412 000 произведений, 108 200 авторов.

Электронная библиотека книг » Ирина Радунская » Предчувствия и свершения. Книга 3. Единство » Текст книги (страница 10)
Предчувствия и свершения. Книга 3. Единство
  • Текст добавлен: 26 июня 2025, 05:17

Текст книги "Предчувствия и свершения. Книга 3. Единство"


Автор книги: Ирина Радунская


Жанр:

   

Физика


сообщить о нарушении

Текущая страница: 10 (всего у книги 24 страниц)

Бочка для микрочастиц

Но даже после того как теоретики свели концы с концами, увязали эксперимент с теорией, когда новое открытие было единодушно принято в лоно науки, Черенков продолжал работать в прежнем направлении.

Он понимал, что работа с новым видом излучения только начинается.

То, что наблюдал Черенков, было знакомством лишь со свечением частиц одного типа – электронов. Но, кроме электронов – отрицательно заряженных частиц, наука знает много частиц, обладающих электрическим зарядом. Это лептоны и мезоны, протоны – ядра атомов водорода и ядра более тяжелых элементов.

Исследователю не терпелось поставить и их на место электронов. Он предчувствовал, что и положительно заряженные частицы вещества, если их скорости достаточно велика, тоже способны сигналить светом. А если это так, в этом столько практических возможностей, что…

И вот однажды – это было уже после Отечественной войны (война надолго прервала исследования) – сотрудники Черепкова взяли стеклянный сосуд, налили в него жидкость, а затем закупорили.

Потом отправились к ускорителю заряженных частиц. Там они поставили сосуд на пути потока протонов, рождающихся в ускорителе, и стали наблюдать. В сосуде вспыхнуло слабое сияние. Ученые усилили поток. Сияние стало ярче. Тогда они тщательно измерили силу свечения и угол, под которым было видно излучение, и, вынув блокноты, начали делать какие-то расчеты.

Работающие на ускорителе с интересом наблюдали за ними. Через некоторое время приезжие точно назвали величину скорости и энергии протонов. Они сделали это гораздо быстрее, чем делалось на ускорителе раньше, и всего лишь с помощью одного сосуда. А ошиблись при этом меньше чем на 0,1 процента. Приезжие уверяли, что таким же способом они могут измерить и скорость других заряженных частиц!

Объясняя действие прибора, они напомнили о волнах, разбегающихся по воде от движущегося катера. И утверждали, что, если бы на катере вышли из строя обычные приборы для измерения скорости, капитан смог бы определить его скорость, измеряя угол, под которым расходятся крылья носовой волны.

Вы наверное, уже догадались, что в сосуде с жидкостью образуется черенковское излучение, которое и могло ученым определить скорость и энергию протонов. Сосуд назвали счетчиком Черепкова и включили в список важнейших физических приборов.

Заметим, что к этому времени работа со счетчиками Черенкова упростилась еще больше. Появились фотоумножители, приборы, очень чувствительные к свету, улавливающие даже порции из нескольких световых квантов. Чтобы наблюдать черенковское излучение, ученым теперь не приходится часами сидеть в темноте. Специальные электронные приборы автоматически ведут подсчет фотонов черенковского излучения, замечая и то, чего не мог заметить самый натренированный глаз.

Счетчики Черенкова прогремели на весь мир. Ими был оборудован один из крупных американских ускорителей – беватрон, дающий частицы с энергией 6,3 миллиарда электрон-вольт. Вскоре с их помощью было сделано замечательное открытие. В числе известных частиц были опознаны две новые, о которых еще не знал никто на свете, – антипротон и антинейтрон.

Черенковские счетчики стали одними из главных инструментов при исследованиях, проводимых на ускорителе – синхрофазотроне на 10 миллиардов электрон-вольт, построенном советскими учеными в городе Дубне, а затем и на всех других ускорителях.

Счетчики Черенкова оказались способными не только определять скорость и энергию быстрых заряженных частиц, но могли (с высокой точностью) указать направление, откуда прилетели эти частицы. Ведь черенковское излучение имеет вид очень острого конуса. И конус этот расширяется вдоль направления полета частицы.

О каком же еще более удобном и точном приборе могли мечтать ученые, изучающие космические частицы, прилетающие на Землю из глубин космоса!

