

Но счастье оказалось мимолетным. То, что мы приняли за замыкание нашего молекулярного прерывателя, было на самом деле атомным коротким замыканием! Понадобилось еще десять лет освоения навыков работы с туннельным микроскопом, да и совершенствования самого микроскопа, чтобы научиться устанавливать электрический контакт между его иглой и одиночной молекулой. Пока что по-иному подключаться к молекуле не получается. И все же в том, хоть и не совсем удачном, опыте мы показали, что туннельный микроскоп может соединить несколько атомов в электрическую цепь. Наш эксперимент вводил молекулярную электронику в эру нанотехнологии и повышал интерес к этой области исследований.

ЧЕЛОВЕК ТРОГАЕТ АТОМ. И ПЕРЕДВИГАЕТ ЕГО!

Столько ученых так долго не верили в возможность подключения одной, и единственной, молекулы! Иначе говоря, они сомневались в том, что можно наладить обмен электронами с молекулой, обосновывая свои сомнения квантовыми свойствами электронов. Электроны подчиняются квантовым законам, следовательно, поведение электронов хоть внутри молекулы, хоть где еще, заведомо случайно (вероятностно). А можно ли управлять случаем? Так что все разговоры об управлении электронами – пустая трата времени. Выходило так, что отцы квантовой механики зло подшутили над экспериментаторами. В самом деле, физические свойства атома, по Шрёдингеру, квантовые, значит, никак нельзя установить местоположение или локализовать волну, ассоциируемую с этим атомом. То есть манипулировать им так, как если бы он был просто частицей твердого тела, невозможно.

Но в 1950-е годы Эрвин Мюллер на автоионном микроскопе (см. Приложение I)впервые получил изображения атома вольфрама, и это достижение сразу же породило раздоры в стане ученых. Иные из них заходили так далеко, что позволяли себе сомневаться в квантовой теории вещества! Другие, напротив, заявляли, что изображения Мюллера – какое-то недоразумение; наверное, его фотокамеры зафиксировали некие паразитные погрешности, а скорее всего это вообще эффекты интерференции.

В начале 1970-х годов ученики Мюллера заставили атом прыгать на игле автоионного микроскопа, для чего они меняли напряженность электрического поля и температуру иглы. И проследили, почти напрямую, на экране траекторию этого атома, который блуждал на поверхности вольфрамовой иглы. Опыт, казалось бы, подводил черту под спорами: итак, вопреки Шрёдингеру удалось локализовать атом. Более того, удалось не только точно указать на место, где этот атом находится, но и увидеть его перемещения! Но не тут-то было.

Споры приутихли только зимой 1989 года, после того как свои труды обнародовал – и сделал это весьма темпераментно – Дональд Эйглер, работавший в исследовательских лабораториях компании IBMв Альмадене, штат Калифорния. До Альмадена Эйглер два года провел в лабораториях компании Bellна восточном побережье США, тех самых лабораториях, где родился транзистор, один из важнейших компонентов – и символов – электроники. А теперь Эйглер захотел построить микроскоп, работающий на основе туннельного эффекта, чтобы поглядеть, как такой редкий газ, как ксенон, взаимодействует с металлической поверхностью. Эйглер уже имел раньше дело с благородными газами: когда ему надо было защитить диссертацию в Калифорнийском университете в Сан-Диего, он воспользовался расхожей методикой обработки металлической поверхности пучками газов – так определяли магнитные свойства металла, но Эйглер попутно собирал сведения об электронах на поверхности металла. В Альмадене Эйглер начал сооружать такой туннельный микроскоп, который и работал бы очень устойчиво, и сохранял бы работоспособность при самых низких температурах. На это у него ушло три года. Когда же микроскоп был готов, Эйглер, вместо того чтобы проецировать на поверхность металла пучок атомов ксенона, разместил эти атомы на поверхности и стал наблюдать за ними и за их взаимодействием с металлической подложкой. Такие редкие газы, как ксенон, называются благородными потому, что они очень устойчивы и при этом практически не вступают в химические реакции с атомами иных элементов. Чтобы атомы ксенона не сбежали с подложки, Дон Эйглер охладил ее до очень низкой температуры.

