Текст книги "Предчувствия и свершения. Книга 3. Единство"
Автор книги: Ирина Радунская
Жанр:
Физика
сообщить о нарушении
Текущая страница: 3 (всего у книги 24 страниц)
Постоянство относительного содержания изотопов в элементах, получаемых из различных земных источников, и обнаруженные астрофизиками на небесных объектах отклонения от земной нормы играют большую роль в исследованиях Вселенной. Изотопный анализ, основанный на небольших отклонениях изотопного состава некоторых элементов от обычной нормы, позволяет ученым датировать возраст археологических находок и образцов минералов. Такие отклонения наблюдаются в образцах, в составе которых содержатся наряду со стабильными изотопами и нестабильные изотопы, подверженные радиоактивным превращениям.
Химера ли мечта алхимиков?Во времена Менделеева люди не знали трансурановых элементов, которые должны располагаться в таблице, носящей его имя, за ураном. Но он предвидел возможность их существования.
Длительный поиск трансурановых элементов в природных рудах, специально обработанных для выделения из них урана, тория, радия и других радиоактивных элементов, не дал положительных результатов. Среди ученых возникло мнение: время жизни трансурановых элементов мало. И если они существовали когда-то, то к нашему времени в результате процессов радиоактивного распада превратились в уран, торий и в более легкие элементы. Лишь много позже, после того как трансурановые элементы были синтезированы в лабораториях и их свойства хорошо изучены, следы некоторых из них удалось обнаружить в природных минералах.
В 1934 году итальянец Энрико Ферми, много работавший с облучением различных элементов нейтронами, предложил синтезировать самый близкий из трансурановых, 93-й элемент. Он собирался осуществить это, облучая ядра атомов урана нейтронами. Такой метод был хорошо освоен при исследовании свойств атомных ядер. Удобство его обусловлено электрической нейтральностью нейтрона. У нейтрона нет заряда, и он без помех может приближаться к ядру, несмотря на его положительный заряд. Даже если нейтрон не попадает точно в ядро, но пролетает достаточно близко к нему, то мощные ядерные силы, удерживающие внутри ядра образующие его протоны и нейтроны, затягивают нейтрон внутрь ядра. Они изгибают его траекторию даже в том случае, если прицел был неточен, а первоначальная траектория нейтрона была направлена мимо ядра.
Идея Ферми основывалась на том, что уран-238 – долгоживущий изотоп урана. Каждый из его атомов в среднем через 4,5 миллиарда лет испускает альфа-частицу (ядро атома гелия) и перестает быть ураном-238. Ферми знал, что уран-238.не подвержен бета-распаду, сопровождающемуся выделением электрона, а деление ядра и редкий вид радиоактивного распада «К-захват» были в то время еще неизвестны. Метод, предложенный Ферми для синтеза элемента, имеющего заряд ядра больший, чем у ядра урана, основан на том, что при бомбардировке ядер урана нейтронами ядро урана-238, поглотив нейтрон, не изменяет своего заряда. Значит, оно превращается в ядро урана-239 и теряет свою устойчивость по отношению к бета-распаду. Выбрасывая электрон в результате бета-распада, ядро возвращается в область бета-стабильности, но при этом заряд его ядра, а значит, и его порядковый номер увеличиваете на единицу. В соответствии с периодическим законом Менделеева элемент, заряд ядра которого увеличился на единицу по сравнению с ядром урана, должен быть расположен в периодической таблице рядом с ураном, правее его. Так, писал Ферми, мог быть синтезирован первый трансурановый элемент.
Однако, следуя предложенному плану, ни Ферми, ни его последователи не достигли цели. Лишь весной 1940 года американцы Э. Мак-Миллан (Нобелевская премия по химии в 1951 году), облучая уран-238 нейтронами, наблюдал образование первого трансуранового элемента. Вновь созданный элемент занял 93-ю клетку таблицы Менделеева. Ему присвоили наименование «нептуний» Это был нептуний-239.
