Текст книги "Нанонауки. Невидимая революция"
Автор книги: Кристиан Жоаким
Соавторы: Лоранс Плевер
сообщить о нарушении
Текущая страница: 3 (всего у книги 11 страниц)
Вместо рентгеновских лучей можно бы использовать пучки электронов: если электроны как следует разогнать, то длины волн тоже могут быть сколь угодно малыми. Электронная литография известна с 1960 года, тогда Готфрид Молленштедт в Тюбингенском университете в Германии воспользовался потоком электронов вроде тех, что применяются в электронных микроскопах, чтобы нанести на поверхность смолы тоненькие риски: он сумел нарисовать логотип своего университета штрихами длиной порядка 100 нм. Происходит, в сущности, то же самое, что и в оптической литографии: на полимерную пленку обрушивается поток электронов, и в пленке происходят химические изменения. Чтобы обнаружить эту перемену, достаточно обработать пленку растворителем – облученные участки смоются, те же, что не подвергались облучению, уцелеют, и, значит, появится задуманный узор. Пока что электронная литография применяется в производстве масок для фотолитографии, а в продвинутых исследовательских лабораториях и для изготовления самых маленьких транзисторов в мире – с расстояниями между входом и выходом в 20, 15 и даже 9 нм! Словом, пресловутая иголка в стоге сена! Причем сами эти транзисторы не остаются на поверхности полупроводника, а норовят вырасти над нею – получается что-то вроде россыпи грибов. Кучка таких новых транзисторов похожа (под микроскопом) на скопление лисичек или шампиньонов.
ВОТ И ПРЕДЕЛ
Но и этого мало – ученые просто жаждут изготавливать все меньшие и меньшие транзисторы. Хорошо бы, чтобы эти малюсенькие штучки еще и работали, сразу и надежно. Но чем больше транзисторов получалось за раз на одной пластинке, тем большая доля из их выводка оказывалась заведомо негодной – как говорится, вероятность дефектности возрастала. Инженерам не оставалось ничего другого, как пустить в дело сокровища ноу-хау и изобрести множество хитроумных технических уловок, чтобы обойти или перескочить препоны, мешавшие дальнейшей миниатюризации.
Среди прочих затруднений сильно докучала необходимость соединять транзисторы друг с другом. Если применять металлические проводники, то уже сегодня на 1 см 2полупроводниковой поверхности надо было бы как-то разместить 6 км медных или золотых «проводков», точнее, дорожек. По мере продвижения миниатюризации соединительные дорожки, формировавшиеся из алюминия, стали такими тонкими, что электронная волна (а электрический ток – это поток электронов) просто сносила атомы алюминия с насиженных мест и уносила их с собой. Атомы проводника становились блуждающими – и потому это явление называется электромиграцией. К тому же получать сверхчистый металл, например алюминий, трудно: в нити диаметром в нанометры и длиной в километры обязательно встретятся какие-то загрязненные участки, да и сама нить будет не сплошным кристаллом, а цепочкой металлических зерен. Значит, сопротивление электрическому току будет на разных участках нити неодинаковым – словно на границах между зернами и там, где есть включения иных химических элементов, кто-то установил резисторы. Электрическое поле будет особенно агрессивным на таких неоднородных участках, а если вымытых атомов станет слишком много, то в металлической дорожке появится не просто неоднородность, но пробел и ток не сможет течь. Иначе говоря, дорожка порвется. Справиться с электромиграцией удалось в 2001 году: алюминий заменили медью [11]11
Медь тяжелее. Еще лучше золото – в четыре раза тяжелее алюминия и почти не подвержено коррозии. ( Прим. перев.).
[Закрыть], которая не так подвержена электромиграции и вдобавок лучше проводит электрический ток. Иначе говоря, эта замена (для которой потребовалось 15 лет исследований и экспериментов) еще и сильно ускорила перемещение электронов внутри интегральных схем.
Задача производства 65-нанометровых транзисторов натолкнулась еще на одно затруднение. При таких размерах слой изоляции, накладываемый поверх транзистора и отделяющий управляющий электрод от полупроводникового «канала» (он соединяет вход транзистора с его выходом), становится не толще 1,2 нм. Следовательно, это всего пять-шесть слоев атомов. Значит, изоляция становится ненадежной, и электроны вполне могут просочиться с управляющего электрода в канал: транзистор «даст течь». А чем больше такая утечка, тем меньше сопротивление изолирующего слоя и попутно напряженность электрического поля между управляющим электродом и каналом. А это поле управляет транзистором: по мере его усиления или ослабления канал транзистора открывается или запирается. Если поле ненадежно, то и управлять потоком электронов внутри транзистора невозможно.