И вот однажды ночью (когда вибрации здания минимальны – и сотрудники ушли домой, и машины за окном уже не ездят) он увидел изображения – сначала одних атомов, а потом и других и на одном и том же участке металлической поверхности. И хоть иголка микроскопа все равно болталась, всякий раз магнитоскоп после очередного колебания иглы регистрировал новый образ. Затем Эйглер, изучая зарегистрированные изображения, придал потоку изображений большую скорость (это примерно так, как если смотреть кино на повышенной скорости смены кадров) и заметил, что одно изображение атомов «перетекает» в другое и что направление перетекания совпадает с направлением отклонения иглы. Он повторил опыт и увидел, что в зависимости от напряжения, приложенного к игле, и тока, через нее протекающего, изображение получается или тривиальным, не обнаруживающим ничего особенного, или измененным – с шевелящимися атомами. Итак, налицо доказательства того, что не бессонная ночь повинна в смещении атомов. Их движение – не игра случая, но результат усилий экспериментатора. Получается, что атомами можно манипулировать – вопреки всякому ожиданию и наперекор всем квантовым предписаниям. Чтобы доказать свою правоту, Дон Эйглер написал слово « IBM», выложив буквы 35 атомами ксенона. Эта картинка облетела весь мир и ознаменовала рождение нанотехнологии: человек заставил атомы «ходить строем».

Что же случилось под иглой? Уподобим атом ксенона футбольному мячу на поле стадиона. На траве, которая растет на этом поле, мяч неподвижен – его не пускает трава. А когда футболист ставит ногу на мяч, он давит – слегка – на мяч, то есть мяч теперь не пускает бутсу футболиста. Но если футболист уберет ногу, мяч совершит несколько оборотов вокруг своей оси – ногу футболист убрал, но давление внутри мяча осталось. На этом основан прием, который называется «крученый мяч». Если же футболист не уберет ногу, а надавит ею на мяч чуть сильнее, мяч выскользнет из-под ноги и покатится. Вот примерно то же случилось и с атомом ксенона под иглой туннельного микроскопа. Чтобы получить хорошее изображение атома ксенона, не смещая его, иголку надо подвести на расстояние, большее 0,2 нм (нога футболиста над мячом). Если же промежуток между кончиком иглы и атомом меньше 0,2 нм, игла вступает во взаимодействие с атомом и меняет взаимодействие атома с поверхностью подложки. Атом – «в западне», и эта «западня» сдвигается вслед за перемещением иглы туннельного микроскопа.

Дон Эйглер придумал несколько объяснений для поведения атомов металлов и малых молекул: его «молекулярный человечек» ростом в 5 нм состоял из молекул моноксида углерода (угарного газа). Весть про успехи Эйглера дошла до Японии и вызвала у тамошних ученых острую зависть. Директор Hitachiпотребовал от своих научных сотрудников научиться писать атомами. Но остроумные японцы, вместо того чтобы выводить буквы на поверхности металла, выставляя на ней атом за атомом, решили снимать атомы, тоже по одному, с поверхности полупроводниковой подложки – буквы выкладывались не из атомов, а из дырок, оставшихся после удаления атомов. На надпись «IBM»японцы ответили целым лозунгом « РЕАСЕ’91 HCRL»– «МИР в 1991-м году – Центральная исследовательская лаборатория фирмы Hitachi».

Умение Дона Эйглера манипулировать атомами помогло проворным политикам в США, а затем и Японии развернуть за счет бюджета большие научно-исследовательские программы. За ними последовали и иные не слишком застенчивые правительства по всему миру; впрочем, об этом уже рассказано – в главе 1. И все же до середины 1990-х годов ни в одной лаборатории за городской чертой Альмадена не смогли воспроизвести эксперимент Дона Эйглера – уже потому, что нигде в мире ни у кого не было такого хорошего туннельного микроскопа, как в Альмадене. Только потом Герхард Мейер из Берлинского свободного университета сумел придумать усовершенствования, позволившие поставить производство туннельных микроскопов, пригодных для манипуляции атомами, на поток (причем каждый такой прибор стоил немало – примерно 0,4 млн евро!).

И ВСЕ-ТАКИ ОНА ВЕРТИТСЯ! [16]16
  Слова, приписываемые Галилею («она» – это Земля), которые он будто бы пробормотал после того, как его заставили отречься от приверженности гелиоцентрической системе. ( Прим. перев.).