Ведь раньше, чтобы определить направление прилета частиц, надо было собирать сложные и громоздкие установки. Телескоп – так называлась одна из этих установок – состоял из целого набора счетчиков иного типа, чем черенковские, расположенных один за другим, да еще из специальной электронной схемы.

И такую установку смог заменить всего лишь один счетчик Черенкова!

Как же могли не воспользоваться ученые такой находкой? И уже в 1951 году они обнаружили черенковское излучение от мю мезонов – особых элементарных частиц, содержащихся в космических лучах, а еще через год – от космических протонов.

Но и этим не исчерпались замечательные свойства счетчиков Черенкова.

Сама природа образования ударной световой волны приводит к тому, что они обладают еще одной очень важной особенностью. Они хорошо «видели» одни частицы, но не хотели замечать другие. Они были избирательны в своем отношении к космическим пришельцам. Счетчики обладали, как сказал бы ученый, пороговым эффектом.

Казалось, это огромный недостаток.

Казалось, они могут пропустить, не заметить важную частицу. Но этот-то недостаток и обернулся достоинством.

Дело в том, что счетчик Черенкова не хочет замечать лишь медленные частицы. Те частицы, скорость которых меньше скорости света в веществе, из которого сделан сам счетчик, не создают в нем черенковского излучения, а значит, счетчик не считает.

И чудесно! Ученые поняли: изготавливая счетчики из различных веществ, можно изменять величину пороговой скорости.

Так можно измерять скорость космических частиц, энергия которых столь велика, что ее невозможно измерить другими приборами.

Эти замечательные способности счетчиков Черенкова и дали им право полететь уже на первых советских искусственных спутниках и ракетах. И они не только помогли обнаружить корону Земли – три пояса заряженных частиц, ореолом опоясывающих Землю, – но и дали возможность раскрыть секрет состава космических лучей.

Над этим вопросом давно и безуспешно бились ученые. Как определить химический состав космических частиц? Как узнать, частицы каких элементов залетают к нам из космоса?

И тут проявилось еще одно уникальное свойство черенковских счетчиков. Они оказались способными не только определить скорость, энергию и направление прилета частицы, но и измерить ее заряд. Выяснилось, что чем больше заряд частицы, залетевшей в счетчик Черенкова, тем более яркий хвост сопровождает ее, тем большая часть ее энергии переходит в свет на каждом сантиметре ее пути. Тем более яркое излучение Вавилова – Черенкова она вызывает. Таким образом, яркость и сила свечения, острота светового конуса точно и однозначно указывают, какая частица залетела в счетчик, ядром какого элемента она является. Так ученые узнали, что в составе космических лучей есть ядра водорода и гелия, железа и многих других элементов, имеющихся на Земле.

Благодаря счетчикам Черенкова люди узнали, что и Земля, и далекие миры, которые прислали нам своих космических посланников, состоят из одних и тех же элементов, что химический состав в огромных областях Вселенной одинаков.

Для исследования космического пространства приходится изготавливать счетчики Черенкова, имеющие очень малые размеры.

Но в институте, где работает Павел Алексеевич, стоит такой огромный бак с водой, что заглянуть в него можно, лишь забравшись по лестнице на второй этаж. В этом баке – самом большом в мире счетчике Черепкова – налито сто тонн воды! Просто не верится, что необходимо такое огромное сооружение для определения свойств частички, залетевшей в бак с неба!

Но конечно, сделано это не напрасно.

Конструкторам пришлось сделать бак таким большим для того, чтобы космическая частица, пролетая через него, успела превратить в нем в свет всю свою энергию. И тогда, измеряя интенсивность свечения фотоумножителем, можно определить полную энергию влетевшей в бак частицы.

Новые применения

Но и это не рекорд. Известны эксперименты, в которых чувствительные фотоприемники попросту размещали в глубине океана – и они фиксировали излучение Вавилова – Черепкова, образуемое космическими частицами, пронизывающими толщу воды.

Возможность детектирования нейтрино по черенковскому излучению в воде на больших глубинах океана была рассмотрена в 1969 году членом-корреспондентом АН СССР Е. А. Чудаковым. Он указал, что толща воды надежно экранирует фотоприемники черенковского излучения от воздействия всех частиц, кроме нейтрино и мюонов.

