Текст книги "Нанонауки. Невидимая революция"
Автор книги: Кристиан Жоаким
Соавторы: Лоранс Плевер
сообщить о нарушении
Текущая страница: 2 (всего у книги 11 страниц)
ЗЕМЛЯ СТАНОВИТСЯ НАНОПЛАНЕТОЙ
Президент Билл Клинтон официально объявил о создании программы NNI 21января 2000 года в Калифорнийском технологическом университете. Как символично! В этом университете Ричард Фейнман в 1959-м произнес те самые слова, что много позже так пригодились Эрику Дрекслеру, когда тот выступал перед комиссией сенаторов, собравшихся под надзором Ала Гора. Эта фраза Ричарда Фейнмана прослыла, много лет спустя и совершенно незаслуженно, отправной точкой становления нанотехнологий. Но раз уж Ричард Фейнман – знаменитый ученый, то надо же было извлечь из его славы хоть какую-то политическую выгоду; словом, защелка щелкнула и так и осталась в замкнутом положении.
В заглавных строках перечня научных тем, за которые бралась NNI,числились теперь предметы весомые, даже тяжеловесные: микроэлектроника, материаловедение, биотехнологии (их, правда, перекрестили по этому случаю в нанобиотехнологии). Манипулирование атомами, молекулярная электроника и опытные образцы молекуломашин были сброшены в самые нижние строки, в подвал списка, и, в сущности, остались за бортом.
Ни одна другая страна не устояла перед этим американским определением нанотехнологий. Программа NNIвоспринималась как символ вновь победоносно шествующей Америки, и мир охватила тревога: «Раз уж эти американцы смогли ошарашить всех своей „прогулкой по Луне“, то не вздумали ли они накрыть знаменем технологии бесконечно малое?» Европейская комиссия [5]5
Высший орган исполнительной власти Европейского союза. Координирует политику стран Союза и следит за соблюдением общеевропейских стандартов. ( Прим. перев.).
[Закрыть]в Брюсселе и все европейские страны кинулись в свои архивы: а вдруг там, в куче документов, скопившихся за 1990-е годы, отыщется что-либо, укладывающееся в рамки определения, провозглашенного NNI? И евробюрократы от науки сохранят лицо. Разумеется, нашлось немало бумаг и про материалы, и про микроэлектронику, и про миниатюризацию электронных мошек и блошек. Честь Европы удалось спасти. А спасительные направления научных исследований выдвинулись, точнее, были выдвинуты на передовую.
Самые проворные из европейских исследователей – и их собратья в других частях света – воспользовались случаем и успешно выбивали дополнительное финансирование. Нельзя же отставать от программы NNI,а задавать вопросы вроде: «А что же это такое – нанотехнологии?» – кому оно надо? Если какая-то европейская лаборатория микроэлектроники или микротехнологии опасалась за свое будущее, понимая, что источники финансирования могут иссякнуть, она объявляла себя Европейским центром нанотехнологии, и этого оказывалось достаточно, чтобы все устраивалось самым лучшим образом. Отстававшей от жизни химической лаборатории в Германии, Швейцарии или Франции довольно было прибавить к своему названию приставку «нано», чтобы вернуть себе былое благодушие. А если лаборатории, изучавшей или создававшей новые материалы, требовалось новое оборудование, она получала кредиты и гранты под проект, в названии которого упоминались «наноисследования».
Во Франции группа экспертов, объединившихся под руководством Французского комитета по надзору за передовыми технологиями ( OFTA), попыталась в 1999–2002 годах разобраться в том, что же такое эти нанотехнологии. Французские ученые попробовали переопределить основания нанотехнологического проекта, не оглядываясь на лоббистов от микроэлектроники и материаловедения. Но было уже слишком поздно. Все пошло так, как в Соединенных Штатах. Возникло целое сообщество ученых (дабы получать кредиты и гранты, желательно, чтобы просителей денег было побольше), которые объявили себя представителями «нанонауки» и которые, в сущности, закрепили импортированное из США определение новой научной области. Глупее, чем этот способ формулировать определения, и придумать нельзя! Успешные – прежде всего как способ выбивания денег – общенациональные французские нанотехнологические программы под копирку переписывали громоздкую американскую тематику: ярлык «миниатюризация» для микроэлектронной промышленности, ярлык «наноматериалы» для сообщества французских химиков, ну и ярлык «биотехнология». Эти темы стали всемирными и общемировыми.