[Закрыть]

Дон Эйглер, что и говорить, первопроходец, но его удача породила новые вопросы. Например: а нельзя ли перемещать одиночные большие молекулы? Иголка может «наступить» не только на атом, но и на молекулу, и та схватится за кончик иглы. Но в молекуле, особенно огромной, и атомов много, и энергия захвата рассеется на многочисленных химических связях между атомами внутри молекулы. В итоге молекула не сдвинется, а то и слетит с иглы – если экспериментатор надавит на молекулу чуть посильнее.

Мы – то есть физик из лаборатории IBMв Цюрихе Джим Гимжевски и я – предложили свое решение этой задачи. Джим был из тех начинающих физиков, которые, как считало руководство IBM,должны были освоить работу с туннельным микроскопом и научиться применять этот прибор во всех областях физики и химии для изучения поверхностей. Прибор, совсем новый, позволял наблюдать явления, разворачивающиеся на поверхностях металлов и полупроводников, – можно было, к примеру, «увидеть», как атом бора (бор используется в качестве примеси, усиливающей нужные свойства полупроводника) влезает в атомную решетку полупроводника и как искажается эта решетка после появления энергичного пришельца. Микроскоп одарял нас прекрасными и весьма поучительными изображениями, но главное – очень уж не хотелось, чтобы весь приоритет заграбастали ловкачи из IBM.Еще в 1988 году, когда я пропускал электрический ток через молекулу, работая вместе с Авирамом в Нью-Йорке, Джим в Цюрихе получил первые изображения большой молекулы – фталоцианина (это такой краситель) – на поверхности серебряной подложки (см. Приложение I).

Джим продолжал возиться с макромолекулами, а я помогал ему объяснять и получаемые картинки, и то, как они возникают. В самом деле туннельный микроскоп формирует изображение, пользуясь облачками электронов, окружающих атомы, а не непосредственно самими атомами. Сигнал микроскопа столь силен, что это электронное облако становится совсем прозрачным для «туннельных» электронов, испускаемых микроскопом. Можно составить карту этой прозрачности, которая пропорциональна электропроводимости туннельного соединения «игла – молекула – поверхность». Нельзя сказать, чтобы такая карта разом становилась бы полноценным изображением – этакой «фотокарточкой молекулы». Нередко карта получалась трудночитаемой, и было непросто понять, что же изображено на картинке, и догадаться, какова форма молекулы; да и сообразить, молекула ли это или какие-то помехи, удавалось не всегда.

В 1995 году мы изучали большую молекулу соединения, называющегося порфирин, и смогли построить карту ее электропроводности, однако так и не поняли некоторые детали этой карты. Джим вместе с молодым физиком по имени Томас Юнг, который входил тогда в нашу группу, занимался изображениями, а я – расчетами, истолковывающими эти картинки. И вот в апреле приходит сообщение от Томаса: «Она движется!»

Вскоре мы с Джимом решили ввести в эксперимент еще один параметр и слегка приподнять тело молекулы над поверхностью, чтобы изменить взаимодействие между молекулой и поверхностью. Мы задались вопросом, как это повлияет на карту проводимости, и поставили несколько новых опытов с молекулой порфирина, оснащенной четырьмя маленькими молекулярными ножками, приподнимавшими молекулу над поверхностью на 0,4 нм. Томасу было поручено получить серию изображений этой молекулы о четырех лапках. Ему, как и Дону Эйглеру, было невмоготу сидеть у экрана компьютера и дожидаться, пока высветится одна картинка, потом другая, и он решил получать изображения на магнитоскопе. С утра он просматривал череду изображений на повышенной скорости и заметил, что несколько четвероногих молекул сместились в сторону наклона. Он тут же отправил мне мейл. Вот когда до нас дошло, как игла микроскопа двигает макромолекулой: надо приделать к молекуле лапки и как следует толкнуть ее иглой. Вроде бы очевидно – во всяком случае, мысль не поражает ни новизной, ни глубиной. Но тогда, в начале 1990-х годов, никто и не думал, что в обращении с объектом меньше нанометра применимы понятия механики – те же, что и в макроскопическом мире. Мы до того были пропитаны квантовой механикой, что не смели и думать о приложении классической механики к нанометрическим масштабам, к одной-единственной молекуле.