Обычно для изоляции используют оксид кремния (кремнезем). Это очень хороший изолятор – если нанести его достаточно толстым слоем. В нашем случае это невозможно, поэтому хорошо бы найти изолятор получше. Меньшая электропроводность у оксидов редкоземельных элементов, например у оксида гафния. Его применение уменьшило утечки в 10 раз. Однако любая перемена влечет за собой целую вереницу последствий. Оказалось, среди прочего, что оксид гафния плохо уживается с металлом, из которого изготовлены электроды транзистора, так что пришлось искать подходящий металлический сплав.
Само явление тока утечки имеет квантовую природу и объясняется квантовыми свойствами электрона. Эти свойства начинают проявляться как раз на расстояниях, меньших 65 нм. Пока инженеры, разрабатывавшие новые транзисторы, не дошли до этого предела, им не было нужды думать о квантах и квантовых эффектах. Но теперь без раздумий о подобных предметах обойтись было нельзя. Зато, научившись как-то справляться с квантовыми эффектами, инженеры смогли создать новые приборы и инструменты, работающие на расстояниях в 10-100 нм и имеющие размеры того же порядка. Это уже были не транзисторы – в новинках были задействованы иные квантовые явления. Но давайте сначала поглядим, как методы, выработанные в производстве микроэлектроники, вышли за границы электроники и начали распространяться совсем в иных технологических областях.
ЗАРАЗА МИНИАТЮРИЗАЦИИ
Итак, неуемная миниатюризация оторвалась от электроники и вторглась в другие уделы. Ее нашествие всегда и повсюду сопровождалось немалой сумятицей: много волнений, например, вызвала ее атака на механику. Станки и машины, предназначенные для производства деталей посредством точения, фрезерования и сверления, дошли до предела точности. Еще удавалось изготавливать прекрасные детали с допуском порядка одного микрометра, но двигаться дальше, казалось, уже некуда. В 1980-е годы в Калифорнийском университете оптимизацией обработки оксида кремния занимался Рихард С. Мюллер – он искал способы введения изоляторов в интегральные схемы. Знакомство с фотолитографией подсказало ему мысль о новом методе формирования микродорожки: пластинка кремния покрывается слоем оксида кремния и на поверхности этого оксидного слоя рисуется дорожка, которая потом гравированием врезается в собственно кремниевую пластинку. Из этой разработки родилась вся кремниевая микромеханика: процедуры, освоенные микроэлектроникой, вытеснили все привычные процессы, и детали, производимые методами микромеханики, стали совсем крошечными, и, главное, резко повысилась точность допусков и посадок. Размеры деталек съежились с величин порядка 100 мкм до считаных микрометров, а допуск точности уменьшился До нескольких нанометров. Потом из кремниевой микромеханики родились так называемые «микроэлектромеханические системы» (МЭМС – MEMS), под которыми подразумевались механические элементы (датчики, исполнительные механизмы и пр.) собственно электроники: эти устройства или принимают какой-то (не электрический) сигнал, или подают (электрическую) команду механическим элементам. И микроэлектронная промышленность начала производить МЭМС в количествах, сравнимых с количествами произведенных транзисторов, и при этом с малыми издержками.
МЭМС образовали маленькую – и не очень вместительную – иерархию самых мелких деталей и механизмов пока еще микронного масштаба: производились дорожки, насосы, клапаны, пружины, зажимы, зубчатые передачи с микрометровыми шестернями – речь шла уже о десятых долях микрометра (1 мкм = 1000 нм; 100 нм = 0,1 мкм). Подобные механизмы порой приводятся в движение электрическими моторчиками размером с красное кровяное тельце. МЭМС применяются в печатающих устройствах – в тех узлах, которые разбрызгивают красители, наносимые на бумагу; для управления миниатюрными зеркалами в видеопроекторах или для повышения быстродействия джойстиков, применяемых в видеоиграх. Сегодня МЭМС трудятся в фотоаппаратах, видеокамерах, часах, кардиостимуляторах и на них приходится 20–40 % стоимости современного автомобиля. Желающим примеров можно указать на датчики давления в кондиционерах и системах обеспечения внутреннего климата в конторских помещениях, на измерители силы торможения, на индикаторы уровня топлива в бензобаке и на сенсоры надувных подушек в автомобилях (в самых «навороченных» моделях устанавливается до шести различных измерителей ускорения).