Европейская комиссия даже обзавелась собственной обширной программой, осуществление которой, под названием «Нанотехнологии, материалы и процессы» ( NMP), началось в 2002 году. Эта программа покрыла все поле материаловедения, но не удостоила хотя бы строчкой манипуляции с атомами и молекулами. Правда, в программе упоминалось устойчивое развитие и признавалась возможность превращения со временем нанотехнологий в экотехнологию. У микроэлектроники уже была, принятая еще в начале 1990-х годов, обширная программа «Технологии информационного общества» ( IST). Она захватила добрую долю работ, нацеленных на «миниатюризацию» в электронной промышленности, оставив, однако, немножко места для исследователей, занимающихся долгосрочными проектами, в духе этакой «монументализации». В конце 2006 года на смену программе ISTпришла новая программа «Информационно-коммуникативных технологий» ( ICT), в которой впервые из всех программ, сформулированных Еврокомиссией, говорилось о манипулировании атомами и использовании одиночной молекулы для реализации некоторой электронной функции.
Что же следует из этой истории? А то, что экономическая конкуренция и интересы отдельных групп зачастую пересиливают любое научное первопроходчество, и ученым приходится сдерживать свои устремления и довольствоваться проектами, кажущимися со стороны менее утопичными, чем первоначальный замысел. Академии наук в разных странах соглашаются на очень уж растяжимое определение нанотехнологий, чтобы защитить и оправдать политические выгоды, извлекаемые из науки кругами, от науки далекими, но зато влиятельными. «Нанотехнологией называется производство и применение структур, устройств и систем, формы и размеры которых измеряются в нанометрическом масштабе», – сообщают, например, Королевское общество [6]6
Считается в Великобритании аналогом Академии наук РФ, но не имеет аналогичной власти и не распоряжается аналогичной недвижимостью и прочим имуществом. ( Прим. перев.).
[Закрыть]и Королевская академия инженерного дела Великобритании. Другие определения утверждают, что о нанотехнологии можно говорить, если заходит речь о новых физических явлениях, наблюдаемых на участках пространства размерами менее 100 нанометров, – что, в сущности, совпадает с дефинициями британских академиков: то же русло и то же направление. Научного прогресса, надо думать. Чтобы увеличить запасы знаний, нужны средства, прежде всего денежные, а вот окупятся ли капиталовложения в новые исследования, будут ли хоть какие-то прибыли, будь то технические или культурные (скажем, увеличение объема научных знаний), заранее знать нельзя. Отсюда это впечатление какого-то непостижимого, нерационального, почти алхимического продвижения, которое производит научно-технический проект, в частности, и на тех, кто его должен одобрить и принять. То есть на все заинтересованные стороны.
Глава 2
Меньше, еще меньше и еще и еще меньше
Все будто бы началось 29 декабря 1959 года. Вечером, после ужина, Ричард Фейнман, которому еще только суждено получить Нобелевскую премию – это случится в 1965 году, за труды в области теоретической физики, – выступил перед лучшими американскими физиками, собравшимися на конгресс. Докладчику шел сорок второй год, и он уже снискал громкую славу. Все признавали за ним незаурядный, творческий и не склонный к соглашательству ум. И в этот раз он сумел удивить своих слушателей. Поднявшись на кафедру, он показался присутствующим проповедником, если не пророком: доклад, предложенный им почтеннейшей публике, назывался «На дне места много» (There’s plenty room at the bottom) [7]7
Речь, произнесенная на ежегодном собрании Американского общества физики в Калтеке (Калифорнийском институте технологии) и опубликованная под заглавием «На дне места много: добро пожаловать в новую область физики» (There's plenty of room at the bottom: an invitation to enter a new field of physics)/ Engineering & Science.February, 22, 1960.