Так началось сенсационное продвижение в трансурановую область таблицы Менделеева.
Здесь уместно сказать, что в 1871 году Менделеев поместил уран в VI столбец, который он начал кислородом. Непосредственно над ураном Менделеев расположил вольфрам. Радикальное изменение таблицы произвел в 1902 году профессор химии в Праге Богуслав Браунер. Он провел тщательное определение атомных весов теллура и церия, ввел нулевую группу, ввел в таблицу все открытые к тому времени элементы и расположил редкоземельные элементы в одной общей для них клетке IV столбца, рядом с клеткой, занятой лантаном. При этом он расположил уран в V столбце, под висмутом. Но это был не окончательный вариант. Последующие успехи химиков привели к дальнейшей корректировке периодической системы.
В таблице 1961 года значительно увеличившаяся группа редкоземельных элементов была перемещена в III столбец таблицы, в ее 57-ю клетку, где теперь, помимо лантана, располагаются все 14 редкоземельных элементов. Последний из них – лютеций – имеет атомный номер 71. Одновременно уран возвратился на место, указанное ему Менделеевым, и получил присущий ему номер 92. Здесь вместе с ним были помещены синтезированные к тому времени нептуний (номер 93), плутоний (номер 94) и америций (номер 95). О двух последних мы еще вспомним. Та четверка была объединена в семейство под названием «ураниды». В 89-ю клетку таблицы, под 57-й клеткой, где расположилась группа лантанидов, вместе с актинием бы-1 помещены трансурановые элементы, более тяжелые, чем америций. Это новое семейство получило название «кюриды» в честь Поля и Марии Кюри.
Модернизация не завершила эволюцию таблицы Менделеева. Более того, последовательное применение открытого им периодического закона заставило физиков соединить воедино семейства уранидов и кюридов и поместить их всех в 89-ю клетку таблицы вместе с актинием. В соответствии с названием первого члена семейства его теперь называют семейством актинидов. Оно располагается в группе таблицы, а уран, сохранив за собой номер 92, стал рядовым членом семейства актинидов, отличаясь от остальных огромным временем полураспада. Мы знаем, что половина его атомов, содержащихся в каком-либо образце, распадается только за 4,5 миллиарда лет.
Продвинуться дальше в трансурановую область тем же методом, то есть облучением тяжелых ядер нейтронами, не удалось. Слишком малы были потоки нейтронов, доступные исследователям в 1940 году. Это заставило физиков избрать другой путь, кажущийся с первого взгляда более трудным. Они решили возвратиться к первоначальному методу Резерфорда, облучавшего ядра-мишени альфа-частицами. Резерфорд успешно облучал альфа-частицами легкие ядра, имеющие сравнительно небольшой положительный заряд, не способный воспрепятствовать положительной альфа-частице приблизиться к ядру и проникнуть в него. Физики знали, что тяжелые ядра, обладающие большим положительным зарядом, не позволят приблизиться к себе альфа-частицам, вылетающим из ядер радиоактивных элементов, которыми пользовался Резерфорд и все его последователи. Но к 1930 году Эрнест Лоуренс, замечательный физик-инженер, с первым своим помощником Эдлефсеном изобрел и построил в Калифорнийском университете циклический ускоритель заряженных частиц – циклотрон. Эта машина способна разгонять заряженные частицы – протоны, дейтоны и альфа-частицы – до энергий 20–40 Мэв*.
При столь высоких энергиях такая частица способна преодолеть отталкивающие силы заряженного ядра урана и приблизиться к нему столь близко, что мощные ядерные силы втянут ее внутрь ядра.
Если энергия ускоренной частицы превышает кулоновский барьер ядра*, то этот избыток энергии входит вместе с частицей внутрь ядра и нагревает его, как нагревает мишень застрявшая в ней пуля: кинетическая энергия движения превращается в тепло. В данном случае в тепловые движения протонов и нейтронов внутри ядра-мишени.