Высокие достоинства МЭМС очевидны. Они благоденствуют, продолжая извлекать выгоды из прогресса литографии, о котором печется могучая старшая сестра – микроэлектроника, располагающая и исследовательскими лабораториями, и ресурсом для освоения лабораторных новинок. К примеру, кремний производится в виде брусков толщиной в 100 нм, то есть в тысячную долю толщины волоса, но длина бруска – 100 мкм. Увеличим эту мелкоту до привычного нам масштаба: пусть длина бруска равна метру. В таком случае его толщина будет равна миллиметру – понятно, что в нашем мире это невозможно (брусок сломается под собственной тяжестью).
Но в мире расстояний, измеряемых микрометрами, такие бревна или прутья (или микрорычаги) существуют и при этом не только не ломаются, но даже не гнутся. Правда, они колеблются, и частоты этих колебаний весьма высоки. Эти вибрации вызываются тяжелыми молекулами: когда некая молекула усаживается на микробрусок, частота его колебаний меняется, и нетрудно догадаться, что изменение частоты определяется массой чужой молекулы. Важно не замерить эту массу (массы молекул давно известны), но заметить ее присутствие. А колебания микробруска (точнее, изменение этих колебаний) помогают опознать именно вот эту молекулу среди миллиона других молекул.
Производственные методики, освоенные микроэлектроникой и породившие МЭМС, взбудоражили и биологию. Заговорили о невиданных приборах для невозможного прежде биохимического анализа, нацеленного на крохотки, именуемые молекулами ДНК, и пользующегося подобными же молекулами. Для производства такого оборудования применяли фотолитографию по кремнию и прикрепление нитей ДНК к кремниевой поверхности. Сегодня уже есть кремниевые приборчики с 300 тысячами спиралек ДНК. Эти устройства способны обнаруживать в геноме поломки, вызывающие наследственные болезни, и распознавать вирусы. Однако пока что требуется большая предварительная работа: нужна кропотливая подготовка тех участков ДНК, которые предполагается изучать. Представляется выгодным объединить все этапы исследования в одном месте, на одной и той же молекуле или группе молекул, чтобы сразу же получить все данные о цепочке атомов (о капле крови или воды, скажем). Речь, иначе говоря, не о том, чтобы принести какие-то крохотки в лаборатории, а о том, чтобы создать малюсенькие, но самые настоящие лаборатории.
И ученые принялись придумывать такие крохотные лаборатории, в которых можно было бы анализировать мельчайшие частицы, например капельку крови. А это означало, что нужно было строить крошечные сепараторы, химические реакторы, ферментёры, датчики и как-то увязывать всю эту мелкоту с построением электрических схем из проводников много тоньше волоса. Дополнительное затруднение налицо: надо еще как-то доставить упомянутую капельку к этим самым проводникам. В таком масштабе расстояний уже очень ощутимы поверхностные явления, и взаимодействие капельки со стенками сведется к тому, что капелька просто не сможет пройти через промежуток в стенках – она «приклеится» к ним. Знатокам микрогидравлики пришлось мучиться с микроклапанами – устройствами, в которых электрическое поле помогает капле просочиться через микроканал.
ДОБРО ПОЖАЛОВАТЬ В КВАНТОВУЮ ВСЕЛЕННУЮ
Вернемся пока к электронике с ее интегральными схемами и транзисторами. Мы уже говорили о токах утечки, превращающихся в транзисторах размером 65 нм в досадную неприятность. А если размер уменьшается до 20 нм и более того – а именно такие сейчас разрабатываются в лабораториях, – то все становится еще хуже! Транзисторы отказываются работать. И не потому, что неправильно сделаны, – дело в архитектуре самого транзистора. Уж слишком малы расстояния, электроны неминуемо отрываются от управляющего электрода – и попадают в канал транзистора. Чтобы предупредить такие утечки, инженерам приходится пускаться во все тяжкие, выдумывая цирковые трюки и с пониманием (теоретической моделью) транзистора, и с его производством. Сегодня уже можно наладить крупносерийное производство транзисторов размером в 45 нм, правда, требуется не менее четырех этапов технологического процесса. А дальше что? Электроны станут разбегаться как крысы с тонущего корабля при малейшем признаке опасности: словом, так или иначе, дальнейшая миниатюризация транзисторов надолго затормозится. На таких расстояниях в любой электрической реакции появляется квантовая составляющая, и, значит, поведение маленьких электрических проводников становится непредсказуемым, поскольку квантовые явления имеют вероятностную природу. Иначе говоря, вся микроэлектроника, та, что была до недавнего времени, приобретает неузнаваемый облик.