Конкретный проект такого эксперимента был выдвинут в 1975 году большим коллективом американских ученых. Проект получил наименование ДЮМАНД – по первым буквам английских фраз, определяющих его существо: глубоководное детектирование мюонов и нейтрино. В разработке этого проекта активно участвовали советские ученые. Масштабы установки поражают воображение. Объем воды, участвующей в эксперименте, образует куб, каждая грань которого равна одному километру. Объем установки равен миллиарду кубометров.

Вся установка располагается на 5-километровой глубине. На этой глубине вблизи Гавайских островов вода столь чиста, что фотоумножитель способен надежно зафиксировать вспышку черенковского излучения на расстоянии двадцати метров. Это определяет требуемое количество фотоумножителей – свыше тысячи.

Их сигналы будут обрабатываться ЭВМ, располагаемой на берегу.

Вокруг открытия Черепкова и после его признания бушевало много споров. Особенно относительно его практического применения. В дискуссиях рождались интересные идеи. Одну из них высказал еще при обсуждении докторской диссертации Черепкова академик Мандельштам. Он предположил, что для наблюдения эффекта Черепкова вовсе не обязательно пропускать электроны через вещество, где они довольно быстро тормозятся встречными атомами. По его мнению, достаточно пропустить пучок быстрых электронов не через вещество, а вблизи его поверхности. Можно даже попытаться «вспрыснуть» их в канал, проделанный в твердом теле.

Электроны, пролетая близко к его поверхности, будут возбуждать в атомах вещества электромагнитные волны. Если электроны летят быстрее, чем возбуждаемые им в веществе волны, значит, в веществе возникает ударная черенковская волна излучения.

Электроны летят в пустоте и поэтому, конечно, не могут лететь быстрее света. Но достаточно, чтобы они летели быстрее, чем электромагнитная волна, бегущая внутри диэлектрика. В этом случае волны, возникающие в диэлектрике под воздействием пролетающего электрона, обязательно будут складываться в черенковскую волну, которая распространится внутри диэлектрика, а затем…

А затем рожденные таким образом электромагнитные волны могут быть излучены в пространство.

Мысль Мандельштама была не просто красивой иллюстрацией механизма возникновения черенковского излучения. Она указывала на большие практические возможности.

В 1947 году физик-теоретик В. Л. Гинзбург развил мысль Мандельштама.

Он тщательно изучил черенковское излучение в твердых телах и пришел к выводу, что таким образом можно просто осуществить генерацию очень коротких, миллиметровых и даже субмиллиметровых волн. То есть создать новые генераторы радиоволн. Для радиотехники, которая все время борется за все более и более короткие волны, такие генераторы были бы просто находкой.

Таким способом можно получить особенно мощные радиоволны, используя не сплошной поток электронов, а электроны, предварительно сгруппированные в небольшие сгустки.

Оказалось, это не единственный способ получения радиоволн с помощью эффекта Черенкова. Ведь мы знаем, что для возникновения эффекта достаточно уменьшить скорость электромагнитной волны до величины меньшей, чем скорость электрона, и черепковское излучение начнется.

Однако скорость электромагнитных волн можно уменьшить, не только пропуская их через диэлектрик. Во многих случаях сантиметровые и миллиметровые волны передаются с помощью специальных металлических труб – волноводов. Если внутри трубы установить ряд перегородок с отверстиями, то скорость распространения волны по такой трубе сильно уменьшится.

Значит, выбрав подходящие размеры трубы и перегородок, откачав из трубы воздух и пропустив через нее пучок быстрых электронов, сгруппированных в сгустки, 0 получить мощное черепковское излучение миллиметровых волн. Оно будет образовываться здесь в результате взаимодействия электронов с отдельными отсеками волновода и сложения образующихся при этом электромагнитных волн.

Так эффект, открытый советским ученым и казавшийся ранее лишь интересным физическим явлением, уже входит в технику.

Создание лазеров позволило по-новому взглянуть на пути и возможности практического применения когерентного излучения свободных электронов. Появились приборы, сущность которых отражена в самом названии: лазеры на свободных электронах.