[Закрыть].
НАУЧНЫЙ ДОКЛАД СТАНОВИТСЯ МИФОЛОГИЕЙ
Сегодня эта коротенькая речь слывет проповедью, этаким евангелием, а сам Фейнман считается – напрасно, конечно, – пророком, апостолом и отцом основателем нанотехнологий. Мол, физики вняли благой вести, преподанной учителем, и принялись изучать «нижние миры» – вот так и родились нанотехнологии. На самом деле все было не так, и если даже Фейнман произнес свою речь, прежде чем нанотехнологии как-то преуспели, не он их рожал и не он на них влиял. Несмотря на известность, которой тогда уже пользовался Фейнман, произнесенные им в тот вечер слова восторга не вызвали. Американский физик Пол Шликта, бывший на том обеде, вспоминает: «Реакцию зала в общем и целом можно назвать веселой. Народ по большей части подумал, что докладчик валяет дурака» [8]8
Toumey С. Apostolic succession. Engineering & Science.2005. Vol. 69. № 1/2.
[Закрыть]. В последующие годы слова Фейнмана ни к чему не подтолкнули и ни на что не повлияли, а потом и вовсе забылись. Европейские физики Герд Бинниг и Генрих Рорер изобрели туннельный микроскоп, а американский физик Дон Эйглер первым начал писать слова, располагая отдельные атомы на поверхности кристалла, – и у всех троих спрашивали: как повлияла эта речь на их работы? И все трое без обиняков отвечали – никак. И по очень простой причине: они о ней ничего не знали.
Скончавшийся в 1988 году Фейнман содействовал появлению туннельного микроскопа, как и успехам миниатюризации в микроэлектронике и микромеханике. Но он никогда не притязал на отцовство хоть какого-то из этих достижений. Более того, он ни разу не пытался увязать речь, которую он произнес в 1959 году, со всем этим прогрессом. Читая лекции в Калифорнийском технологическом институте, он нередко обращался к теме приложения физики к вычислительной технике, но сам электроникой никогда не занимался и в смежных с нею областях тоже не работал, а уж от нанотехнологий его научные интересы были и вовсе далеки. Лишь раз он вновь затронул темы речи «На дне места много» – в статье 1983 года.
Никакой славы у этой речи Фейнмана не было, вплоть до начала 1990-х годов, когда Эрик Дрекслер вспомнил о ней, чтобы придать большую убедительность собственным идеям. Но давайте припомним, что же сказал Фейнман в тот знаменательный вечер.
«Хочу поговорить об области почти нетронутой – там еще пахать и пахать. <…> Там будет уйма технических приложений. <…> Я – о манипуляции и должном управлении вещами совсем маленького масштаба. <…> Есть такой мир, невероятно маленький, он – внизу, на дне».
Отдадим должное его проницательности: Фейнман справедливо оценил, сколь высоки ставки в миниатюризации, и призвал исследователей заинтересоваться мирами «внизу», дожидавшимися в его время своих первопроходцев. Считать ли его прозорливцем? Да, он задался вопросом: «Что будет, если удастся произвольно и по одному расставлять атом за атомом?» Но он не предложил никакого ответа на свой вопрос и не придумал – и даже не вообразил, – как и с помощью какого прибора нечто такое стало бы возможным. Он говорил о крайней точности производства, но не о размерах и других характеристиках требующегося оборудования. Его речь была упражнением в прогнозировании. Он хотел показать, каким образом продвижение физики, преодолевающей преграды и выходящей за прежние границы, может оказаться плодотворным. И привел пример с двумя физиками: один добивался все более низких температур, второй – все более высоких. Действия обоих открывали новые области для изучения. Так почему бы, вопрошал Фейнман, не довести до предела миниатюризацию оборудования и механизмов? И предсказал, что записывать и хранить информацию удастся в памяти из какой-нибудь сотни атомов. А сегодня известно, что сотни много – хватит и одного атома.