Но что это за квант такой, без которого почему-то человечество сегодня не в силах обойтись? В 1900 году немецкий физик Макс Планк предположил, что в мире «внизу», то есть на очень малых расстояниях, изменение энергии происходит не непрерывно, как в макроскопическом мире, а скачками или порциями. Вот этот кусочек энергии, на который уменьшается или увеличивается ее текущее значение, он и назвал квантом. Приращение или падение энергии обязательно кратно некоему числу – кванту (или количеству действия); это число – универсальная, одна и та же для всей Вселенной константа, и называется она постоянной Планка. Поэтому, если электрон, например, входит в некоторый атом, его энергия не может быть какой угодно, она квантована, то есть какие-то значения энергии для него запрещены – их просто не может быть, потому что не может быть никогда. Чтобы как-то объяснить эту ступенчатость или прерывистость энергии, ученые начала XX века не нашли ничего лучшего, кроме сопоставления электрона с волной. Атом удерживает свой электрон – и электрон сидит себе в атоме, как в ловушке. Или как гвоздь в ящике. Только это не гвоздь, а волна. Не всякая волна поместится в ящике: она же будет отражаться от его стенок, и потому длина волны не может быть какой угодно: вот, гитара, например, – это же ящик со струнами, правда? Каждая струна издает одну и ту же ноту (звуковое колебание одной и той же частоты). Меняя натяжение струны, прижимая ее к грифу, можно изменить звук, но непроизвольно – и у разных струн при одном и том же зажиме изменение длины волны будет разным (в ящике – акустическом резонаторе – не всякая волна «поместится»). Вот так и электрон: его энергия в малюсенькой коробочке атома не может быть какой угодно. Другое следствие волновой природы электрона еще удивительнее: нельзя точно указать место, где внутри атома находится этот самый электрон. Существует только вероятностная локализация, то есть мы способны узнать лишь вероятность нахождения электрона в том или ином месте.
Итак, электрон – одновременно и волна и частица. Эта идея вызвала настоящую бурю в физике твердого тела: оказалось, что с приближением одного из трех размеров объема твердого тела (длины, ширины или высоты) к длине волны, ассоциируемой с электроном, начинают проявляться квантовые эффекты. Они заметны уже в крупных транзисторах, но там подобные феномены смазывались большим количеством атомов: квантово-волновые явления, производимые отдельным атомом, складывались с такими же явлениями, генерируемыми другими атомами, и часто гасили друг друга, так что на суммарный эффект можно было не обращать внимания. Это похоже на большой оркестр, в котором каждый инструмент выводит свою ноту независимо от других инструментов; в результате получается не мелодия, а какой-то беспорядочный шум, даже не обязательно громкий.
В очень маленьких устройствах не так: квантовые явления уже не компенсируют друг друга. Из их изучения родилось новое направление – мезоскопическая физика. Размеры подобных приборчиков находятся в пределах от нескольких десятков до нескольких сотен нанометров. Значит, они где-то в промежутке между атомными и макроскопическими расстояниями, отсюда приставка мезо-, посредине, а счет атомов идет на миллионы. Следовательно, в мезофизике квантовые волны электронов (или ассоциированные с электронами) еще путаются, то есть гасят («маскируют») друг друга. Однако здесь, в отличие от макроскопического оборудования, один из факторов путаницы уже не действует. В итоге, когда величина прибора становится меньше свободного пробега электронов (так называется среднее расстояние, преодолеваемое электроном за время между двумя столкновениями), вероятность столкновения с вибрациями атомов падает, словно бы у электронов не остается времени на взаимодействие с себе подобными. И эти колебания атомов уже не компенсируют друг друга, а выступают единым фронтом: словно бы есть одна-единственная волна, колебание, соответствующее большому количеству электронов, – как будто бы из душераздирающей какофонии расстроенного оркестра родился некий аккорд, силы которого хватило, чтобы заставить все инструменты оркестра звучать в унисон.