Первоначально такое сочетание казалось бессмысленным, ибо излучение лазеров представлялось возникающим только при переходах электронов внутри атома, молекулы или иона. Правда, затем появились полупроводниковые лазеры и лазеры на вынужденном комбинационном рассеянии, но и в этих случаях излучение возникало в результате перехода электронов с изменением их доли энергии во внутренней энергии вещества.

Конечно, различные электронные лампы позволяют применять для получения электромагнитных волн потоки свободных электронов. Но это относится к совершенно другой области науки и техники.

Лазеры на свободных электронах – действительно лазеры.

Их основой является взаимодействие релятивистских электронов с внешними магнитными полями. Релятивистских – значит движущихся со скоростями, близкими к скорости света в пустоте. Получение пучков таких электронов стало технически достижимо только после создания современных ускорителей.

Основное отличие лазеров от остальных источников излучения – когерентность, то есть жесткая согласованность процессов испускания фотонов в различных областях пространства. Возможность таких процессов, обусловленная взаимодействием отдельных актов испускания через электромагнитное поле, порождаемое ими, была показана еще в 1927 году одним из творцов квантовой физика Шредингером. Он поставил вопрос о том, возможен ли вынужденный эффект Комптона, и пришел к выводу о том, что он возможен. В то время никто не усмотрел путей практического применения такого процесса. Теперь всем ясно, что модель, рассмотренная Шредингером, совпадает со схемой Комптон-лазера, как называют один из вариантов лазера на свободных электронах.

Долгое время оставалась незамеченной опубликованная в 1933 году совместная работа двух гигантов современной науки П. Дирака и П. А. Капицы. Они рассмотрели процесс вынужденного рассеяния при взаимодействии электронов со стоячей электромагнитной волной. Этот процесс приводит к генерации когерентных электромагнитных волн в некоторых типах электронных ламп, а также в созданном Капицей оригинальном мощном генераторе-нигатроне.

Все реализованные лазеры на свободных электронах так или иначе опираются на пионерские работы В. Л. Гинзбурга, начатые им в 1947 году. Основные усилия в этой области направлены на увеличение мощности излучения и укорочение длины волны.

Излучение Вавилова – Черенкова в диапазоне рентгеновских волн было получено группой Э. И. Денисова Я 1981 году при помощи линейного ускорителя электронов ЛУЭ-2 в Харьковском физико-техническом институте./ Теоретические оценки показывают, что существуют условия, при которых это излучение может быть получено даже в диапазоне гамма-волн.

Эффект Вавилова – Черенкова порождает новые идеи и разнообразные приборы и устройства, ускоряющие дальнейший прогресс человечества.

…В прошлом веке в Швеции жил очень богатый предприниматель и инженер Альфред Нобель, тот самый, который изобрел динамит. В своем завещании Нобель распорядился употребить свое огромное состояние на присуждение премий ученым, сделавшим важные научные открытия. С тех пор Шведская академия наук ежегодно присуждает Нобелевские премии за наиболее интересные и важные научные работы. Такую премию когда-то получили всем известные ученые Рентген, Эйнштейн, Фредерик Жолио-Кюри; русские ученые Павлов, Мечников. В 1958 году за открытие и толкование эффекта Черенкова – Вавилова И. Е. Тамм, И. М. Франк и П. А. Черенков были награждены этой премией. С. И. Вавилова не было в их числе, ибо Нобелевские премии не присуждаются посмертно.

ГЛАВА 4
СТРАННЫЙ АТТРАКТОР

Если смотреть прямо, виден лишь хаос. Но за ним просматривается закон.

В. Шекспир


От хаоса к порядку

Порядок и хаос. Среди понятий, выработанных человечеством, нет, пожалуй, двух более противоположных, более фундаментальных, изначальных. Каждому ясно содержание этим слов, вряд ли нужно объяснять, что есть порядок, а что – хаос. Скорее, наоборот. Ссылаясь на них, можно объяснить значение и содержание других понятий. Например, что такой закон? В общественной жизни это правила поведения. Соблюдение их помогает поддерживать порядок во взаимоотношениях между людьми. Это может быть закон, зафиксированный в своде законов, или обычай, освященный вековым опытом. Нарушение закона или обычая ведет к хаосу.