Фейнман не предсказывал пришествия нанотехнологии, как это ему часто приписывают. Да и не он первым поставил вопрос о пределах миниатюризации и об исследовании «мира внизу». Стоит бросить самый беглый взгляд на минувшее, и станет ясно, что уж никак не за Фейнманом первенство в выказывании интереса к миру очень малых величин… «В юности я думал, что стану изобретателем, этаким Ньютоном <…> мира тех подробностей, которые еще предстоит изучить; вот этот мир иной, и он куда важнее всего, что я, льстя себе, считал своими открытиями», – еще в 1799 году признавался математик Гаспар Монж Наполеону. Случился этот разговор на борту фрегата La Muiron,возвращавшегося из похода в Египет. Фейнман, кто спорит – физик незаурядный и даже несравненный, может быть, великий, но он был наследником многих поколений физиков – и нефизиков, – которые задавались вопросами о мире внизу или о миниатюризации, при этом отнюдь не претендуя на то, чтобы стать провозвестниками или отцами нанотехнологий.
ИСПОЛИНЫ МИНИАТЮРИЗАЦИИ
Когда же началась миниатюризация? С какой временной отметки отсчитывать ее историю? Греческие мудрецы, например, мастерили великолепные астрономические часы с механизмами из крошечных зубчатых колес – в то время эти миниатюрные модели Солнечной системы считались чудесами техники и технологии. Позднее прогресс в конструировании часовых механизмов сыграл существенную роль в миниатюризации механических двигателей, которыми оснащались автоматы, а еще позднее – роботы. Но миниатюризация машин проходит не только по ведомству техники. Она неотторжима от научного прогресса вообще.
Однажды в 1764 году профессор физики Университета Глазго Джон Андерсон решил показать студентам, как работает «огненный насос» или «атмосферная машина» – так в Англии именовались механизмы, выкачивавшие воду из угольных шахт. Машины эти были слишком громоздкими и тяжелыми и занимали слишком много места, чтобы поместиться в университетской аудитории. Поэтому построили уменьшенный вариант в метр высотой. Но профессора ждало неприятное разочарование: миниатюрная машина отказывалась работать! Пришлось везти ее в мастерскую, где чинили научные приборы, – ту самую, в которой работал Джеймс Уатт. Тот быстро понял, в чем дело: уменьшение объема рабочей камеры привело к тому, что атмосферного давления стало не хватать для преодоления трения поршня о стенки камеры. И тогда сообразительный Уатт предложил использовать вместо давления воздуха давление водяных паров. Так он изобрел паровую машину, что дало возможность перемещаться в пространстве с помощью двигателя – когда паровой двигатель стал еще меньше, он легко поместился на тележке с колесами. Начиналась новая эра в науке, рождалась термодинамика.
По ходу своих исследований физики часто сталкивались с задачей измерения. И всегда нуждались во все более точных измерительных приборах. Бывало, что помогала миниатюризация. Джеймс Прескотт Джоуль (1818–1889), к примеру, хотел замерять крайне ничтожные повышения температуры в чане с водой. Он был пивоваром, как и его отец, и потому занимался увлекавшим его вопросом о соотношении работы и тепла только на досуге. Он знал, что работу можно превратить в тепло – довольно потереть один предмет о другой – и, наоборот, тепло превращается в работу (как в паровой машине Уатта). Задавшись целью определить точное количество тепла, получаемое при совершении некоторой заданной работы, Джоуль поставил такой опыт: он опустил мешалку с лопастями в емкость с водой, и лопасти, вращаясь, нагревали жидкость. За полчаса лопасти совершили 20 оборотов, а вода нагрелась только на половину градуса. Чтобы замерить столь ничтожное повышение температуры, Джоулю понадобился куда более точный термометр, чем те, что у него были, и он смастерил миниатюрный термометр, оказавшийся необычайно точным. По принципу действия новый термометр не отличался от других термометров того времени: и там и там использовалось расширение спирта (или ртути), пропорциональное повышению температуры. Значит, если наполнить спиртом трубку с делениями, то уровень жидкости в трубке будет указывать температуру. Чтобы повысить точность, Джоуль изготовил очень тонкую трубочку и заполнил ее спиртом. К несчастью, диаметр трубки не был постоянным по всей длине и, следовательно, уровень жидкости в трубке не поднимался строго пропорционально вслед за повышением температуры – нужной точности измерения добиться не удавалось. Тогда Джоуль отметил неровности трубки, рассмотрев ее по всей длине в оптический микроскоп, и, чтобы все-таки использовать незадавшуюся трубочку, решил скомпенсировать ее неровности градуировкой, подстраивая (слегка меняя) расстояние между соседними делениями.