Нагретое ядро остывает, выбрасывая один или несколько нейтронов. В результате образуется новое ядро. Если для бомбардировки применялись ускоренные дейтоны (заряд + 1), то остывшее ядро, потеряв нейтрон, сохраняет заряд на единицу больший, чем заряд ядер мишени. Так, в декабре 1940 года при бомбардировке урана дейтонами был повторно синтезирован нептуний-239 и другой изотоп, нептуний-238.
Этот изотоп подвержен бета-распаду. В результате ядро нептуния-238, практически не изменяя своей массы (масса улетевшего электрона почти в 2000 раз меньше массы протона и нейтрона), но увеличивая свой заряд на +1, превращается в новый элемент, идентифицированный 23 февраля 1941 года и названный плутонием (это плутоний-238). Он должен быть расположен в таблице Менделеева правее нептуния. Так был получен второй транс-урановый элемент, плутоний-238.
Вскоре группа в составе Эмилио Сегре, Джозефа Кеннеди, Артура Вэйля и Глена Сиборга, исследовавшая радиоактивный распад нептуния-239, обнаружила изотоп плутоний-239, его важнейший изотоп, способный к делению, аналогичному делению изотопа уран-235. Уже к 1942 году удалось изготовить 0,5 мг плутония – количество, достаточное для изучения его химических свойств. В 1944 году этот метод снова привел к успеху. Сиборг – незаурядный ученый, ставший нобелевским лауреатом, бывший некоторое время председателем атомной комиссии при конгрессе США, – и его сотрудники осуществили бомбардировку альфа-частицами ядер плутония-239. При поглощении альфа-частицы масса ядра возрастает на четыре единицы, а заряд на две. Возникшее при этом ядро остывает, испуская нейтрон. При этом масса ядра уменьшается на единицу, а его заряд остается неизменным. Так был синтезирован четвертый трансурановый элемент, который получил название «кюрий» (номер 96). Так был получен изотоп кюрий-242.
Все трансурановые элементы радиоактивны, но имеют самые разнообразные времена жизни: нептуний – около 2 суток, плутоний – 24 000 лет, америций – 500 лет, кюрий – 5 месяцев.
После пуска ядерных реакторов открылся новый путь синтеза трансурановых элементов.
Деление ядра – новый вид радиоактивных превращений, ставшее надеждой и угрозой жизни людей XX века, – было открыто в 1939 году немецкими физиками Отто Ханом и Фрицем Штрассманом при бомбардировке ядер урана нейтронами. Они обнаружили, что при такой бомбардировке возникают ядра щелочно-земельных элементов (II группа таблицы Менделеева). Вскоре Лиза Мейтнер (талантливая женщина-физик, работавшая в Институте кайзера Вильгельма в Берлине, которая одна из первых поняла возможность военного применения реакции деления, бежала накануне второй мировой войны в Голландию, а затем в Копенгаген к Бору) и ее племянник О. Фриш объяснили: при этом делятся ядра изотопа уран-235. Поглотив лишний нейтрон, они становятся неустойчивыми и распадаются примерно на две равные части. В 1940 году советские физики Г. Н. Флеров и К. А. Петржак сделали важнейшее открытие – обнаружили спонтанное (самопроизвольное) деление ядра. Начался новый этап продвижения в трансурановую кладовую природы.
Капли и реакторыФакт деления ядер урана заставил физиков глубже изучить внутреннее строение атомных ядер. Простого представления о том, что в ядре тесно связаны протоны и нейтроны, удерживаемые мощными ядерными силами, было недостаточно для того, чтобы рассчитать детали процесса деления.
