Текст книги "Предчувствия и свершения. Книга 3. Единство"
Автор книги: Ирина Радунская
Жанр:
Физика
сообщить о нарушении
Текущая страница: 5 (всего у книги 24 страниц)
Физики не могут остановиться на пути познания природы. Они хотят знать, как возникают ядерные силы, почему они именно таковы, какими мы их видим в различных экспериментах.
Так продолжается последовательное углубление внутрь атома, начатое Менделеевым.
Здесь уже нет места для того, чтобы следовать за учеными в глубины нуклонов. Отложим это на дальнейшее. Но чтобы у читателя не возникло чувство неудовлетворенности, сделаем краткое предварительное описание того, к чему ученые пришли за последнее время.
Оказалось, что нуклоны, то есть протоны и нейтроны, не являются воистину элементарными частицами. Они состоят или, вернее, образованы из более элементарных частиц, название которых – кварки. Известно, что в природе существуют шесть различных кварков. Более того, они (каждый из них) могут находиться в различных состояниях. Между кварками действуют мощнейшие силы, удерживающие их внутри нуклонов и внутри других родственных частиц, составляющих вместе с нуклонами целое семейство, имеющее общее название – адроны.
Взаимодействие между кварками называется сильным взаимодействием. Оно, подобно ядерным силам, реализуется путем обмена особыми частицами, переносчиками сильного взаимодействия. Эти частицы названы глюонами (от английского «глю» – «клей»). Они как бы склеивают кварки, образуя таким путем протоны, нейтроны и другие адроны.
Теперь осталось узнать немногое. Необходимо понять, существует ли связь между сильными взаимодействиями и ядерными силами?
Эта задача еще не решена. Это дело будущего. Но уже сейчас ученые работают, следуя по многообещающему пути – пути аналогий. Проследим за ходом их мыслей.
Атом образован за счет электростатических сил, действующих между ядром и электронными оболочками. В нормальном состоянии атом нейтрален. Это значит, что положительный заряд ядра скомпенсирован суммой отрицательных зарядов электронов так хорошо, что издали невозможно обнаружить присутствие в атоме заряженных частиц. Мы знаем, что они есть, что ядро и электроны заряжены. Нужно лишь сделать еще шаг. Нужно изучить свойства атомов, наблюдая их с близкого расстояния. При этом, конечно, картина изменится.
Здесь физика призывает на помощь химию, можно сказать – физика порождает химию. Даже нейтральные атомы (если это не атомы инертных газов с их замкнутыми внешними электронными оболочками) взаимодействуют между собой так, чтобы обеспечить еще более полную компенсацию электрических зарядов и спинов электронов. Так, в результате взаимодействия электронов двух или нескольких атомов образуются молекулы, еще более скомпенсированные, еще более нейтральные структуры. Но и здесь компенсация оказывается не идеальной. Если две молекулы сближаются между собой очень тесно, то они «чувствуют», что их электрические поля или силы скомпенсированы не полностью. Остатки этих сил притягивают молекулы так сильно, что они объединяются в большие коллективы.
Если температура не слишком велика, объединение продолжается. Молекулы газов, не чувствующие друг друга на расстоянии, взаимодействующие в газах только при случайных соударениях, при понижении температуры образуют жидкость, а при еще более низких температурах – твердые тела. Тепловое движение оставляет молекулам, входящим в состав жидкостей и твердых тел, какую-то долю независимости. В жидкостях они могут перемещаться и вращаться, в твердых телах они способны колебаться относительно положений своего равновесия, относительно своих соседей. Те из них, что находятся на поверхности, могут даже оторваться от коллектива – испариться.
Но если охлаждение происходит медленно, то из жидкости возникают кристаллы. Оказывается, что и за пределы молекул выходят достаточно сильные остатки их внутренних электрических полей. Полей, которые скомпенсировались при образовании атомов и еще полнее скомпенсировались при образовании молекул. Теперь компенсируются остатки, выходящие за пределы молекул. Они заставляют молекулы выстраиваться в регулярные структуры, образующие кристаллы. Во многих отношениях кристалл ведет себя как огромная молекула, состоящая из большого количества однотипных молекул или ионов.
Опираясь на нашу аналогию, обратимся снова к кваркам. Нечто подобное происходит и в тех глубинах материального мира, где действуют кварки и глюоны.