Деления на трубку он нанес, применив весьма остроумный способ: покрыл стеклянную трубочку пчелиным воском, а затем сделал на воске поперечные риски очень острым ножом. Затем он погрузил трубочку в разведенную кислоту. Кислота пощадила воск и разъела стекло, обнаженное надрезами, – и на стекле появились тоненькие рисочки: погрешность промежутка между делениями не превышала 6 микрон. Так Джоуль превратил тоненькую трубочку в сверхточный термометр. Его метод гравировки с предварительным нанесением маскирующего слоя применяется до сих пор, в частности, в микроэлектронике. Это изобретение, а также невероятное упорство, помогло Джоулю в 1850 году первым в мире определить соответствие между работой и теплом, выделяемой при ее совершении.
ОТ ЭЛЕКТРОНА К ЭЛЕКТРОНИКЕ
Изучать природные явления непросто. И так было всегда. Порой они кажутся слишком беспорядочными и потому легко вводят в заблуждение. Или же слишком отдалены от повседневности. Чтобы обойти подобные затруднения, ученый пытается воспроизвести естественные условия в лаборатории – чтобы все было под рукой. Подчас это достигается посредством «миниатюризации» изучаемого явления: оно воспроизводится в уменьшенном масштабе. Показательный пример – те эпизоды в истории науки, которые вызвали пришествие физики элементарных частиц, которая в свою очередь породила электронику, а затем и микроэлектронику.
В XVIII в. физики, в том числе аббат Ноле во Франции и Бенджамин Франклин в США, изучали молнию, то есть электрические разряды в атмосфере. Вскоре они обнаружили, что неплохо бы заиметь «коробочку» для воспроизведения подобных явлений в лаборатории, где можно было чувствовать себя столь же непринужденно, как в салоне небедного буржуазного дома. Конечно, изучать молнию в природе и на природе вроде бы предпочтительнее – большая точность, и все такое. Но уж очень это небезопасно: к тому времени от удара молнией погибло уже несколько физиков, пытавшихся исследовать грозы. Немецкий промышленник Генрих Гейслер, торговавший научными приборами, выпускаемыми его предприятиями, в 1857 году воспроизвел самые настоящие малюсенькие молнии между двумя электродами в стеклянном сосуде, наполненном газом. В 1874 году английский физик Уильям Крукс откачал газ из стеклянного баллона в надежде, что изучать искусственные молнии станет проще. И тогда же другие физики задались вопросом о сущности молний, рождавшихся в баллоне Крукса. Что это: электромагнитное излучение, как полагали немецкие ученые, или частицы, как думали английские физики? И британец Джозеф Джон Томсон дал убедительный ответ: слегка изменив вакуумный сосуд Крукса, он в 1898 году открыл электрон.