Тем не менее эта самая молекула превосходно знала законы механики Ньютона и охотно им подчинялась. Мы показали методами численного моделирования, что если ножки молекулы достаточно высоки, а кончик иглы находится над молекулой на такой высоте, что игла взаимодействует преимущественно с «серединкой», то какая-то доля энергии, движущей иглой, не рассеивается внутри молекулы, а сдвигает ее. Значит, надо учиться располагать иглу над молекулой на правильной высоте. И незачем замораживать металлическую поверхность, как это было в опытах с атомами ксенона. А четырех лапок хватало, чтобы молекула достаточно прочно сцеплялась с поверхностью на новом месте в четырех точках и, значит, не пыталась убежать, даже при комнатной температуре.

Потом было много других молекул, которые мы сдвигали и перемещали по металлическим и полупроводниковым поверхностям. А искусство манипулирования молекулами с тех пор только совершенствовалось. Но возникли новые вопросы, например: а нельзя ли манипулировать атомами и молекулами на поверхности диэлектрика? В самом деле, если поверхность – проводящая, то есть металлическая или полупроводниковая, то игла, молекула и сама поверхность взаимодействуют между собой – электрически. Поверхность похожа на ловушку – или часть ловушки, – в которую попадает атом или или молекула; вторая сторона ловушки – сама игла. А если поверхность не проводит ток (диэлектрик), то взаимодействия нет и о захвате или ловушке говорить не приходится. Нашлось немало исследовательских коллективов, пытавшихся ответить на этот вопрос, и они обнаружили что-то похожее на очень слабое взаимодействие (его назвали ван-дер-ваальсовым). А вот еще вопрос, больше на будущее; пусть атомные и молекулярные манипуляции происходят в двух измерениях на некоторой поверхности; так нельзя ли будет в один прекрасный день выковырять одну молекулу из этой поверхности и потом протащить ее в любом произвольном – по желанию экспериментатора – направлении? А пока умеющая манипулировать атомом в пространстве – и выполняющая желания экспериментатора – игла туннельного микроскопа уже действует как волшебный ключик и открывает тайны законов, правящих миром внизу. Манипулирование атомами позволит ставить неслыханные и невообразимые прежде физические опыты: например, исследовать механические или электрические свойства одиночной молекулы.

ПЕРВЫЕ НАНОФИЗИЧЕСКИЕ ЭКСПЕРИМЕНТЫ

В макроскопическом масштабе выключатель – то есть прерыватель тока – выглядит как металлическая пластинка с пружиной. Опрокидываясь, как коромысло, эта железка замыкает два электрических контакта. В «мире внизу» на роль такого замыкателя годится одиночный атом. В 1987 году Авирам уже предлагал молекулу-выключатель, и мы даже ставили эксперимент, пробуя использовать молекулу в качестве выключателя. В 1993 году. Дон Эйглер предложил вместо молекулы, которая, для того чтобы переключать ток, должна менять свою форму, взять какой-нибудь атом и заставить его работать «коромыслом», замыкающим или размыкающим электрические контакты. Смещением атома можно было бы управлять, прикладывая напряжение в несколько вольт между иглой и поверхностью подложки: меняя напряжение, заставить атом двигаться туда, куда захочется экспериментатору. Нет напряжения, и ток ничтожно мал; стало быть, выключатель – в положении «выключено». Когда же атом, опрокинувшись, прикоснется к кончику иглы, ток вырастет в полсотни раз – и положение выключателя переменится на «включено». Итак, состояние атома-переключателя можно менять, то есть переводить из положения «включено» в положение «выключено», и наоборот. Вот и пришло время на весь мир объявить о создании первого атомного выключателя. Десятью годами спустя Франческа Мореско из Берлинского университета построила выключатель на молекуле, которая у нее работала коромыслом-замыкателем. Использовать в переключателе молекулы, а не атомы, кажется очень заманчивым: у молекулы есть известные химические свойства, которые можно менять, меняя тем самым ее взаимодействие с поверхностью и, значит, опрокидывая эту молекулу, причем очень быстро.

