412 000 произведений, 108 200 авторов.

Электронная библиотека книг » Ирина Радунская » Предчувствия и свершения. Книга 3. Единство » Текст книги (страница 6)
Предчувствия и свершения. Книга 3. Единство
  • Текст добавлен: 26 июня 2025, 05:17

Текст книги "Предчувствия и свершения. Книга 3. Единство"


Автор книги: Ирина Радунская


Жанр:

   

Физика


сообщить о нарушении

Текущая страница: 6 (всего у книги 24 страниц)

Предсказание

Глубокое понимание колебательных процессов помогло Мандельштаму отыскать аналогичные явления и в такой далекой на первый взгляд от радиотехники и акустики области, как рассеяние света. Он первый понял, что в явлении рассеяния света можно обнаружить черты, родственные процессам, хорошо изученным в радиотехнике и акустике.

Этот вывод оказался очень плодотворным. В 1918 году Мандельштаму удалось использовать эту идею для дальнейшего развития теории молекулярного рассеяния света. Он рассуждал примерно так. Молекулярное рассеяние света обусловлено оптическими неоднородностями, вызываемыми местными случайными изменениями плотности, температуры и т. п. Но величина этих случайных изменений меняется во времени. Поэтому должна изменяться во времени и интенсивность (сила) рассеянного света. Это значит, что рассеянный свет испытывает модуляцию. Следовательно, если в среду попадает монохроматический свет (то есть свет, обладающий одной определенной частотой), то в рассеянном свете должны, кроме этой частоты, появиться и другие частоты, обусловленные модуляцией.

Ни один из ученых в то время не наблюдал подобного изменения частоты рассеянного света. Не имел возможности проверить выводы своей теории и сам Мандельштам – трудные условия первых лет революции, иностранной интервенции и гражданской войны препятствовали организации экспериментов, необходимых для обнаружения столь малых изменений частоты.

В 1925 году Мандельштам стал заведующим кафедрой в Московском университете. Здесь он встретился с выдающимся ученым и искусным экспериментатором Григорием Самуиловичем Ландсбергом. С тех пор обоих ученых связала не только общая работа, но и личная дружба. Они совместно продолжили штурм тайн, скрытых в слабых лучах рассеянного света.

Оптические лаборатории университета в те годы были очень бедны приборами. Молодая советская промышленность преодолевала большие трудности и поэтому не могла еще уделять достаточно внимания производству специальных оптических приборов. В университете не оказалось ни одного прибора, способного обнаружить те маленькие различия в частотах падающего и рассеянного света, которые предсказывала теория.

Однако это не остановило исследователей. Для того чтобы увеличить силу рассеянного света, они взяли в качестве источника света ртутную лампу, в которой светятся пары ртути, и решили работать не с газами, а с прозрачными твердыми телами. Ведь рассеяние тем больше, чем плотнее вещество. А в твердых телах под влиянием тепловых колебаний тоже должны возникать флуктуации плотности, сопровождающиеся рассеянием света. Но молекулярное рассеяние в твердых телах тогда никем еще не наблюдалось, и никто не знал, какое вещество следует выбрать. Начались кропотливые поиски. Наиболее подходящими оказались кристаллы кварца, среди которых можно было найти крупные, однородные и чистые образцы. Не обладая мощной аппаратурой для спектрального анализа, ученые избрали остроумный обходный путь, который должен был дать возможность воспользоваться имеющимися приборами. Для этой цели они использовали явление резонанса.

Основной трудностью в работе было то, что на слабый свет, вызванный молекулярным рассеянием, накладывался намного более сильный свет, рассеянный небольшими загрязнениями и другими дефектами тех образцов кристаллов, с которыми проводились опыты. Исследователи решили воспользоваться тем, что рассеянный свет, образованный дефектами кристалла и отражениями от различных частей установки, точно совпадает по частоте с падающим светом. Их же интересовал только свет с измененной, в соответствии с теорией Мандельштама, частотой. Таким образом, задача состояла в том, чтобы на фоне намного более яркого мешающего света выделить слабый свет измененной частоты, вызванный молекулярным рассеянием.