Под влиянием сильного взаимодействия вполне определенные комбинации кварков и глюонов образуют все известные ядерные частицы – протоны, нейтроны и остальные адроны. При этом кварки обмениваются глюонами аналогично тому, как протоны и нейтроны, обмениваясь пионами, образуют ядра атомов. В ходе такого обмена сильные взаимодействия в существенной мере компенсируются. Их невозможно обнаружить на большом расстоянии от нуклона. Ядерные силы являются нескомпенсированным остатком сильных взаимодействий. На близких расстояниях ядерные силы, эти остатки сильных взаимодействий, много сильнее сил электрического отталкивания. Поэтому они удерживают протоны и нейтроны внутри ядер. Они могут привести и к слиянию ядер, если эти ядра окажутся на достаточно близком расстоянии. Например, при сближении ядер-снарядов с ядрами-мишени.
То, что изложено здесь, это картина, набросанная на основе аналогий. Ученые создают при помощи этой грубой модели все более точные модели, которые рано или поздно превратятся в математические модели и уравнения. Решение этих уравнений позволит объяснить структуру ядер, Порядок перехода от одночастичного ядра атома водорода – протона – к двухчастичному (протон плюс нейтрон) ядру атома дейтерия – дейтону, к трехчастичному (протон плюс два нейтрона) ядру атома трития – тритону или ядру гелия-3, содержащему два протона и один нейтрон, и так далее, к урану и трансурановым элементам.
Когда такая математическая модель будет построена и соответствующие уравнения будут решены, полученные решения позволят наконец понять, почему ядра образуются такими, какими мы их видим в соответствии с таблицей Менделеева. Мы ответим на вопрос: где предел этой таблицы? Мы будем знать, какие трансурановые элементы еще можно синтезировать. Действительно ли существует остров или острова стабильности и, если они существуют, то как следует до них добираться?..
Мы рассказали только начало истории познания строения материи. Мы оттолкнулись только от одного удивительного предчувствия – прозрения гениального русского химика Менделеева. Эта история продолжается, она вовлекает в сферу своих интересов все новые разумы, она вдохновляет на научные свершения юных – за ними следующее слово, за ними новые предчувствия и свершения.
ГЛАВА 2
ЯЗЫК МОЛЕКУЛ
Национальной науки нет, как нет национальной таблицы умножения.
А. П. Чехов
Цвет неба
Объяснить происхождение цвета неба старались уже средневековые ученые. Некоторые из них предполагали, что синий цвет есть истинный цвет воздуха или отдельных его частей. Другие считали, что настоящий цвет неба черный, такой, каким он кажется ночью. Они утверждали, что голубая окраска, видимая днем, есть результат смешения белого цвета солнечных лучей и черного межзвездного пространства.
Этим вопросом заинтересовался и великий английский ученый Исаак Ньютон. Он сразу отверг предшествующие теории. Проводя многочисленные опыты со смешением цветов, Ньютон убедился в том, что смесь белого и черного цвета никогда не образует голубого. Наблюдения заставили его отбросить и предположение о том, что синий цвет есть истинный цвет воздуха. Ведь в этом случае Солнце и Луна на восходе и закате должны казаться не красными, как это есть в действительности, а голубыми. Такими выглядели бы и вершины отдаленных снежных гор. Если бы воздух был окрашен даже очень слабо, то толстый слой его по своим свойствам был бы таким же, как окрашенное стекло. Но если смотреть сквозь окрашенное стекло, то все предметы кажутся такого же цвета, как это стекло. Однако отдаленные снежные вершины представляются нам розоватыми, а вовсе не голубыми.
Ньютон предположил, что голубая окраска неба и обыкновенная радуга вызываются одними и теми же причинами. Он считал, что это результат особого рассеивания света на мелких водяных пузырьках, которые, по его мнению, всегда присутствуют в воздухе.
Радуга действительно образуется при прохождении солнечных лучей через рои дождевых капель. Свет Солнца входит в каплю, преломляясь на ее поверхности, отражается от ее задней границы и вновь преломляется, выходя из капли. При этом белый свет, излучаемый Солнцем, распадается на составляющие его цвета. Каждый из них распространяется в определенном направлении. Семь цветов радуги кажутся исходящими из узких дугообразных участков небосвода. При этом Солнце находится за спиной наблюдателя.
Но гипотеза Ньютона о происхождении голубого цвета неба теперь кажется нам очень странной. Известно, что в ясную погоду, когда небо сияет особой голубизной, в нем нет водяных капель. Однако в то время считалось, что водяные пары собираются в воздухе в виде маленьких пузырьков, напоминающих мельчайшие мыльные пузыри. Ньютон, как и другие ученые того времени, думал, что эти пузырьки в течение длительного времени плавают в воздухе.