В науке закон – это словесное математическое описание процесса или явления. Закон – описанный порядок. Он поясняет, какое следствие можно ожидать после определенной причины. Если некое бытие по непонятной причине ведет не к одному определенному, а к одному из двух или нескольких следствий, мы склонны видеть здесь отсутствие порядка, неполный порядок, шаг к хаосу. Такая ситуация сигнализирует: наши знания не полны, не выявлены некие, еще скрытые, причины, нарушающие порядок.

Человек в глубокой древности уяснил себе, что есть порядок, а что хаос. Брошенный камень всегда падает на землю. Таков порядок. Чем сильнее бросок, тем дальше летит камень. Таков порядок. Но не существует порядка в том, где и когда появится дичь. За ночью всегда следует день, а за днем – ночь. Но никто не знает, когда пойдет дождь. Впрочем, опытный охотник знает место и время более добычливой охоты и каждому ясно, что осенью дожди идут чаще, чем летом. Значит, и здесь скрыты какие-то менее жесткие закономерности. Незрелый и слабый разум первобытного человека, конечно, не мог разобраться в цепи причин и следствий, и он относил все это за счет высших сил.

В темной глубине веков, едва возвысившись над остальными животными, люди сами ввели в свою среду первые элементы порядка. Это проявилось в расслоении людей по признакам, не имевшим почти ничего общего с естественным различием родителей и детей. Жизненная необходимость показала, что охота становится более добычливой, если среди охотников выделяется вожак, предводитель, превосходящий других слухом и зрением, опытом и сноровкой. Защита от врагов, захват и оборона добычливых угодий удавались лучше, если кто-либо координировал общие действия. Впрочем, вожаки выделяются и среди стадных животных, и среди хищников, охотящихся стаями.

Но наряду с вождями, выделявшимися мудрость, опытом и сноровкой, с военачальниками, отличавшимися силой, бесстрашием и умением владеть дубиной и копьем, обособились те, кто хитростью и лукавством поставил себя между людьми и богами. Провозгласив свою исключительность, они объявили себя слугами богов, требуя чтобы остальные заботились о них. И, достигнув этой цели, употребили свободное время на то, чтобы укрепить и расширить свое привилегированное положение, свою власть над людьми. Они наблюдали и запоминали увиденное, чтобы поражать соплеменников своими знаниями тщательно охраняя их источники.

Потребность в сохранении и охране знаний и наличие свободного времени делают весьма вероятным, что письменность изобрели именно жрецы. Недаром во времена, отделенные от нас всего тысячами лет, разглашение тайн жреческого сословия каралось у некоторых народов смертью.

Проходят века… Человек учится замечать признаки порядка и там, где раньше ему виделся только хаос. Например, разлив Нила следует за первым появлением звезды, которую мы теперь знаем под названием Сириус. Приглядываясь к звездам, человек замечает, что на небе на фоне общего порядка, на фоне согласованного движения бесчисленного множества звезд имеются и нарушители порядка. Некоторые из них – правда медленно, медленно, но неуклонно – перемещаются относительно других. Две из них ненадолго появляются то утром, то вечером – перед утренней зарей или после вечерней. Еще три медленно перемещаются между остальными звездами, иногда останавливаясь и описывая петли.

К этому времени люди не только создали себе богов и посвятили им эти блуждающие звезды, но они, вернее, некоторые из них стремились усмотреть порядок даже в том, что, no-видимости, нарушало порядок. И те, кому удалось такое, выделялись среди людей, приближались к богам. Такие гении не обязательно были царями или жрецами. У Гомера мы читаем: «…свинопас богоравный».

Те кто посвятил себя поиску порядка в окружающем мире и отдавал этому свои силы и время не с целью эксплуатации себе подобных, находили удовлетворение не только в приобретении знаний, но и в передаче этих знаний другим. Углубленные в свои занятия, они довольствовались малым. Впрочем, некоторые из них жили не только в почете, но и в достатке.

Никто и никогда не узнает, кто и когда изобрел письменность. Вероятно, к этому независимо пришли различные народы. Письменность стала коллективной памятью, более точной и более емкой, чем изустные сказания. Она донесла до нас многое из того, чем и как жили наши далекие предки.