Идея метода привлекала своей простотой: надо поглотить свет неизмененной частоты и пропустить в спектральный аппарат только свет измененной частоты, отличающейся от первоначальной лишь на несколько тысячных долей процента. Эту идею можно реализовать на основе старого наблюдения, сделанного Кирхгофом. Он заметил, что каждый атом вещества, находящегося в газообразном состоянии, способен излучать световые волны только вполне определенных частот. Вместе с тем этот атом способен и поглощать свет только тех частот, которые он сам может излучать. Поэтому, например, при прохождении света через сосуд, наполненный парами ртути, будет сильно рассеиваться и поглощаться только такой свет, который может испускаться парами ртути, находящимися в лампе. В результате свет от ртутной лампы при прохождении через сосуд, наполненный парами ртути, будет сильно ослабляться, а свет, обладающий другими частотами, например свет от неоновой лампы, пройдет через этот сосуд без заметного ослабления. Без заметного поглощения пройдет через ртутные пары и та часть рассеянного света ртутной лампы, частота которой окажется измененной при рассеянии на случайно возникающих и рассасывающихся неоднородностях.

Мандельштам рассуждал так: свет, рассеянный в кристалле, состоит из двух частей: из слабого света измененной частоты, обусловленного молекулярным рассеянием (исследование этой части являлось целью ученых), и из гораздо более сильного света неизмененной частоты, вызванного как молекулярным рассеянием, так и главным образом посторонними причинами, а именно загрязнениями и другими дефектами кристалла (эта часть была вредной, она затрудняла исследование). Для того чтобы избавиться от мешающей части света, весь рассеянный свет следует пропускать через сосуд с парами ртути. При этом мешающий свет неизмененной частоты существенно ослабляется, а свет измененной частоты проходит без заметного ослабления. Этот свет направлялся в обычный спектроскоп для дальнейшего исследования.

Два года длились подготовительные опыты, выбирались наиболее чистые образцы кристаллов, совершенствовалась методика, устанавливались признаки, позволяющие бесспорно отличать молекулярное рассеяние от рассеяния на случайных включениях и неоднородностях кристалла.

Замечательное открытие

В 1927 году начались решающие опыты. Результаты их были необычайны. Они привели к открытию совершенно нового физического явления. В процессе исследования полученных фотографий спектра – спектрограмм наряду с спектральными линиями неизменной частоты были обнаружены слабые линии со значительно большим изменением частоты, чем это ожидалось на основании теории.

Началась тщательная проверка. Разнообразные контрольные опыты показали, что ошибок нет. В рассеянном свете действительно присутствуют слабые линии, заметно отличающиеся по частоте от падающего света.

Уже в процессе проверки стало ясно, что наблюдаемое на опыте значительное изменение частоты есть следствие процессов намного более быстрых, чем процессы рассасывания случайных неоднородностей. Ведь даже опыт с камертонами показывает, что, чем выше частота модуляции, тем больше изменение частоты звука.

Снимки, в которых выявились новые линии, были получены осенью 1927 года. Однако контрольные опыты продолжались. Советские ученые занялись всесторонней проверкой и тщательным изучением нового явления. После того как в феврале 1928 года в результате обработки многих фотографий спектров были получены точные числовые результаты и установлены закономерности в расположении новых линий, Мандельштам дал теоретическое объяснение их происхождения.

Глубокая интуиция и ясный аналитический ум сразу подсказали ему, что обнаруженные линии вызваны не теми межмолекулярными силами, которые выравнивают случайные неоднородности, а другими силами, действующими внутри молекул. Эти силы обусловливают внутримолекулярные колебания – колебания атомов, образующих каждую молекулу. Такие колебания обладают гораздо более высокой частотой, чем те колебания плотности, которые сопровождают образование и рассасывание случайных неоднородностей среды (в этих колебаниях каждая молекула участвует как одно целое). Поэтому изменение частоты света, вызванное модуляцией, имевшей причиной внутримолекулярные колебания, намного превосходит то изменение, которое предсказывала теория, учитывающая только процесс рассасывания неоднородностей.

Итак, при попытке обнаружить малое изменение частоты рассеянного света, вызванное межмолекулярными силами (это явление предсказал Мандельштам еще в 1918 году), было обнаружено значительно большее изменение частоты, вызванное внутримолекулярными силами.

Таким образом, для объяснения нового явления, которое получило название «комбинационное рассеяние света», достаточно было теорию молекулярного рассеяния, созданную Мандельштамом, дополнить данными о влиянии внутримолекулярных колебаний. Новое явление оказалось открытым в результате развития идеи Мандельштама, сформулированной им в 1918 году.