Углеродные нанотрубки обозначили границу между этой мезоскопической физикой и нанофизикой, до которой мы еще не добрались, а сделаем мы это в следующей главе.
В 1991 году были открыты трубочки из углерода диаметром от нескольких нанометров до десятков нанометров. Длина нанотрубки может доходить до нескольких микрон. Формируются они из листочков графита, которые скручиваются сами, примерно так, как скручиваются блинчики на сковородке. Как только их обнаружили, так сразу же многие стали облизываться на этакое чудо: трубочки оказались очень прочными, имели свойства проводников или полупроводников, как уж получится, и отличались повышенной теплопроводностью. Исследователи спешили проверить, а не получится ли из нанотрубки проводник в микросхеме или канал транзистора нового типа. Электронов в трубке много, а длина ее намного (в тысячи раз) превышает ее диаметр, и потому электрический ток циркулирует по всем классическим правилам: выполняется закон Ома! Вовсе не так обстоят дела в сечении трубки, ведь в ее диаметр уложится всего лишь несколько длин электронных волн. Значит, чтобы понять электронные качества углеродной нанотрубки, надо в одно и то же время учитывать как классические свойства, так и квантовые выходки электронов проводимости, то есть тех электронов, которые есть в трубке.
Устройства иного рода, механические, так называемые протеиновые двигатели, тоже оказались на границе между мезо– и нанофизикой. Протеиновый двигатель – это такое нагромождение белков, которое в клетках превращает химическую энергию в работу. В любом белке белкового двигателя тысячи атомов. Местонахождением этих атомов в пространстве ведают законы квантовой физики. Любой химической связи в белке соответствует колебание некоторого рода и, значит, некая квантовая волна. Поскольку белок – это множество химических связей, по-разному вибрирующих, то все квантовые волны, соответствующие каждому из колебаний каждой химической связи, никак не проявляются в суммарном движении белка. Как и в твердом теле, квантовые волны колебаний накладываются друг на друга – и гасятся, «смазываются». Механические свойства деформируемого белка выглядят почти классическими: белковая молекула может вращаться или перемещаться, совершая движения в пространстве. Нагромождение белков, образующих протеиновый двигатель, будет совершать вращательное движение, выглядящее классическим, что уже наблюдалось в предварительных экспериментах, в которых подобные двигатели испытывались «в пробирке» ( in vitro).
Итак, нельзя путать мезоскопическую физику с нанофизикой. Нанофизика имеет дело с приборами, построенными из десятков атомов, причем гашение, компенсация квантовых волн, или отсутствует, или контролируется (то есть может быть учтено), а то и вносится извне – из окружающей среды. Об этом пойдет речь в следующей главе. Однако, как это почти всегда бывает с разграничением научных уделов, и в этом случае возникли раздоры между исследователями ( см. Приложение II). Для приверженцев нисходящего подхода, опускавшихся к мезофизике дорогой микроминиатюризации, в частности в электронике, нанофизика начиналась там, где обнаруживались квантовые свойства вещества. Для тех, кто предпочитал восходящий подход, стартовавший с поодиночной манипуляции атомов, нанофизика начиналась там, где можно отличать один атом прибора от другого атома того же устройства, и заканчивалась там, где атомов становилось так много, что их волны, накладывающиеся друг на друга, превращались в трудноразличимый беспорядок, в котором уже невозможно опознавать «отдельные» квантовые явления.
ГОВОРИТЕ, «МЕЗО»?