Теорию деления ядер создали Бор и Дж. А. Уилер и независимо от них Я. И. Френкель. Они рассматривали ядро упрощенно, уподобив его капле несжимаемой жидкости. Электрический заряд протонов ядра стремится разрушить его. Ядерные силы удерживают частицы, входящие в ядро, аналогично тому, как молекулярные силы удерживают молекулы жидкости, образующие каплю. Это отнюдь не формальная аналогия. Молекулы жидкости, расположенные на поверхности капли, постоянно испытывают совокупную силу притяжения остальных молекул, направленную к центру капли. Но жидкость несжимаема, молекулы, находящиеся глубже, не дают внешним молекулам сдвинуться внутрь. Стремление внешних молекул следовать силе, тянущей их внутрь, уравновешивается внутренним давлением. Ситуация похожа на ту, что возникает в надутом резиновом шарике. Давление воздуха не дает резиновой оболочке сжаться. Оболочка остается напряженной действующими в ней молекулярными силами.
Это, конечно, лишь аналогия. В ядре, как и в капле жидкости, нет оболочки, состоящей из инородного вещества. Но в его поверхностном слое преобладают мощные ядерные силы, удерживающие все протоны и нейтроны внутри ядра. Это равновесное состояние может нарушиться при попадании в ядро лишнего нейтрона или протона. Капля «ядерной жидкости» начнет колебаться. Она может отдать избыток энергии, например выбросив из себя нейтрон. Невозможен и другой процесс. Колебания поверхности ядра могут оказаться столь интенсивными, что ядро примет форму гантели – двух шаров, соединенных перемычкой. Если колебания очень велики, перемычка может разорваться. Произойдет деление ядра на две части, которые под влиянием ядерных сил стремятся стянуться в две отдельные капли – в два ядра.
Обратим внимание на важное обстоятельство. Масса этих ядер не обязательно одинакова. Не одинаково может быть и распределение между ними полного количества протонов и нейтронов, входящих в исходное ядро. В соответствии с количеством протонов в каждой из частей между ними перераспределяются электроны, окружавшие исходное ядро. Возникают два, тоже не обязательно одинаковых, атома.
Ядра этих атомов обычно сохраняют избыточную энергию. Они освобождаются от нее – «остывают», например испуская по одному нейтрону. Иногда может выделиться и больше одного нейтрона.
Когда ученые осознали механизм деления ядра, некоторые из них увидели путь овладения ядерной энергией.
Возможность спонтанного деления, без участия внешних нейтронов, открывала и путь к созданию атомной бомбы. Ее следовало бы назвать ядерной бомбой, ведь при ядерной реакции выделяется энергия, заключенная в ядре> ядерная энергия. Это не энергия электронных оболочек, отдаваемая при химических реакциях, например при горении или обычном взрыве. Однако название «атомная бомба» стало привычным и общеупотребительным.
Первые оценки количества урана, способного самопроизвольно положить начало реакции деления его ядер, сделали Я. Б. Зельдович и Ю. Б. Харитон, два выдающихся советских физика. Они подсчитали: вероятность спонтанного деления ядер урана-235 очень мала. Но при каждом акте деления высвобождается (в среднем) более двух нейтронов. Попав в ядро соседнего атома урана-235, каждый из них практически мгновенно вызовет деление этого ядра и высвободит еще два или больше нейтронов. Так развивается цепная ядерная реакция, ядерный взрыв. Зельдович и Харитон правильно оценили, какой должна быть масса урана-235 для «запуска» цепной реакции, для взрыва бомбы.
В ядерных реакторах, применяемых для получения ядерной энергии в мирных целях, принимаются меры к тому, чтобы не дать цепной реакции деления ядер перейти во взрыв. Для этого специальная система управления поглощает часть нейтронов. Достигнув определенной величины, скорость ядерных реакций более не возрастает.
Внутри реактора бушует первозданная стихия: рождается огромное количество нейтронов и тут же поглощается соседними ядрами и системой управления. Когда ученые достаточно глубоко осмыслили характер этих процессов, они поняли: это подходящий котел для «варки» трансурановых элементов! При этих условиях может успешно реализовываться предложенный Ферми метод получения тяжелых элементов. Первый шаг здесь – выделение и накопление изотопа плутоний-239. Второй – использование этого изотопа для накопления более тяжелых трансурановых элементов.