6 мая 1928 года, после серии контрольных опытов, Мандельштам и Ландсберг сообщили о своем открытии в письме в редакцию журнала «Естественные науки». К письму была приложена фотография спектра.

Кратко изложив историю поисков малых изменений длины волны света при рассеянии его в кристаллах, исследователи сообщали об открытом ими явлении, заключающемся в возникновении в спектре новых линий, далеко отстоящих от спектральных линий падающего света. Здесь же было приведено объяснение природы этого явления: в кристалле существуют колебания молекул, соответствующие линиям поглощения кварца, расположенным за красной границей видимого спектра. Эти линии были исследованы Рубенсом и Никольсом еще в 1897 году. Именно поэтому в спектре рассеянного света возникают новые линии, сдвинутые от первоначальных. Расчет сдвига частоты рассеянного света, проведенный в соответствии с этим предположением, поразительно точно совпал с результатами измерений.

В заключение авторы письма указывали, что в настоящее время они не могут сказать, связано ли открытое ими явление с явлениями, незадолго перед этим описанными Раманом и Кришнаном, ибо описание это дано в очень общем виде.

Буря

В чем же состоит явление, описанное индийскими учеными?

31 марта 1928 года в среде ученых Лондона разыгралась «буря». В этот день вышел из печати очередной номер английского журнала «Природа».

Но хотя волны этого научного циклона разбегались по свету из столицы Великобритании вместе с тоненькими книжками журнала, центр его находился в Индии. Оттуда 16 февраля ученые Ч. В. Раман и К. С. Кришнан отправили письмо с коротким описанием своего открытия.

Оптика – одна из старейших областей науки, поэтому в XX веке открыть в ней что-нибудь неведомое удавалось нечасто. Не удивительно, что, прочитав заглавие «Новый тип вторичного излучения», физики заинтересовались содержанием письма индийских ученых. В письме сообщалось о том, что попытка авторов найти оптический аналог эффекта Комптона увенчалась успехом.

Еще не улеглись страсти, вызванные в 1923 году открытиями американского физика Комптона, который, изучая прохождение рентгеновских лучей через вещество, обнаружил, что часть этих лучей, рассеиваясь в стороны от первоначального направления, увеличивает длину своей волны. Это явление можно было объяснить только законами квантовой физики, поэтому открытие Комптона явилось одним из решающих доказательств правильности молодой квантовой теории. И вот через пять лет индийские физики обнаружили нечто подобное в видимом свете.

Это был очень трудный опыт, так как ожидаемый эффект должен был быть чрезвычайно малым. Для опыта понадобился очень яркий источник света. Авторы решили использовать Солнце, собрав его лучи с помощью телескопа, имевшего объектив диаметром 18 сантиметров. Собранный свет они направили на сосуды, в которых помещались жидкости и газы, тщательно очищенные от пыли и других загрязнений.

Но обнаружить ожидаемое малое удлинение волны рассеянного света, пользуясь белым солнечным светом, содержащим практически все возможные длины волн, было безнадежно. Поэтому ученые решили воспользоваться светофильтрами. Они поставили перед объективом сине-фиолетовый фильтр, а наблюдали рассеянный свет через желто-зеленый фильтр. Эти фильтры, поставленные друг за другом, должны поглощать весь свет. Ведь желто-зеленый фильтр поглощает сине-фиолетовые лучи, пропускаемые первым фильтром.

Но в рассеянном свете Раман и Кришнан обнаружили лучи, проходящие через второй фильтр. Это мог быть оптический эффект Комптона, то есть могло быть, что при рассеянии сине-фиолетовый свет изменял свою окраску и становился желто-зеленым. Но это нужно было еще доказать. Ведь могли быть и другие причины, вызывающие появление желто-зеленого света. Например, он мог появиться в результате люминесценции, слабого свечения, которое часто возникает в жидкостях и твердых телах под действием света, тепла и других причин. Очевидно было одно: свет этот рожден вновь, он не содержался в той части солнечного света, которая прошла через первый фильтр, а затем через рассеивающее вещество.

Ученые повторили свой опыт с шестью различными жидкостями и двумя типами паров. Они пришли к выводу, что ни люминесценция, ни другие причины не играют здесь роли. Факт увеличения длины волны видимого света при рассеянии его в веществе казался им установленным.

