412 000 произведений, 108 200 авторов.

Электронная библиотека книг » Ирина Радунская » Предчувствия и свершения. Книга 3. Единство » Текст книги (страница 19)
Предчувствия и свершения. Книга 3. Единство
  • Текст добавлен: 26 июня 2025, 05:17

Текст книги "Предчувствия и свершения. Книга 3. Единство"


Автор книги: Ирина Радунская


Жанр:

   

Физика


сообщить о нарушении

Текущая страница: 19 (всего у книги 24 страниц)

Большой взрыв

Для того чтобы получить какие-либо сведения о процессах, происходивших во Вселенной на ранних стадиях фридмановского расширения, нужно было перейти от кинематического описания к динамическим закономерностям, учитывающим силы, действующие на вещество, закономерностям, определяющим преобразования энергии и видоизменения вещества.

Такую попытку сделал в 1946 году Г. Гамов. Он опирался на термоядерные реакции, которые, как еще в 1940 году установил Г. Бете, порождают энергию, излучаемую Солнцем и другими звездами. Он исходил из исследований строения ядер и из свойств элементарных частиц, известных в то время.

Гамов предположил, что толчком к фридмановскому расширению было неустойчивое состояние, при котором масса, образованная всеми элементарными частицами, была сжата до огромных плотностей и находилась при колоссальной температуре. Он не пытался объяснить, как возникло такое состояние. Но он считал, что при огромном давлении и температуре частицы одного сорта постоянно превращались в частицы других сортов и возникали вновь так, что каждый сорт был в равновесии с другими.

Гамов назвал процесс, положивший начало фридмановскому расширению, Большим взрывом и предположил, что дальнейшее расширение происходило в соответствии с гипотезой Фридмана.

Для того чтобы эта гипотеза превратилась в теорию нужно было проанализировать дальнейшую эволюцию материи, расширяющейся после Большого взрыва.

Решающий шаг был сделан в 1948 году, когда Р. А. Альфер, Бете и Гамов построили первую модель ранней Вселенной, то была умозрительная модель, попытка наполнить конкретным физическим содержанием теорию расширяющейся Вселенной Фридмана. Такое утверждение может показаться кощунственным в отношении Фридмана и в отношении Эйнштейна, но слово «конкретным» в предыдущей фразе делает ее полностью соответствующим действительности. Ведь Общая теория относительности, теория тяготения Эйнштейна оперирует только общими понятиями «материя», «энергия» и «пространство – время». В уравнениях Общей теории относительности присутствуют только общие количественные характеристики: масса, объединяющая массу вещества и массу энергии, и параметры, связывающие кривизну «пространства – времени» с распределением массы в пространстве. Для этой теории не существенно, в каком виде присутствуют материя и энергия, определяющие структуру «пространства – времени». Естественно, что подобной общностью обладает и решение Фридмана.

До работ Гамова и его сотрудников в ходу были звучные, но не наполненные содержанием высказывания о том, что в начале фридмановского расширения Вселенная была «первичным атомом» или каплей ядерной жидкости.

Гамов, Альфер и Бете исходили из первоначальной гипотезы Гамова о том, что в начальный период своего существования Вселенная была заполнена чрезвычайно плотным однородным газом. Он состоял из всех известных в то время элементарных частиц, находящихся в тепловом равновесии с излучением при очень высокой температуре и взаимодействующих между собой посредством полей (электромагнитного и гравитационного), тоже находящихся в тепловом равновесии между собой и с элементарными частицами. Авторы сознательно избегали обсуждение вопроса: была ли Вселенная вначале сосредоточена в точке? Они начинали свой анализ с того момента, когда Вселенная занимала малый, но не бесконечно малый объем. Предполагалось, что этот газ с самого начала заполнял все пространство и расширялся вместе с ним. Они считали, что все известные законы физики не изменяются со временем и действовали с самого начала расширения Вселенной.

Теория исходила из того, что расширение Вселенной вначале протекало чрезвычайно быстро, взрывоподобно, что дало название теории – Большой взрыв. В ходе расширения величина плотности вещества и энергии, усредненная по большим областям, убывала, оставаясь почти однородной. Расчеты основывались на предположении, что, несмотря на быстрое развитие Большого взрыва, быстрое расширение «пространства – времени», изменения всех характеристик вещества и энергии, за исключением плотности и температуры, происходили относительно медленно и не влияли на изменения плотности и температуры.