В совсем крошечном транзисторе ток утечки укладывается в рамки квантового явления, известного как туннельный эффект (упоминавшийся выше туннельный микроскоп работает на этом же эффекте): электронов так много, что все они описываются одной-единственной квантовой волной. В квантовом мире волну, связываемую с некоторой частицей, нельзя резко остановить на границе между двумя средами: сохраняется некоторая непрерывность волн (волна переходит, пусть с искажением, из одной среды в другую). То есть электроны, находящиеся в одной среде, могут оказаться по другую сторону границы между средами – иначе говоря, вероятность их обнаружения там отлична от нуля. Например, мы знаем, что эти вот электроны должны быть, скажем, по левую сторону границы, но они вполне могут оказаться на правой стороне – и это нормально, нечего тут удивляться! Это похоже на то, как если бы кто-то из ваших знакомых научился проходить сквозь стены, минуя запоры и замки (и двери с окнами). Правда, умение проходить сквозь стены не выходит за пределы расстояний, измеряемых считаными нанометрами (да и научиться этому трюку может лишь электрон – или еще более мелкая элементарная частица). Если в том же нашем транзисторе слой, изолирующий управляющий электрод от активной части транзистора (канала), будет тоньше нанометра, то какие-то электроны с достаточно большой вероятностью будут перенесены благодаря туннельному эффекту через слой изоляции, а это значит, что между электродами транзистора и между электродами и каналом потечет ток утечки. И это «своеволие» электронов, выражающееся в беспорядочном «бегстве врассыпную», крайне неприятно. Для всякого нового поколения транзисторов приходится придумывать новый изолирующий материал, достаточно непрозрачный для квантовых электронных волн. К тому же транзистор работает тем лучше, чем больше площадь соприкосновения управляющего электрода с каналом. Но сила тока утечки также пропорциональна площади токопроводящих поверхностей. Налицо противоречие: чтобы увеличить действенность транзистора, следует увеличивать площадь соприкосновения (управляющего электрода с каналом), а для снижения тока утечки это соприкосновение следует свести к минимуму. Инженеры оказались в безвыходном тупике!
В приборах, созданных методами микроэлектроники, наблюдаются и иные квантовые явления. В мире наших масштабов если уж по проводнику течет ток, то он подчиняется закону Ома: значит, сила тока обратно пропорциональна электрическому сопротивлению проводника (чем больше сопротивление, тем меньше ток – при том же приложенном напряжении); иначе говоря, если сопротивление проводника велико, то электронам по этому проводнику перемещаться труднее. А ведь чем тоньше проводок, тем его сопротивление больше. Электронам труднее проталкиваться через узкое место – вспомните о зрителях, покидающих театр через узкий коридор.
Однако, когда диаметр проводника уменьшается до нескольких десятков нанометров, наблюдается нечто странное: сопротивление перестает непрерывновозрастать по мере уменьшения сечения проводника, как это было раньше. Нет, оно по-прежнему растет, но – «скачками»: вот мы понемногу делаем провод тоньше, но сопротивление долго не меняется, а потом вдруг возрастает на квант сопротивления. Это примерно так, как если бы в нашем театре зрители не застревали бы на выходе, когда людей, теснящихся в выходном коридоре, становится все больше, а взбирались бы на колесницы, движущиеся с постоянной скоростью, но через несколько метров – когда выходной коридор стал уже – скорость колесниц вдруг падала бы. А еще через несколько метров их скорость становилась бы еще меньше.
Эти скачки объясняются явлением дифракции. Положим, что проводник утоньшается. Тогда раньше или позже, но в какой-то момент сечение его станет таким, что в его диаметре уложится считаное число электронных волн. Тогда при совпадении диаметра проводника с числом, кратным длине полуволны, возникает резонанс и прибавляется квант сопротивления. А когда диаметр проводника становится меньше самой малой полуволны, то проводок делается непрозрачным для электронов. Это выглядит так, словно бы волне (то есть электрону) тесно в слишком тонком проводе – ей просто негде колебаться (так свет не может проникнуть в совсем уж тоненькую дырочку): значит, и потока электронов – а это электрический ток! – не будет. Впервые это квантовое явление обнаружили в самом конце 1980-х годов.
А что будет, если на таких тонюсеньких проводках собрать целую электронную схему? Вот обычная – классическая – электрическая цепь: пусть два сопротивления (например, резисторы – или проводники) соединены параллельно. Тогда электрическая проводимость – так называется мера «легкости», с которой ток преодолевает цепь, – будет равна сумме электропроводимостей обеих запараллеленных ветвей, согласно законам Кирхгофа (они открыты в XIX веке). А теперь переведем схему в мезоскопическую шкалу (это среди прочего значит, что проводки стали совсем тоненькими). Диаметры резистора и провода, который к нему подключен, меньше 100 нм, и никакие законы Кирхгофа схеме не указ. Правда, общая проводимость схемы по-прежнему равна сумме параллельных сопротивлений, но с учетом эффектов квантовой интерференции, а чтобы учесть интерференцию, надо вводить в сумму – или (это удобнее) в ее слагаемые – поправки на квантовые эффекты. Так что никуда законы электротехники не деваются – заряд электрона, одна из фундаментальных физических постоянных, остается тем же. Просто еще и проявляются (на маленьких расстояниях) квантовые явления.