Но светофильтры позволяют лишь обнаружить изменение длины волны. Чтобы измерить величину этого изменения, нужно применить спектроскоп – прибор, позволяющий измерять длину волны исследуемого света. И исследователи начали новую работу. Они провели измерения, применив в качестве источника света электрическую дугу, горевшую в парах ртути. Спектроскоп показал, что в рассеянном свете рядом со спектральными линиями ртути был виден свет с увеличившейся длиной волны. Особенно интересным и неожиданным было то, что область света с увеличившейся длиной волны была отделена от первоначальной спектральной линии темным промежутком. Предварительные наблюдения показали, что характер рассеянного света остается одинаковым для различных рассеивающих сред.

Эти результаты Раман направил в «Природу» 8 марта в виде письма, опубликованного 21 марта 1928 года. Только об этих двух опытах могли упоминать в своей статье, отправленной 6 мая, Мандельштам и Ландсберг. Но опыты на этом не окончились. От простого рассмотрения спектра рассеянного света Раман и Кришнан перешли к фотографированию.

Можно представить себе, с каким интересом ожидали физики всего мира новых писем из Калькутты. И вот 5 мая вместе с письмом, отправленным из Индии 22 марта под названием «Оптическая аналогия эффекта Комптона», Раман и Кришнан опубликовали замечательно четкую фотографию полученного ими спектра. «Таким образом, – пишут они, – оптическая аналогия эффекта Комптона очевидна, за исключением того, что мы имеем дело с изменением длины волны много большим, чем сдвиг, встречающийся в диапазоне рентгеновских волн». В этом же письме индийские ученые отмечали, что наблюдаемое изменение частоты рассеянного света совпадает с частотами, имеющими место в инфракрасных спектрах тех веществ, рассеяние в которых они изучали, и что этот сдвиг различен для различных веществ.

Как не вспомнить здесь о Колумбе! Он стремился найти морской путь в Индию и, увидев землю, не сомневался в том, что достиг цели. Были ли у него основания усомниться в своей уверенности при виде краснокожих жителей и незнакомой природы Нового Света?

Не так ли Раман и Кришнан, стремясь к обнаружению эффекта Комптона в видимом свете, решили, что нашли его, обнаружив свет, прошедший сквозь их светофильтры? Усомнились ли они, когда измерения показали неожиданно большое изменение длины волны? Какой вывод они сделали из обнаруженного ими совпадения величины изменения частоты при рассеянии с частотой инфракрасных спектров?

Ответ на эти вопросы содержится в следующем письме Рамана и Кришнана, датированном 15 мая и опубликованном 7 июля 1928 года в том же журнале «Природа». Да, они поняли: это не эффект Комптона. Они открыли новое явление! Новое явление, по существу предсказанное в теоретической работе, выполненной в 1925 году Крамерсом и Гейзенбергом. Изменение частоты рассеянного света обусловлено переходом энергии падающего света в энергию колебаний молекул и обратно. Эти же колебания молекул приводят к излучению и поглощению инфракрасного света. Но если и то и другое связано с одними и теми же колебаниями, не удивительно, что частоты при этом совпадают.

Наш рассказ был бы неполным, если бы мы не сказали несколько слов о выдающемся индийском ученом, которому присуждена Нобелевская премия по физике за открытие комбинационного рассеяния света. Чандрасекхар Венката Раман выполнил первые самостоятельные исследования по оптике и акустике еще в 1906 году, во время учебы в университете в Мадрасе. Начальный период его деятельности несколько напоминает первые шаги великого физика Альберта Эйнштейна.

Окончив учебу, Эйнштейн пять лет служил в патентном бюро. Именно в этот период он выполнил классические исследования по теории броуновского движения, теории световых квантов, статистической теории поглощения и излучения света и создал колоссальное здание специальной теории относительности. Раман тоже был вынужден в течение десяти лет после окончания университета, с 1907 по 1917 год, служить в департаменте финансов в Калькутте и опубликовал за это время около 30 научных работ. Лишь после этого он был приглашен на кафедру Калькуттского университета. С 1921 года Раман начал исследования молекулярного рассеяния света, которые привели его к одному из замечательных открытий XX века.

Ч. В. Раман – прирожденный физик-экспериментатор. Однако он обладал большой эрудицией в сложных вопросах теории и полностью владел математическим аппаратом, что позволяло ему глубоко проникать в сущность исследуемого явления.

Центральной и ведущей темой его научной работы являлась оптика во всех ее аспектах. Но его самой любимой областью была физика кристаллов, особенно изучение алмазов.