Так мы узнали, что математика, родившись из практической потребности людей, затем обгоняла эти потребности, развиваясь за счет извечного стремления людей к знанию. Арифметика, несомненно, возникла из потребностей меновой, а затем, денежной торговли. Но сколь ни развивалась реальная потребность в счете, она никогда не могла угнаться за возможностями арифметики, а Архимед в одном из своих сочинений доказал, что арифметика не знает предела, что можно сосчитать количество песчинок даже в том случае, если бы они заполнили собой весь мир. Сосчитать и записать получившееся число при помощи символов – чисел, знакомых людям уже более трех тысяч лет.

Но наряду с этим могуществом арифметика скрывала в себе и поразительную слабость. Именно скрывала, ибо задолго до рождения Архимеда Пифагор обнаружил и приказал своим ученикам хранить в тайне удивительный факт: не существует числа, при помощи которого можно записать длину диагонали квадрата, если длина его стороны равна единице. Прошли века, прежде чем люди узнали что такое число все же существует. Но для этого пришлось создать новый класс чисел, не известных античным математикам, класс иррациональных чисел. Люди и сейчас не знают того, как распределены среди других чисел те которые называют простыми. Простыми, ибо они не делятся ни на одно число, кроме единицы и самого себя. Не является ли это хаосом, скрытым в глубине порядка описываемого числами?

Подобную слабость содержала и геометрия, доведенная Евклидом до такого совершенства, что его книга служила учебником еще в начале нашего века, а содержание евклидовой геометрии останется справедливым до тех пор, пока сохранится наша цивилизация. Будет верным, несмотря на появление неевклидовых геометрий, ибо каждая из них применима в своем случае, поэтому они не противоречат одна другой. Но, несмотря на свою непогрешимость, все они – и геометрия Евклида, и геометрия Римана, и геометрия Лобачевского – пасуют перед некоторыми «простенькими» задачами. Они не показывают, как при помощи циркуля и линейки построить квадрат, площадь которого равна площади определенного круга, или как при помощи этих же приборов разделить на три равные части угол, образованный двумя прямыми, пересекающимися между собой, если этот угол не прямой. Сколько математиков потратили на это годы – но решения не нашли!

Эллины относили геометрию к разряду высших наук. Арифметику и даже физику и механику – к низшим наукам, ибо они служили не совершенствованию духа, а «пошлому ремеслу». Геометрии с ее кристальной ясностью евклидовых постулатов и теорем они прощали и ее происхождение, и ее применение для раздела земельных участков. Без геометрии порядок землевладения превратился бы в хаос и бесконечные тяжбы.

Много поколений древних мудрецов стремились обнаружить порядок в небесных явлениях. Их завораживало вечное и неизменное вращение вокруг Земли множества постоянно пребывающих в покое относительно друга. Большинство философов объясняло такой безупречный порядок тем, что звезды прикреплены к незримой сфере, вращающейся вокруг Земли с безупречным постоянством. Лишь Аристарх думал иначе: мы видели бы тоже самое, если бы небесная сфера была неподвижной, вращалась Земля. Но ему не верили, ибо никто не ощущал вращения Земли, а странная гипотеза Аристарха оставляла без объяснения очевидные движения планет. Напротив, если принять, что Земля неподвижна, а вращается небесная сфера, естественно предположить, что каждая планета прикреплена к своей незримой вращающейся сфере. Оставался «пустяк» – надо было лишь догадаться, как при помощи добавочных незримых вращающихся сфер объяснить запутанные движения планет. Особого успеха в этом достиг выдающийся астроном древности Птолемей. Его сложная система с поразительной точностью выявляла порядок, царствующий в небесах, позволяла предсказывать затмения Солнца и Луны, затмения звезд и планет Луной, сближения и расхождения планет между собой и их замысловатые перемещения между звездами, прикрепленными к внешней сфере.

Система Птолемея просуществовала века. Церковь опиралась на ее безошибочность и поддерживала своим авторитетом. Ведь Иисус Навин, учили отцы церкви, сказал «остановись» Солнцу, а не Земле.


    Ваша оценка произведения:

Популярные книги за неделю