Много позже идею Ньютона опровергли метеорологи. Наблюдения и измерения доказали, что водяных пузырьков, присутствием которых Ньютон объяснял окраску неба, в действительности не существует.
В таком состоянии находился вопрос о голубом цвете неба, когда за его разрешение взялся английский физик Релей.
Пылинки вместо пузырьковРелей занимался оптикой, а люди, посвятившие свою жизнь науке о свете – оптике, много времени проводят в темноте. Посторонний свет мешает оптическим исследованиям, поэтому окна оптической лаборатории почти всегда затянуты черными светонепроницаемыми шторами.
Человеку, впервые входящему в оптическую лабораторию, прежде всего бросаются в глаза пучки света, вырывающиеся из приборов. Эти пучки четко видны в окружающей тьме. Они наглядно подтверждают, что свет распространяется прямолинейно.
Однако для того чтобы убедиться в прямолинейности распространения света, не обязательно заходить в оптическую лабораторию. То же самое можно увидеть в солнечный день в любой затемненной комнате. Через щели ставней или занавесей пробиваются яркие солнечные лучи, пересекающие комнату и падающие на стены или на пол.
Прямолинейность распространения света стала известной людям в глубокой древности именно из таких простейших наблюдений. Можно считать твердо установленным, что свет в пустоте распространяется по прямой линии.
Но как согласовать с прямолинейным распространением света тот факт, что мы видим световые лучи, глядя на них сбоку? Ведь солнечный свет в темной комнате идет от щели в ставне к полу. Наш глаз расположен в стороне от его пути, и, тем не менее мы видим этот свет. Мы видим и столб света от прожектора, направленного в небо. Значит, часть света отклоняется от прямолинейного пути и распространяется в стороны, попадая в наши глаза.
Присмотревшись, легко обнаружить множество пылинок, непрерывно кружащихся на пути световых лучей. Некоторые из них сравнительно велики. Большинство же имеет очень малые размеры. Все они ярко освещены и поэтому выделяются на темном фоне. В наш глаз попадают лучи, рассеиваемые пылинками, лучи, которые, встречая препятствия, поворачивают свой путь и распространяются по прямой от рассеивающей пылинки к нашему глазу. Возможно, что вид пылинок, танцующих в световом луче, послужил Релею исходной точкой для построения новой теории происхождения окраски неба.
В 1871 году Релей высказал предположение, что голубой цвет неба вызван рассеянием солнечных лучей на малых частицах, плавающих в воздухе. Рассеяние света малыми частицами было открыто еще в 1851 году физиком-экспериментатором Е. Брюкке. Математический расчет показал Релею, что маленькие частицы, плотность которых отличается от плотности воздуха, рассеивают свет тем сильнее, чем короче длина волны света. Поэтому интенсивность рассеянного света чрезвычайно быстро возрастает с уменьшением длины волны. Если размеры пылинки меньше, чем длина световой волны, то при уменьшении длины волны света в 2 раза интенсивность рассеянного света возрастает в 16 раз.
Длина волны фиолетового света примерно вдвое меньше, чем длина волны красного света, – значит, фиолетовые лучи рассеиваются в 16 раз сильнее, чем красные. Вот объяснение голубого цвета неба, красных зорь и голубой дымки!
На восходе и закате, когда солнечные лучи проходят через наибольшую толщу воздуха, фиолетовые и синие лучи, говорит теория Релея, рассеиваются наиболее сильно. При этом они отклоняются от прямого пути и не попадают в глаза наблюдателю. Наблюдатель видит главным образом красные лучи, которые рассеиваются гораздо слабее. Поэтому на восходе и закате Солнце кажется нам красным. По этой же причине кажутся розовыми и вершины отдаленных снежных гор. Глядя на чистое небо, мы видим сине-голубые лучи – коротковолновую часть солнечного света, – отклоняющиеся от прямолинейного пути вследствие рассеяния и попадающие в наши глаза. Голубая дымка, которую мы иногда видим у горизонта, тоже является результатом преимущественного рассеяния коротковолнового света.
Релей показал, что появление в воздухе частиц, размеры которых превосходят длину волны света, ослабляет голубой цвет неба. Рассеяние света на крупных частицах слабее зависит от длины волны и поэтому не вызывает изменения его окраски. При рассеянии света на крупных частицах как рассеянный, так и прошедший свет остается белым. Поэтому появление в воздухе крупных частиц сообщает небу белесый цвет, а скопление большого количества мелких капелек обусловливает белый цвет облаков и тумана.