Следующий нанофизический эксперимент имел дело с электрическим подключением одиночной молекулы. В 1987 году мы с Ари Авирамом уже ставили опыт с подключением молекулы-выключателя. Молекулы были рассеяны на металлической поверхности, в которой был установлен первый контактный электрод (то есть поверхность и была одним из электродов). Экспериментатор подводил иглу туннельного микроскопа к какой-нибудь из этих молекул – игла служила вторым электродом. Надо было медленно опустить иглу на молекулу, чтобы установить с ней электрический контакт. Но откуда мы знаем, когда именно – в какой момент – устанавливается контакт между иглой и молекулой?

Чем ближе игла опускается к молекуле, тем сильнее она ее деформирует. При этом ток через молекулу тем больше, чем сильнее она изуродована. Однако если игла опустится совсем низко, то она просто раздавит молекулу. Так что надо искать тонкий компромисс, добиваясь возможно большего значения тока при возможно меньшем искажении формы молекулы. Чтобы лучше подбирать высоту иглы, чего в середине 1990-х мы не умели, Джим Гимжевски и я решили попробовать вновь подключить иглу к молекуле. На этот раз мы взяли молекулу фуллерена (в ней 60 атомов углерода, а по виду она похожа на футбольный мяч). Эксперимент состоял в следующем. Мы поместили несколько молекул фуллерена на поверхности кристалла золота и стали опускать иглу на одну из этих молекул, измеряя ток в цепи, состоящей из поверхности золотого кристалла, молекулы фуллерена и иглы. Нам хотелось понять, как зависит ток от расстояния между острием иглы и молекулой. Поначалу сила тока росла плавно, но затем мы отметили резкий скачок – когда расстояние между иглой и поверхностью уменьшилось до 1,1 нм. Слегка меняя положение иглы, чтобы как можно точнее определить переломную точку, мы ее нашли, при этом контакт иглы и молекулы фуллерена установился, а форма ее была не искажена; впервые мы установили электрический контакт с одной-единственной молекулой!

Подключив таким образом молекулу, мы замерили ее электрическое сопротивление. Это «электрическое сопротивление» не имело отношения к электродам, то есть поверхности кристалла и игле, но существовало внутри молекулы. Годом спустя Дон Эйглер таким же образом замерил электрическое сопротивление самого тонкого проводка в мире – проводника из двух атомов ксенона. Так начинались эксперименты с электрическими свойствами считаных атомов или одной-единственной молекулы.

МЕХАНИКА МОЛЕКУЛЫ

Теперь вспомним о первых механических опытах с одиночной молекулой. Мы уже рассказывали про иглу туннельного микроскопа, толкавшую одну молекулу. В 1998 году началась – и совершенно случайно! – эра «наномеханики». Но для начала лучше вспомнить о том, что случилось немножко раньше.

На исходе 1960-х годов американский биохимик Пол Бойер предположил, что белковые молекулы могут менять форму – из-за вращения какой-то из их частей. Иначе говоря, «в мире внизу» макромолекула способна вывернуться наизнанку. Нельзя ли как-то приспособить это явление к механике? В 1997 году японец Кадзухико Киносита с сотрудниками смогли увидеть это вращение на экране, сумев прикрепить флуоресцирующий маркер к поворачивающейся части молекулы белка. Предположение Бойера и наблюдение Киноситы макромолекул, состоящих из тысяч атомов, подсказали вопрос: а нельзя ли пронаблюдать подобные же вращательные движения у одиночной маленькой молекулы?

В это самое время мы с Джимом Гимжевски изучали, как сравнительно плоские молекулы декациклена собираются в «кучки» на поверхности кристалла меди. Молекула декациклена состоит из центрального бензольного ядра (это такой плоский шестиугольник), к которому прицеплено шесть «лапок». Мы собирались начать исследования с дальнейшего изучения условий, связанных с получением и формированием изображения одиночной молекулы, чтобы выяснить, как оно зависит от расстояния от иглы микроскопа до тела молекулы, лежащей на некоторой поверхности. Ножки декациклена много короче лапок нашей первой молекулы – порфирина. В своем опыте мы старательно испаряли молекулы с поверхности, чтобы оставить только плотный тонкий слой из упорядоченно расположенных молекул. Но молекулы отказывались становиться в четкий строй: то здесь, то там замечались изъяны. В одном месте, например, молекулы не было, а в другом она хоть и была, но сильно выбивалась из строя. И пробелы в молекулярных рядах порой еще и сливались в большие пятна, сравнимые по величине с размером одиночной молекулы. А что будет с молекулой в этом самом слое, если она окажется на краю такой «щели» или, точнее, «ямы»? Наверное, она иногда будет смещаться – словно бы напрашиваясь на исследование.