Открытие электрона на пороге XX в. дало начало эре электроники. Последовало неслыханное прежде ускорение миниатюризации, и электроника естественным образом сократилась до микроэлектроники. В который уж раз все начиналось с повседневных затруднений. Поначалу телефонная связь опиралась на ручной труд: телефонистка должна была вставлять штепсели и штекеры в соединительные гнезда и выдергивать эти вилки из розеток всякий раз, когда требовалось соединить двух влюбленных, жаждавших услышать голоса друг друга, или партнеров по бизнесу. Но во всех столицах мира, вроде Нью-Йорка или Парижа, число абонентов росло взрывообразно. Справиться с этой волной могла только автоматизация: телефонисток должны были заменить какие-то электронно-механические устройства. И тогда инженеры сначала придумали электромагнитные реле, становившиеся со временем все более миниатюрными, потом догадались приспособить электронные лампы, те самые диоды, триоды и пентоды, которые трудились в радиоприемниках наших бабушек. Лампы были отдаленными потомками вакуумных баллонов Крукса и действовали как прерыватели – иначе говоря, переключатели – электрического тока. Со временем, однако, жалобы на лампы – они и хрупки, и слишком громоздки, и очень уж нагреваются – становились все громче. Хорошо, давайте поставим вместо лампы что-нибудь твердое и, по возможности маленькое. В начале 1940-х годов решить эту задачу подрядились Джон Бардин, Уолтер Браттейн и Уильям Шокли, работавшие в лабораториях Bell Telephone Companyв США. В декабре 1947 года они изобрели устройство, рабочим элементом которого был крошечный полупроводниковый кристалл, и назвали его транзистором. Транзистор, подобно ламповому (вакуумному) триоду, мог усиливать электрический сигнал или действовать в качестве переключателя, при этом транзистор был куда меньше самой маленькой лампы и, что еще важнее, выделял меньше тепла, а это сокращало затраты на системы охлаждения.
Именно транзисторы стали основой всей электроники. Из них собирали схемы, выполнявшие логические операции и запоминавшие информацию. Поначалу это была работа кропотливая, ручная, наподобие вышивания, часто производимая под микроскопом, с помощью паяльника, и все равно, сколько же случалось ошибок! Первым делом нужно было изготовить достаточно много транзисторов, затем вставить каждый в корпус, и потом уже подключать их к другим электронным деталям, соединяя элементы проводниками. Но в 1958 году появилась новинка, избавлявшая от многих операций, производимых вручную: инженер Texas InstrumentsДжак Килби изобрел интегральную схему (сейчас мы называем это устройство микросхемой, или чипом). Определение «интегральная» означало, что множество электронных компонентов (транзисторы, резисторы, диоды и т. п.) вместе с соединительными проводниками размещались на поверхности одного полупроводникового кристалла – так называемой подложки. Очень скоро другие инженеры догадались, что транзисторы можно располагать вертикально, устанавливая их друг на друге, – у Килби все компоненты были плоскостными и из одного и того же материала (кристаллического полупроводника). На крошечных – разных! – германиевых пластинках Килби сначала создавал транзистор, потом формировал три резистора и конденсатор, а затем соединял получившиеся детали тоненькими золотыми проводками, припаивая их вручную. Прошло несколько месяцев, и Роберт Нойс из компании Fairchild Semiconductorsсумел сформировать все компоненты на поверхности одной-единственной кремниевой пластинки. При этом он обошелся без соединительных проводников, сформировав и все соединения из того же кремния. Вот тогда и родилась первая «настоящая» интегральная схема. А еще через несколько месяцев началось массовое промышленное производство интегральных схем.
ГОРДОН МУР РАЗБИРАЕТСЯ С НЕРАЗБЕРИХОЙ
Чтобы производить интегральные схемы в больших количествах, нужна была технология, обеспечивавшая автоматизацию сборки электронных компонентов на подложке. Поначалу вопрос о миниатюризации даже не поднимался – всем казалось очевидным, что новинка будет внедрена незамедлительно, например в электронике, устанавливаемой на военных реактивных снарядах и ракетах. Электроника следит за устойчивостью полета, и потому такая управляющая система включает в себя гироскоп, замеряющий отклонение от курса, и систему управления подачей топлива в реактивный двигатель. Инженеры-электронщики в союзе с армией физиков извлекли немалые выгоды из космической программы «Аполлон», обеспечивающей постоянный запрос на все более миниатюрную микроэлектронику. В реактивном снаряде или ракете тесно, а каждый лишний грамм груза – это дополнительный расход топлива, поэтому соображения места и массы имеют первостепенное значение. К тому же чем мельче транзистор, тем выше его быстродействие. А если транзисторов в интегральной схеме (в том же объеме) становится больше, то и возможностей у микросхемы прибавляется. Так что плотность расположения транзисторов начиная с 1960-х годов неуклонно возрастала, подчиняясь эмпирической закономерности, замеченной в 1965 году Гордоном Муром.