Теперь приходится лишь удивляться, как первоначальный вариант теории Большого взрыва позволил получить несколько важнейших результатов, впоследствии подтвержденных астрономическими наблюдениями! Ведь со временем выяснилось: эта теория основывалась на ошибочном значении постоянной Хаббла. Мы уже упоминали о том, что значение этой величины, определенное первоначально Хабблом, в 10 раз превосходило значение, полученное позднее с применением более точных методов. Величина этой постоянной, известная в 1946 году, привела Гамова к выводу о том, что с момента Большого взрыва, с начала фридмановского расширения Вселенной, прошло «всего» 2 миллиарда лет. Это противоречило возрасту старейших земных пород, оцененному в то время геофизиками величиной около 4 миллиардов лет. «Небольшое» – всего в два раза – различие казалось Гамову несущественным, так как обе величины были оценены недостаточно точно. Но близость этих величин приводила к неизбежному выводу о том, что Земля и Солнце сконденсировались из первичного вещества когда-то в начальных стадиях Большого взрыва. Пришлось принять, что к тому времени в ходе Большого взрыва уже образовались все химические элементы вплоть до урана. Это казалось возможным только в условиях предельно высоких температур. Так, по существу, утвердилось мнение о том, что Большой взрыв происходил в условиях чрезвычайно высокой температуры, а теорию Гамова иногда называют теорией горячей Вселенной.

Дальнейшее уточнение теории Большого взрыва произведено Альфером и Гамовым вместе с Р. Германом. Теперь они предположили, что Большой взрыв произошел, когда Вселенная состояла только из нейтронов. В то время уже было известно, что массивные звезды, сжимаясь в конце своей эволюции, приходят в состояние, когда практически все их вещество преобразуется в нейтроны.

Исходя из этого, можно было предположить, что и все вещество Вселенной, первоначально сжатое до очень высокой плотности при огромной температуре, состояло из нейтронов. Затем произошел Большой взрыв, нейтронная Вселенная начала стремительно расширяться. При этом нейтроны постепенно превращались в протоны, электроны и антинейтрино, как это и теперь происходит со свободными нейтронами.

В процессе расширения плотность и температура быстро падали. В некоторый момент температура опустилась настолько, что случайно столкнувшиеся нейтрон и протон уже могли удержаться вместе, образуя дейтон – ядро атома дейтерия. Затем, путем последовательных присоединений нейтронов и протонов, возникли ядра всех известных элементов.

Альфер и Герман установили, что в результате таких последовательных захватов можно прийти к наблюдаемому ныне соотношению количества различных легких элементов. Но необходима жесткая предпосылка: первоначальное отношение числа фотонов к числу ядерных частиц должно было быть порядка миллиарда. Учитывая это и воспользовавшись определенной в то время астрофизиками плотностью ядерных частиц в космическом пространстве, они предсказали, что от ранней Вселенной должно остаться электромагнитное излучение с температурой 5К. (Напомню, что буква К означает градусы Кельвина). А на каждое ядро гелия должно приходиться по 10 протонов.

Это предсказание прошло совершенно незамеченным.

Вскоре выяснилось, что вычисления Альфера, Германа и Гамова были не совсем правильными. В 1950 году Е. Хаяши показал, что следует отказаться от предположения о том, что в начале эволюции Вселенная содержала только нейтроны и что они распадались по законам радиоактивного распада. Более вероятной казалась первоначальная гипотеза Гамова о том, что в первые мгновения Большого взрыва существовала плотная горячая плазма. Пришлось принять, что эта плазма содержала нейтроны и протоны, электроны и позитроны, нейтрино и антинейтрино. В 1953 году Альфер, Герман и Дж. Фоллин (младший) пересчитали модель в соответствии с уточнением Хаяши. Они вновь пришли к соотношению содержания гелия и водорода, совпадавшему с наблюдениями астрономов (одно ядро гелия на каждые десять протонов). Но за дальнейшим синтезом химических элементов они не проследили. Возможно, их остановило указание Э. Ферми и А. Туркевича, обративших внимание на отсутствие в природе ядер с пятью и с восемью ядерными частицами. Из этого следовало, что такие ядра очень неустойчивы. Поэтому невозможно ожидать, что в горячей плазме простым присоединением нейтронов или протонов рождаются ядра более массивные, чем гипотетическое ядро бериллия-8.