Эксперимент был осуществлен. Он происходит следующим образом. Внутрь ядерного реактора, туда, где через каждый квадратный сантиметр любой поверхности пролетает миллион миллиардов нейтронов, помещают образец плутония-239. Каждое ядро плутония-239, поглотив один нейтрон, превращается в ядро плутония-240. Оно может избавиться от полученной при этом избыточной энергии двумя путями. 70 % ядер испытывают процесс деления, порождающий два ядра. Эти ядра образуют в свою очередь два атома, принадлежащие к средней области таблицы Менделеева. 30 % ядер плутония-240, не успевая претерпеть деление, поглощают еще один нейтрон, превращаясь в ядро плутония-241. Дальше процесс опять может развиваться двумя путями: 20 % от первоначального количества ядер плутония-241 испытывают деление, а 10 % поглощают еще один нейтрон, превращаясь в плутоний-242. Вероятность деления этих ядер очень мала. Все они поглощают еще один нейтрон, превращаясь в плутоний-243. Это ядро испускает электрон. Ученые говорят, ядро неустойчиво относительно бета-распада. И, увеличив при этом свой заряд на единицу, переходит направо, в соседнюю клетку периодической системы. В данном случае оно располагается на пустом месте между плутонием и кюрием. Новое ядро, окружив себя электронами, становится атомом, получившим название «америций». Это изотоп америций-243.
Мы должны остановиться, для того чтобы ответить на вопрос внимательного читателя: каким образом ядро, состоящее из протонов и нейтронов, может испустить электрон?
Это законный вопрос. Он не может остаться без ответа. Действительно, мы уже знаем, что внутри атомных ядер не существует свободных электронов.
Ответ таков: нейтрон не является стабильной частицей. В свободном состоянии он, под влиянием внутренних процессов, распадается, порождая протон, электрон и антинейтрино. Слово «порождает» имеет здесь точный смысл. Нейтрон не содержит в себе этих трех частиц. Они возникают при его распаде примерно через 15 минут после того, как нейтрон становится свободным от внешних воздействий.
Внутри большинства ядер нейтрон приобретает стабильность. В них он может существовать вечно. Но в некоторых ядрах нейтрон получает возможность распасться. При этом внутри ядра остается новорожденный протон, а наружу вылетают электрон и антинейтрино. Это и есть процесс бета-распада ядра. В результате масса ядра почти не изменяется (масса улетевших частиц очень мала), а заряд ядра увеличивается на единицу. Значит, оно, пополнив свою электронную оболочку одним электроном, переносится в таблице Менделеева на одну клетку вправо.
Возвратимся теперь к ядру америция-243.
Рассматриваемый нами процесс не заканчивается на образовании америция-243. Поглотив один нейтрон, америций-243 превращается в кюрий-244, изотоп ранее синтезированного кюрия-242. Для кюрия-244 главным способом распада оказывается деление. 8,5 % от первоначальных ядер испытывают деление, а 1,5 % успевают поглотить два нейтрона, превращаясь в изотоп кюрий-246. И снова две возможности: 0,8 % от первоначальных ядер, ставшие изотопом кюрий-246, испытывают деление, а 0,7 % из них поглощают по два нейтрона, превращаясь в кюрий-248. Теперь ядро кюрия-248 поглощает лишь один нейтрон, образуется кюрий-249. Но прежде чем оно успевает поглотить второй нейтрон, происходит бета-распад – испускание электрона. Тем самым ядро приобретает добавочный положительный заряд и превращается в ядро следующего, пятого трансуранового элемента, названного берклием. Так рождается изотоп берклий-249.
Увлекательная «игра» в сотворение новых, невиданных элементов привлекла многих физиков. Но для того чтобы продвинуться таким путем дальше, потребовалось увеличить плотность потока нейтронов, воздействующего на образец, еще в десять миллионов раз! Мера, необходимая потому, что ядра тяжелых трансурановых элементов, следующих за берклием, при меньших плотностях потоков нейтронов разрушаются раньше, чем успевают поглотить еще один нейтрон.