Защитив диплом в Калифорнийском университете, где он какое-то время сотрудничал с одним из изобретателей транзистора Уильямом Шокли, Гордон Мур вскоре начал работать в фирме Fairchild Semiconductors.В апреле 1965 года главный редактор американского журнала Electronicsпопросил Мура написать статью о перспективах электроники [9]9
Moore G. Е. Cramming more components onto integrated circuits// Electronics,April, 19, 1965.
[Закрыть]. На момент написания статьи в самых сложных интегральных схемах содержалось десятка три электронных элементов, в том числе несколько транзисторов. Не так уж много, но Гордон Мур верил в эту технологию. Приглядевшись к темпам ее развития, он заметил: после изобретения интегральной схемы число компонентов за год выросло с четырех до восьми, а еще через год – до 16. Получалось, что примерно за год количество компонентов удваивается. Вовсе не думая об открытии или тем более навязывании какого-то закона собственного имени, Мур просто высказал надежду на появление все более миниатюрных электронных схем и тех деталей, из которых они строятся, предсказывая, что при этом схемы будут усложняться и дешеветь.
О том, что случится в будущем, Мур, конечно, мог только догадываться, но он был уверен: невероятный курс на немыслимую миниатюризацию взят. А назвал это его простенькое опытное – эмпирическое – наблюдение «законом Мура» вовсе не сам Мур, а преподаватель Калифорнийского технологического института Карвер Мид. Мур же в 1975 году подправил «свой» закон: плотность размещения компонентов на подложке интегральной схемы удваивается каждые два года. Между тем Мур познакомился с Робертом Нойсом, одним из изобретателей интегральной схемы, и в июле 1968 года Мур и Нойс зарегистрировали фирму Intel Corporation,которая в 1971 году выпустила первый микропроцессор [10]10
Микропроцессор – набор электронных схем, созданных – «интегрально» – на поверхности полупроводника. В микропроцессор входят память (запоминающее устройство), арифметическое устройство, счетчики, схемы синхронизации и соединительные проводники.
[Закрыть]– микросхему, среди компонентов которой насчитывалось 2250 транзисторов. После этого закон Мура точно предсказывал рост плотности транзисторов в объеме микросхемы – в 2007 году их стало более 250 миллионов! Что и говорить – рост молниеносный.
Причем транзисторы не только становились меньше: они и работали все лучше и лучше. В грубом приближении уполовинивание объема равносильно удвоению быстродействия, поскольку электронам приходится преодолевать вдвое меньшее расстояние. И мощность, рассеиваемая на транзисторе, тоже уменьшается. Но поскольку плотность размещения транзисторов учетверилась, то общее количество рассеиваемого тепла осталось тем же самым. Зато способности к счету возросли в восемь раз. А ведь за сорок лет размеры уменьшились не вдвое, как в нашем примере, а в сто раз с лишним! Следствия налицо: если первая электронно-вычислительная машина весила 50 т и потребляла 25 кВт, выполняя лишь какую-то сотню команд в секунду, то любой нынешний микропроцессор весит считаные граммы, выполняет за секунду сотни миллионов команд и потребляет ничтожную энергию – во многие тысячи раз меньше, чем первые ЭВМ!
Времени-то прошло всего ничего, а какое продвижение! И сколько новшеств! И каких! Правда, если честно, то ни единое из этих новшеств не поменяло ни принципов функционирования транзистора, ни способов производства интегральных схем. И сегодняшние микросхемы изготавливаются теми же методами маскировки и гравировки – их окрестили литографией, – которыми по большому счету воспользовался Джоуль, когда ему понадобилось проградуировать свой сверхточный термометр. Только Джоуль резал воск острым ножом, а теперь гравируют лучом света. Оптическая литография (она же – фотолитография) состоит в том, что свет проходит через маску и освещает светочувствительную смолу, нанесенную тонким слоем на кремниевую пластинку. Маска – это трафарет, непрозрачные участки которого оберегают те места на кремниевой пластинке, которые не должны освещаться; так что свет воспроизводит на смоле узор маски – рисунок электронной схемы с ее транзисторами и другими деталями, включая металлические дорожки, служащие соединительными проводниками.