Удача нам улыбнулась: обследовав несколько таких пробелов, мы заметили одну молекулу, сильно отошедшую от первоначального положения, – по сравнению с другими молекулами это бросалось в глаза. И она поворачивалась – как малюсенькая юла диаметром 1,2 нм. Для вращения нужна энергия – скорее всего, хватало тепловой энергии поверхности, температура которой равнялась комнатной. В этом опыте мы впервые получили изображение вращения одиночной молекулы. Восторг скоро прошел, и мы принялись терпеливо выяснять параметры вращения и определять факторы, влияющие на этот процесс.

После нескольких недель экспериментов Джим Гимжевски и его товарищ Рето Шлиттлер показали, что можно по своей воле и раскручивать молекулу, и останавливать ее вращение, – манипулируя иглой микроскопа, конечно. И мы даже подобрали объяснение физики этого явления. В сущности, такая молекула-колесико ведет себя как шестеренка в коробке передач. Если молекула – на самом краю щели (или ямы), то четыре из ее шести лапок сцеплены с такими же лапками соседних молекул, и наша молекула крутиться не станет. Но, если ее подтолкнуть, сдвинув на 0,25 нм, то она окажется посередине щели, и соседок у нее не останется. Значит, четыре прежде занятые лапки теперь освободятся и она повернется сама – надо только, чтобы было куда повернуться. Но если слишком просторно, на вращение может наложиться процесс боковой диффузии – и он, скорее всего, затормозит молекулу.

Чтобы разобраться в режиме вращения такой молекулы, мы регистрировали вариации туннельного тока, устанавливая иглу в том месте, через которое проходит одна из лапок вращающейся молекулы. И мы заметили, что импульсы тока, отображаемые на экране осциллографа, пляшут в том же ритме, в котором крутится наша молекула. К несчастью, при комнатной температуре она очень уж разгонялась, и толком разобрать, что с нею творится, было почти невозможно. Вместе с коллегами из Берлинского университета мы синтезировали другую молекулу, на этот раз с шестью длинными зубчиками, – получилась настоящая молекула-шестеренка величиной в 1,2 нм. Пометив химически один зуб шестерни и слегка изменив ее строение, мы стали наблюдать за вращением молекулы: она поворачивалась рывками, шаг за шагом, всякий раз описывая дугу в 60° и продвигаясь вдоль своего рода кремальеры – длинной рейки с зубчиками, тоже состоящей из молекул, только других.

В 2001 году мы с Франческой Мореско и Герхардом Мейером повторили эксперимент с фталоцианином – молекулой с четырьмя лапками, которая, если ее подталкивали иглой, смещалась – и фиксировали в режиме реального времени колебания тока в цепи между иглой и поверхностью. Теперь на экране осциллографа размах колебаний был больше. Мы легко определили период этих колебаний – он оказался равен 0,25 нм, а означало это то, что молекула передвигается по медной поверхности от площадки к площадке. Большое колебание не было сплошным: внутри большого импульса заметны были флуктуации меньшей амплитуды. Эти меньшие колебания удалось увязать с попеременным движением «передних» лапок – тех, что были направлены в сторону перемещения молекулы («задние» лапки удерживала игла)! Если молекулу толкнуть, она сдвигается на манер насекомого, ползущего по гладкой поверхности: сначала деформируется одна из ее передних лапок, потом – вторая. Эти деформации слегка искажают электронную структуру молекулы, а потому ток, текущий в цепи, образованной поверхностью, молекулой и иглой, меняется в том же ритме, в котором молекула «перебирает передними лапками». Чтобы занять соседнюю площадку, молекула сначала вытягивает одну лапку, потом тянет за ней другую, а не деформирует обе передние лапки сразу – иначе говоря, молекула как бы ходит.