В 1921 году Раман приступил к систематическому исследованию рассеяния света в прозрачных средах, первым крупным его шагом было обнаружение опалесценции в образцах чистого кварца и льда. Явление заключается в том, что прозрачные в проходящем свете кристаллы при боковом освещении оказываются мутными. Поразительно, что во льду это явление было более сильным, чем в кварце, несмотря на более высокий показатель преломления последнего. Раман объяснил это большей сжимаемостью льда и указал, что рассеяние обусловлено флуктуациями плотности. Он доказал это, установив увеличение рассеяния при нагревании образца кварца.

В этих работах проявилась общность научных интересов Рамана и Мандельштама, которая привела их почти одновременно к замечательным результатам в одной области.

Впоследствии Раман возвратился к этим исследованиям и с помощью спектроскопа установил, что изменения частоты рассеянного света в чистом льде и в дистиллированной воде одинаковы. Эти изменения частоты обусловлены комбинационным рассеянием, то есть зависят от внутреннего строения молекул воды, а не от состояния, в котором она находится.

Исследуя двойное лучепреломление в кристаллах, Раман связал это явление с оптической анизотропией молекул и ионов, неоднородностью их свойств в различных направлениях. Это позволило на основании оптических характеристик кристалла сделать заключения о его структуре. Раман с успехом исследовал различные магнитооптические свойства кристаллических тел, а также магнитную анизотропию жидкостей.

После появления писем Рамана и Кришнана в майском и июльском номерах журнала «Природа» стало ясно, что одно и то же явление независимо и практически одновременно открыто и изучается в Москве и Калькутте, но московские физики изучали его в кристаллах кварца, а индийские – в жидкостях.

Замечательное открытие вызвало живой интерес среди ученых всего мира. Оказалось, что к близким результатам в конце апреля 1928 года независимо друг от друга пришли и французские ученые И. Рокар и Ж. Кабан, много занимавшиеся исследованиями рассеяния света.

Через некоторое время ученые вспомнили, что еще в 1923 году А. Смекаль на основе элементарной квантовой механики предсказал возможность появления в спектре рассеянного света новых спектральных линий, обусловленных внутримолекулярными колебаниями.

Вслед за работой Смекаля появились и другие теоретические исследования. В 1925 году Крамере и Гейзенберг провели подробное квантовое рассмотрение вопроса, а в 1926 году Шредингер и в 1927 году Дирак исследовали эту же задачу вполне современными методами.

Так физики-теоретики предсказали и подробно изучили новое явление. Вероятно, это не было известно Раману и Кришнану, Мандельштаму и Ландсбергу. Ведь в их первых статьях нет никаких указаний на связь открытого ими явления с тем, которое было уже предсказано и теоретически изучено.

После открытия комбинационного рассеяния в жидкостях Раман и Кришнам начали наблюдать это же явление в кристаллах. При этом была установлена связь строения кристалла со спектром комбинационного рассеяния, изучена температурная зависимость эффекта и получен ряд других ценных данных.

Важное значение имеет заключение Рамана о независимости нормальных колебаний решетки кристалла от состояния его поверхностей (от граничных условий) и четкое разделение «структурных колебаний» и «упругих колебаний» кристалла.

Особенно подробно Раман исследовал кристаллическую структуру алмаза – вещества, представляющего особый интерес с точки зрения физики. Раман и его сотрудники исследовали алмаз оптическими методами в видимом свете, а также с помощью инфракрасных, ультрафиолетовых и рентгеновских лучей. Изучались характеристики, общие для всех сортов алмазов, и тонкие различия между его разновидностями. Раманом и его школой было подробно исследовано и давно известное, но ранее не изученное явление люминесценции алмаза и обнаружено, что алмаз способен к двум различным типам люминесценции. На кристаллах алмаза проводились исследования термооптических, магнитооптических и других свойств кристаллических тел.

В 1947 году Ч. В. Раман был избран зарубежным членом-корреспондентом АН СССР. Ч. В. Раман был не только крупным ученым, но и выдающимся общественным деятелем. Ему была присуждена Международная Ленинская премия «За укрепление мира между народами» 1956 года. Из школы Ч. В. Рамана вышла блестящая плеяда ученых, среди которых есть и очень крупные специалисты, пользующиеся мировой известностью.


    Ваша оценка произведения:

Популярные книги за неделю