Поскольку маска прилегает к смоле не слишком плотно, а находится на каком-то удалении от нее, воспроизводимый на слое смолы узор получается несколько размытым – дорожки, например, выходят более широкими, чем на самой маске. А транзисторы нужны маленькие – чем меньше, тем лучше. Чтобы сфокусировать луч света (и получить дорожку поуже), применяют оптические линзы – вроде известных увеличительных или зажигательных стекол, фокусирующих солнечные лучи. Благодаря линзам, узор на маске можно делать большим по размеру и, значит, более точным и с большими подробностями (линзы все равно сделают его маленьким, таким, как потребуется – или удастся). После облучения смолу удаляют, и облученные участки кремния становятся задуманной микросхемой, со всеми ее транзисторами и прочими компонентами. Для удаления смолы кремний промывают кислотой – так же как Джоуль удалял со стекла пчелиный воск. Но точность операций теперь много выше. Если Джоуль своим ножом наносил риски длиной 50 мкм (то есть 50 тыс. нанометров), то в конце 1960-х фотолитография обеспечивала стократно лучшую точность, позволяя «нарисовать» транзистор в квадрате со стороной в 10 000 нм. В 2006 году промежуток между входом и выходом транзистора составляло всего 90 нм: иначе говоря, на пятнышке размером с ноготь теперь умещается более 80 миллионов транзисторов! В 2007 году появились интегральные схемы с расстоянием между входным и выходным выводами транзистора 65 нм, а в 2008 году этот показатель обещают сократить до 45 нм. Эти транзисторы уже в сто раз меньше красного кровяного тельца!
ИГОЛКА В СТОГЕ СЕНА
Ключевая роль в этой головокружительной миниатюризации принадлежит фотолитографии. Эта технология похожа на рисование тонюсенькой кисточкой, которой можно вычерчивать самые меленькие узоры. А чем тоньше линии этих узоров, тем тоньше гравировка на поверхности полупроводника, и добиваться «утонченности» можно, уменьшая длину волны используемого света. Разрешение – так называется наименьшее расстояние между двумя соседними (разными и потому различимыми) точками на схеме – определяется как раз этой длиной волны. Чем она короче, тем тоньше могут быть воспроизводимые узоры и тем лучше будет разрешение. Сначала полупроводник освещали видимым светом (длина волны от 400 до 800 нм), затем ультрафиолетовыми лучами (350–450 нм), потом жестким ультрафиолетом (220–310 нм), а теперь применяют лучи с длиной волны в 193 нм. Сегодня (с транзисторами величиной порядка 45 нм) предполагается применить иммерсионную фотолитографию. «Иммерсия» значит погружение – в этом случае кремний покрывается жидкостью; с поверхности кремния маска покажется увеличенной – жидкость действует как дополнительная линза, и поэтому можно использовать ту же длину волны для формирования транзисторов меньшего размера.
Но что делать уже на следующем этапе (транзисторы величиной 32 нм), инженеры не знают. Можно бы опять уменьшить длину волны, но это потребует фотолитографии, способной работать в диапазоне крайнего ультрафиолета (длина волны 13,5 нм). Иначе говоря, понадобится сверхмудреная и соответственно очень дорогая оптика, чтобы фокусировать такие лучи и освещать ими поверхность полупроводника. Волны еще короче – это уже рентгеновское излучение: казалось бы, здорово – волны длиной порядка 1 нм. Но для таких коротких волн все прозрачно – из чего тогда делать маску? А оптику? Что это за линзы должны быть, чтобы управляться со столь коротковолновым – и жестким, то есть разрушающим вещество, особенно живое, – излучением?