Все до сих пор описанные опыты объяснялись при посредстве хорошо известных законов физики. Но как объяснить то, что мы открыли, изучая вращение и смещение молекул? Дон Эйглер повторил наши эксперименты с атомами ксенона на металлической поверхности. И пропускал «большой» электрический ток через свой одиночный атом. Да мыслимо ли это? В нашем масштабе величин ток, проходящий через некую материальную электрическую цепь, нагревает эту цепь (точнее, вещество, из которого она состоит). Когда же сильный ток проходил через атом ксенона, то, как увидел Дон Эйглер, это приводило к тому, что атом подскакивал к игле, находившейся на довольно большом расстоянии от поверхности. Вероятность скачка зависела от силы тока. Но если в нашем макромире действует эффект Джоуля, согласно которому мощность, рассеиваемая в веществе (через которое течет электрический ток), пропорциональна квадрату силы тока, то вероятность скачка, совершаемого атомом, оказалась пропорциональной не второй, но пятой степени силы тока. Никто еще так и не объяснил ни эту разницу между макро-и наномирами, ни то, откуда берется эта пятая степень. Уилсон Хо из Университета в Ирвине, штат Калифорния, споткнулся на подобном же вопросе. Он изучал вероятность приведения малюсенькой молекулы во вращение на металлической поверхности в зависимости от силы тока. Увеличивая силу тока, он заставлял молекулу вращаться и прыгать с места на место, и вероятность этих смещений тоже, как оказалось, зависела от силы приложенного туннельного тока. Итак, Дон Эйглер и Уилсон Хо показали, что молекулы подчиняются таким физическим законам, которые не известны ни в макроскопическом мире, ни в мире мезоскопической шкалы…

ЗАЧЕМ ОСТАВАТЬСЯ «ВНИЗУ»?

Нанофизические эксперименты с одиночными атомами и молекулами стали с начала 1990-х годов разнообразнее и многочисленнее. Они позволяли изучать «нижний мир» напрямую, непосредственно исследуя физические явления, наблюдаемые при помощи тех материальных средств, которые имелись в распоряжении ученых и которые оказывались подходящими для условий конкретного эксперимента. Главное, чтобы был один атом или одиночная молекула и этого хватало. К любой трудности приходилось приспосабливаться, то есть находить – а то и изобретать – подходящий измерительный прибор. В нашем случае каждый раз искать или придумывать такой прибор, который смог бы дать нужные сведения об интересующем нас объекте. А раз объект чрезвычайно мал, то напрашивалось решение встраивать в большой прибор приборчик поменьше, потом еще меньше – на манер русских матрешек. До тех пор, пока не получится прибор, способный работать с молекулой.

Все эти эксперименты открыли перед наукой новое поле познания и положили начало новому научно-исследовательскому проекту. Первая цель проекта – поощрение разработок, нацеленных на создание экспериментальных установок, строящихся из считаных атомов – атом за атомом – или состоящих из одной-единственной молекулы. Что важно: речь не о потугах сделать примерно то же, что мы умеем и к чему мы привыкли на макроуровне, то есть то, что мы видим и делаем в нашем мире, но только совсем уж в микроскопическом масштабе. Нет, новизна нанопроекта заключается в том, что иные из наноустановок могут иметь гносеологический смысл: иначе говоря, есть шанс, что они заставят нас пересмотреть известные ныне законы физики или как-то их переформулировать – просто потому, что «нашим физическим законам» они не всегда подчиняются. Примеры тому будут рассмотрены в следующей главе.

Вторая цель более фундаментальна. Изготавливая приборы на квантовом уровне, физики имеют все основания полагать, что смогут увидеть квантовый мир под таким углом зрения, под которым он еще не рассматривался. Выходит, что мы в начале XXI века должны будем неким новым образом испытать все здание квантовой механики. Не означает ли это рождение некой новой научной дисциплины – нанонауки? С новыми законами, вытекающими из манипуляций с веществом атом за атомом? За многие века выработано множество новаторских экспериментальных приемов, но вот новых наук родилось куда меньше. Но, если по ходу исследования «мира внизу» наблюдается какое-то новое явление, которое квантовые законы объяснить не могут, что это, если не рождение новой науки – науки нанометрических масштабов, то есть нанонауки? Ну а если это не так, то ни к чему и изобретать новые ярлыки для области, пусть новой, но вполне поддающейся изучению привычными техническими методами, пускай и предлагаемыми некоторой технологией, тоже новой. Вот ее пусть и называют нанотехнологией. Но не нанонаукой.


    Ваша оценка произведения:

Популярные книги за неделю