Мельчайшие частицы дыма, поднимающиеся над концом горящей папиросы, имеют размеры меньшие, чем длина световой волны, и, в соответствии с теорией Релея, рассеивают преимущественно фиолетовый и синий свет. Но при прохождении через узкие каналы в толще табака частицы дыма склеиваются между собой (коагулируют), объединяясь в более крупные комочки. Размеры многих из них становятся больше, чем длина волны видимого света, и они рассеивают все волны света примерно одинаково. Именно поэтому дым, выходящий из мундштука папиросы, Кажется белесым.
Первоначальная теория Релея еще основывалась на отвергнутом впоследствии представлении об упругом светоносном эфире. В 1899 году он сформулировал задачу о голубом цвете неба применительно к электромагнитной теории света и решил ее с такой полнотой, что она лежит в основе всех современных представлений о рассеянии света малыми частицами.
Но, зная из опыта, что голубой цвет неба тем более чист и ярок, чем чище атмосфера, Релей пришел к заключению, что окраска неба обусловлена не загрязнениями, а самими молекулами воздуха. Молекулы воздуха – вот те мельчайшие неоднородности, которые рассеивают свет Солнца. А так как молекулы очень малы, то они рассеивают волны фиолетового и голубого света гораздо сильнее, чем все остальные. Эта теория, построенная для одиночных молекул, могла быть применена к газу, только если он очень разрежен, то есть его молекулы расположены так далеко одна от другой, что они рассеивают свет совершенно независимо. Но в действительности в каждом кубическом сантиметре воздуха так много молекул и они расположены так близко одна к другой, что световые волны, рассеянные в стороны отдельными молекулами, должны полностью гасить друг друга. В соответствии с расчетом должна оставаться только волна, бегущая вперед без всякого рассеяния. Но этот расчет, опровергающий теорию Релея, в свою очередь имел слабое место: он был проведен лишь для неподвижных молекул. В случае движущихся молекул, как казалось Релею, все должно быть иначе. Он был убежден, что неизбежные тепловые движения молекул препятствуют взаимному гашению рассеянных волн. Поэтому Релей думал, что голубой цвет неба все же может быть объяснен рассеянием света на молекулах.
Впоследствии мы еще вернемся к этому вопросу. Сейчас для нас важно лишь то, что релеевская теория рассеяния света молекулами связала яркость свечения неба с числом молекул, содержащихся в каждом кубическом сантиметре воздуха. Это дало возможность проверить правильность теории на опыте. Впервые такой опыт выполнил в 1906 году американский астрофизик Аббо, изучавший голубое свечение неба в обсерватории на горе Маунт-Вильсон. Обработка результатов измерения яркости свечения неба показала, что в каждом кубическом сантиметре содержится огромное количество молекул. Полученное число обычно записывают так: 27 1018 (после числа 27 следует приписать 18 нулей). Это значит, что в каждом кубическом сантиметре воздуха содержится 27 миллиардов раз по миллиарду молекул. Если раздать молекулы, содержащиеся в одном кубическом сантиметре воздуха, всем людям, населяющим земной шар, то каждому достанется по 5 с лишним миллиардов этих молекул.
Впоследствии аналогичные измерения неоднократно с успехом повторялись другими учеными. Полученный результат был чрезвычайно важным. Дело в том, что количество молекул в кубическом сантиметре газа можно измерять по крайней мере двумя десятками разных способов на основе совершенно различных и независимых между собой явлений. Все они приводят к близко совпадающим результатам и дают число, называемое числом Лошмидта. Оно с большой точностью совпадает с числом, полученным при измерении свечения неба. Таким образом, измерения показали, что молекулярное рассеяние света действительно существует.
Казалось, теория Релея была надежно подтверждена опытом; все ученые считали ее безупречной. Она стала общепризнанной и вошла во все учебники оптики.
Тем более удивительно, что в 1907 году на страницах известного научного журнала вновь был поставлен вопрос: почему же небо голубое?
Тайна природы раскрытаЧеловеком, указавшим на недостаточность общепризнанной теории, был замечательный русский ученый Леонид Исаакович Мандельштам.
Вот как охарактеризовал Л. И. Мандельштама академик С. И. Вавилов:
«Природа одарила Леонида Исааковича совсем необычным прозорливым тонким умом, сразу замечавшим и понимавшим то главное, мимо чего равнодушно проходило большинство. Так была понята флуктуационная сущность рассеяния света, так появилась идея об изменении спектра при рассеянии света, ставшая основой открытия комбинационного рассеяния».