Электрон – это элементарная частица, у которой есть электрический заряд, именуемый элементарным. Элементарен этот заряд потому, что он – неделим. Меньше не бывает. Его приравнивают к -1. Все иные заряженные частицы, то есть те, которые образуют электрически заряженное вещество, имеют заряд, кратный заряду электрона. У атома, захватившего электрон, заряд отрицательный – ведь у него лишний электрон с зарядом -1. К примеру, ион хлора в молекуле поваренной соли (хлорированного натрия) – это атом хлора с лишним, захваченным электроном, а потому он имеет отрицательный заряд, равный -1. Наоборот, атом, потерявший электрон или несколько электронов, будет заряжен положительно, потому что у него недостает электронов. Ион натрия в молекуле той же поваренной соли обозначается символом Na+ – это тот же атом натрия, только без одного электрона.
Возьмем теперь проводящий брусок, по которому протекает ток утечки, и поместим его в магнитное поле, перпендикулярное бруску; между оконечностями бруска возникнет электрическое напряжение. Усилим напряженность магнитного поля – и напряжение между кончиками бруска увеличится; это так называемый эффект Холла. Холлово сопротивление определяется как отношение напряжения к силе тока, оно увеличивается линейно по мере усиления магнитного поля. В 1988 году физики поместили в магнитное поле не проводящий брусок, а пластинку толщиной в десяток нанометров. И увидели, что по мере увеличения магнитного поля сопротивление Холла по-прежнему растет, но не линейно, а скачками, точнее, прирастает строго определенными порциями, – это квантовый эффект Холла.
Первая порция приращения – это элементарный квант Холлова сопротивления, последующие порции кратны этой первой порции. Обнаружилось, однако, что по мере возрастания магнитного поля появляются какие-то промежуточные – некратные первой порции – приращения. Откуда они берутся? Было над чем ломать голову. В самом деле, получалось, что должны быть еще какие-то носители заряда, с зарядом меньше элементарного! Заряд меньше единицы! То есть дробный. Однако никаких «кусочков электрона» так и не нашли. Электрон так и остался неделимым, и его заряд тоже. Носителями же дробного заряда оказались частицы неведомого прежде рода: их назвали квазичастицами, или виртуальными частицами. А «возникают» квазичастицы в результате суммарного, совместного поведения тысяч «нормальных» электронов в сверхтонкой пластинке. В такой пластинке под воздействием магнитного поля все происходит так, словно электрический ток – поток не электронов, а квазичастиц с зарядом в 1/3. В позднейших экспериментах удалось подтвердить существование квазичастиц с зарядами в 1/5 или 1/7 заряда электрона. Вот в какой новый мир привела нас миниатюризация.
ЭЛЕКТРОНИКА ЗАВТРАШНЕГО ДНЯ
Вещие птицы принесли было скверную весть о непреодолимых препонах, якобы мешающих создавать транзисторы при использовании микронной технологии, тем более на расстояниях в четверть микрона или порядка 100 нм (= 0,1 мкм). Через все эти преграды, однако, ухари-физики перемахнули, пускаясь во все тяжкие и выдумывая все более хитроумные трюки. Но вот с поколением транзисторов, меньших 20 нм, ничего не получалось: квантовые явления не позволяли. Надо было пересматривать само понимание транзистора – тот транзистор, какой мы знали со времени его возникновения, уже не годился. Можно было продолжать миниатюризацию и дальше, но новинки не обещали ничего существенно лучшего по сравнению с тем, что уже и так было. Где же выход? Наверное, искать его надо было не на путях преодоления квантовых явлений, а там, где эти явления поддавались бы какому-то использованию. Значит, в лабораториях должна была родиться новая электроника – квантовая. Эту самую квантовую электронику иногда называют – неправильно! – наноэлектроникой. В самом деле, размеры приборов, создаваемых методами квантовой электроники, таковы, что в приборе еще содержатся тысячи атомов. Только допуски – нанометровые, все остальное, можно сказать, «как обычно». Давайте лучше присмотримся к кое-каким дорожкам, сулящим вывести нас к электронике будущего.