При увеличении плотности потока нейтронов ядра берклия-249 успевают поглотить по одному нейтрону и, «перепев» бета-распадом, потеряв электрон, превращаются в ядра нового трансуранового элемента, получившего наименование «калифорний». При этом получается калифорний-250. Его ядра испытывают процесс спонтанного деления. Те ядра калифорния-250, которые, не успев претерпеть деление, поглощают два нейтрона, превращаются в изотоп калифорний-252. Их оказывается всего 0,3 % от исходного количества плутония-239, если он облучался потоком нейтронов плотностью в 10 нейтронов через квадратный сантиметр в секунду.
Этим методом удалось получить 99-й трансурановый элемент эйнштейний и 100-й трансурановый элемент фермий-258. Дальше продвинуться не удалось – изотоп фермия делился спонтанно чрезвычайно быстро.
Еще большие плотности потоков нейтронов возникают при термоядерных взрывах. В 1953 году в США при термоядерном взрыве был пройден своеобразный рубеж – создан элемент фермий, который образовался из ядер урана-238. Некоторые из таких ядер поглотили одновременно по 17 нейтронов! При этом образовались неустойчивые ядра урана-255, которые испытали цепочку из последовательных семнадцати бета-распадов, что и привело к образованию изотопа фермий-255.
Ученые продолжили исследования с применением термоядерных взрывов. Они смогли увеличить плотность потока нейтронов еще в сто раз. Однако новых трансурановых элементов получить не удалось. Наградой за усилия был лишь еще один изотоп сотого элемента – фермий-257, образовавшийся из ядер урана-238 при одновременном поглощении ими по 19 нейтронов.
Причиной, ограничившей возможности дальнейшего продвижения методом термоядерных взрывов, является малое время жизни тяжелых изотопов в области урана – фермия. Эти изотопы разрушаются вследствие спонтанного деления, прежде чем успевают подвергнуться бета-распаду. Возможности этого метода ограничиваются и другой причиной. Вероятность поглощения ядром урана одновременно многих нейтронов резко уменьшается и становится ничтожной для числа, превышающего 19.
Путь вверх – от 100-го элемента к 101-му – потребовал усовершенствования метода облучения тяжелых ядер ускоренными заряженными частицами. Оказалась необходимой и разработка более совершенных методов опознания – идентификации новых элементов.
И все-таки в 1955 году был получен 101-й элемент. Его назвали менделевием. Многозначительная деталь: он был получен в США, но назван в честь русского химика Менделеева.
О том, сколь быстро возрастают трудности получения и опознания элементов за порогом 100-го элемента, можно судить по следующим примерам. При синтезе калифорния в 1950 году в распоряжении исследователей было 0,5 миллиардной части от миллиардной доли грамма эйнштейния-253. Столь маленькое количество ядер-мишеней привело к тому, что при облучении альфа-частицами в течение часа образовывался лишь один атом менделевия-256! Сначала получались возбужденные ядра менделевия-257, потом они «остывали», выделялся нейтрон, что приводило к менделевию-256.
Таким путем – в течение длительного облучения – было синтезировано всего 17 атомов нового элемента. Но Ученые все же смогли надежно определить, что они действительно принадлежали 101-му элементу.
Существенным достижением, полученным путем бомбардировки мишени ускоренными альфа-частицами, стал синтез наиболее долгоживущего, тяжелого изотопа менделевий-258. Время его жизни, определяемое временем, в течение которого распадается половина из наличных Томов, равняется двум месяцам. В этих опытах мишенью были ядра эйнштейния-255. После поглощения альфа-альфа-частицывозникало ядро менделевия-259, которое, остывая, выделяло один нейтрон и превращалось в ядро менделевия-258.
Начиная со 102-го элемента трудности накопления и тем более идентификации усугубились малым временем жизни новых атомов. Обычные химические методы опознания оказались при этом непригодными. Они занимали слишком много времени.