История раскрытия тайны голубого цвета неба прекрасно иллюстрирует слова академика С. И. Вавилова.
Мандельштам обнаружил принципиальную трудность в самой основе теории Релея. Он показал, что простой факт движения молекул не может воспрепятствовать взаимному гашению световых волн, рассеиваемых в стороны отдельными молекулами. Дело в том, что если газ однороден и плотность его достаточно высока, то движение молекул не изменяет средней плотности газа. Оно ведет лишь к замене одних молекул другими, а так как молекулы одинаковы, то такая замена не приводит ни к какой существенной разнице. В этих условиях движущиеся молекулы рассеивают свет так же, как неподвижные, а значит, волны света, рассеянного отдельными молекулами, будут погашены в результате их взаимодействия.
Проще всего уяснить себе суть дела на примере волн на поверхности воды. Если волна встречается с неподвижными или плавающими предметами (сваи, бревна, лодки и т. п.), то во все стороны от этих предметов разбегаются мелкие волны. Это есть не что иное, как рассеяние. Часть энергии падающей волны расходуется на возбуждение вторичных волн, которые вполне аналогичны рассеянному свету в оптике. При этом первоначальная волна ослабляется – она затухает.
Плавающие предметы могут быть намного меньше, чем длина волны, бегущей по воде. Даже мелкие зерна будут вызывать вторичные волны. Конечно, по мере уменьшения размеров частиц образуемые ими вторичные волны ослабевают, но они все же будут забирать энергию основной волны.
Примерно так представлял себе процесс ослабления световой волны при прохождении ее через газ Планк, но роль зерен у него играли молекулы газа.
Процесс рассеяния света, несомненно, гораздо сложнее, чем рассеяние волн на воде, – ведь свет это не механические волны, а электромагнитные колебания, – но наблюдение над обычными волнами помогает уяснить законы оптики.
Планк поставил своей целью с помощью математического расчета объяснить причину ослабления света при прохождении его через оптически однородное вещество, то есть через вещество, не обладающее мутностью. Для этого он построил теорию, в которой принималось за основу, что сами молекулы вещества, через которое проходит свет, являются источниками вторичных волн. На создание этих вторичных волн, утверждал он, тратится часть энергии проходящей волны, которая при этом ослабляется. Мы видим, что эта теория основывается на релеевской теории молекулярного рассеяния и опирается на ее авторитет. Этой работой Планка заинтересовался Мандельштам.
Ход мыслей Мандельштама также можно пояснить с помощью примера волн на поверхности воды. Нужно лишь рассмотреть его более внимательно. Уже указывалось, что даже мелкие зерна, плавающие на поверхности воды, являются источниками вторичных волн. Но что будет, если насыпать эти зерна так густо, что они покроют всю поверхность воды? Тогда окажется, что отдельные вторичные волны, вызванные многочисленными зернами, будут складываться так, что они полностью погасят те части волн, которые бегут в стороны и назад, и рассеяние прекратится. Останется лишь волна, бегущая вперед. Она побежит вперед, совершенно не ослабляясь. Единственным результатом присутствия всей массы зерен окажется некоторое уменьшение скорости распространения первичной волны. Особенно важно, что все это не зависит от того, неподвижны ли зерна или они движутся по поверхности воды.
Мандельштам произвел математический расчет для случая, когда число молекул в воздухе так велико, что даже на таком маленьком участке, как длина световой волны, содержится очень большое число молекул. Оказалось, что при этом вторичные световые волны, возбуждаемые отдельными молекулами, складываются так же, как волны в примере с зернами на поверхности воды. Значит, в этом случае световая волна распространяется без рассеяния и ослабления, но с несколько меньшей скоростью. Это опровергало теорию Релея, считавшего, что движение рассеивающих частиц во всех случаях обеспечивает рассеяние волн и основанную на ней теорию Планка.
Так под фундаментом теории рассеяния был обнаружен песок. Все величественное здание заколебалось и грозило рухнуть.
Но как обстоит дело с определением числа Лошмидта из измерений голубого свечения неба? Ведь этот опыт подтверждал релеевскую теорию рассеяния?
«Это совпадение должно рассматриваться как случайное», – писал Мандельштам в своей работе «Об оптически однородных и мутных средах».
Мандельштам показал, что беспорядочное движение молекул не может сделать газ однородным. Наоборот, в реальном газе всегда имеются мельчайшие разрежения и уплотнения, образующиеся в результате хаотического теплового движения. Вот они-то и объясняют рассеяние света. В той же работе Мандельштам писал: «Если среда оптически неоднородна, то, вообще говоря, падающий свет будет рассеиваться и в стороны».
Что же является причиной этой оптической неоднородности?
Для того чтобы ответить на вопрос, снова вспомним, что молекулы всех веществ не неподвижны. Даже если в веществе не происходит видимых движений, его молекулы непрерывно движутся. Это движение молекул называется тепловым движением, так как оно вызывает у нас ощущение тепла. Чем сильнее движутся молекулы вещества, тем более теплым оно нам кажется.
В газах и жидкостях молекулы не закреплены в определенных местах пространства, как это имеет место в твердых телах. Поэтому молекулы беспорядочно перемещаются, сталкиваясь друг с другом и описывая причудливые зигзагообразные линии. Беспорядочный характер этого движения приводит к тому, что в различных местах пространства на короткое время скапливается больше молекул, чем в других. Однако эти уплотнения быстро рассеиваются, возникая в других местах. Так же беспорядочно возникают и небольшие кратковременные разрежения.
Большая заслуга Мандельштама заключается в том, что он доказал, что предположение об однородности газа несовместимо с фактом рассеяния в нем света. Он понял, что голубой цвет неба доказывает, что однородность газов только кажущаяся. Это значит, что газы однородны только при исследовании грубыми приборами, такими, как барометр, весы или другие приборы, на которые воздействуют сразу многие миллиарды молекул. Но световой луч ощущает несравнимо меньшее количество молекул, измеряемое лишь десятками тысяч. И этого достаточно, чтобы бесспорно установить, что плотность газа непрерывно подвергается маленьким местным изменениям. Поэтому однородная, с нашей «грубой» точки зрения, среда в действительности неоднородна. С точки зрения света она кажется мутной и поэтому рассеивает свет.
Так была окончательно объяснена причина голубого цвета неба.
Случайные местные изменения свойств вещества, образующиеся в результате теплового движения молекул, теперь носят название флуктуации. Выяснив флуктуационное происхождение молекулярного рассеяния света, Мандельштам проложил дорогу новому методу исследования вещества – флуктуационному, или статистическому, методу, впоследствии развитому Смолуховским, Лорентцом, Эйнштейном и им самим в новый крупный отдел физики – статистическую физику.
Казалось бы, что может быть связано между собой меньше, чем обыкновенный камертон и теория рассеяния света?
Сейчас мы расскажем о прекрасном опыте с камертоном, который придумал и показывал на своих лекциях Мандельштам.
Этот опыт предназначен для демонстрации явления модуляции. Модуляцией называется медленное воздействие на колебательный процесс. Простейшим примером модуляции является периодическое изменение силы звука.
Вот как ставится этот опыт. Берут два одинаковых камертона, дающих одинаковый тон, скажем соответствующий частоте колебаний 500 периодов в секунду. Кроме этих камертонов, берут еще два: один – дающий звук с частотой 497 периодов в секунду и другой – с частотой в 503 периода в секунду.
Если ударить по камертону, дающему тон 500 периодов в секунду, и затем заглушить его рукой, можно услышать тихий звук, издаваемый вторым таким же камертоном. Это есть явление резонанса. Камертон приводится в заметное колебание тем звуком, который он способен испускать. Два других камертона, частоты которых различаются от частоты звука всего на три периода в секунду, не будут звучать и не обнаружат заметных колебаний. Это характеризует остроту, с которой камертоны отличают даже столь близкие между собой колебания.
Видоизменим опыт. Попробуем теперь заставить звучать тот же камертон, изменяя силу его звука в 3 раза в секунду. Для этого достаточно 3 раза в секунду помещать заслонку перед его резонансным ящиком. Слушатели отчетливо воспримут изменение силы доходящего до них звука. Однако, заглушив после этого камертон, можно убедиться в том, что теперь возбудились и начали звучать также те камертоны, которые в первом случае оставались в покое. Частоты их отличаются от частоты первого камертона на 3 периода в секунду.
Итак, опыт показывает, что, модулируя звук, то есть изменяя его силу, можно добиться возбуждения камертонов, частота которых отличается от частоты возбуждающего камертона как раз на частоту модуляции. Следовательно, в звуке, издаваемом модулированным камертоном, кроме его собственной частоты, появляются новые частоты, порожденные модуляцией.