В 1952 году Э. Сольпитер показал, как, несмотря на отсутствие ядра с пятью ядерными частицами, путем последовательного присоединения нейтронов и протонов в не слишком горячей плазме могут возникать не только ядра изотопов водорода и гелия, но и ядра изотопов лития.

Современная теория нуклеосинтеза в ранней Вселенной, приводящая на определенной стадии развития после Большого взрыва к возникновению легких ядер, была создана лишь в 1964 году Я. Б. Зельдовичем и независимо Ф. Хойлом и Р. Тайгером, а также П. Пиблсом.

После этого стало общепризнанным, что все химические элементы, следующие за литием, образовались в недрах звезд и при взрывах сверхновых. К этому нам еще предстоит возвратиться.

Прежде чем расстаться с моделью Альфера, Германа и Гамова, нужно еще раз обратить внимание на то, что ее авторы в то время находились под влиянием общепринятой тогда величины постоянной Хаббла. Но величина постоянной Хаббла характеризует скорость расширения Вселенной, а значит, и время, прошедшее от Большого взрыва до наших дней.

В соответствии с принятым в сороковых годах значением постоянной Хаббла возраст Вселенной был оценен в границах от 1 до 4 миллиардов лет, что сравнимо с возрастом Земли, определенным тогда различными достоверными методами в пределах 4–6 миллиардов лет. Именно это заставило Альфера, Германа и Гамова и в последнем варианте их теории счесть, что все химические элементы были синтезированы в ходе Большого взрыва до образования звезд и планет.

Лишь в семидесятых годах величина постоянной Хаббла была уточнена и было принято ее современное значение а возраст Вселенной оказался где-то между 13 и 20 миллиардами лет. Чаще всего говорят о 15 миллиардах лет. Именно это позволило пересмотреть теорию нуклеосинтеза и разработать более подробный сценарий образования звезд, включающий первый этап, на котором рождались и гибли звезды первого поколения, состоявшие из водорода и гелия. Лишь позже из элементов, синтезированных в ходе эволюции звезд первого поколения, возникли знакомые нам звезды второго поколения. К этому мы еще вернемся.

Первоначальный вариант теории расширяющейся Вселенной, созданный Фридманом, содержал лишь один результат, поддающийся проверке опытом. Этим результатом был сам процесс расширения. Безупречность теории была подтверждена авторитетом Эйнштейна. На вопрос о том, имеет ли это расширение реальный смысл, ответил Хаббл: да, она расширяется, как предсказал Фридман.

Модель Большого взрыва тоже привела к ряду результатов, поддающихся опытной проверке. Среди них – процесс образования ядер легких элементов из протонов и нейтронов. Это произошло после того, как расширение привело к понижению температуры ниже уровня, при котором тепловые соударения с другими протонами и нейтронами и воздействие излучения уже не могут разрушить образовавшиеся ядра. При этом модель позволяет проследить за ходом образования различных ядер, базируясь на результатах физики элементарных частиц и ядерной физики. Таким путем была вычислена распространенность легких ядер.

Несмотря на то что модель Гамова и его соавторов основывалась на неверном значении постоянной Хаббла, они смогли вычислить, что в современной Вселенной большая часть вещества существует в виде водорода (70 %), а меньшая часть в виде гелия (30 %). Все остальные элементы в сумме не составляют и нескольких процентов вещества Вселенной, так что их количество укладывается в пределы тех ошибок, с которыми вычислено количество водорода и гелия.

Это «предсказание» удивительно хорошо совпало с наблюдением астрофизиков, что сильно укрепило уверенность в правильности теории Большого взрыва, несмотря на первоначальную неясность с образованием тяжелых ядер.

Уточненная модель Большого взрыва немного изменила значение температуры электромагнитного излучения, оставшегося от Большого взрыва.

Расчеты показали, что к нашему времени оно должно охладиться до температуры порядка 10К (вместо первоначального результата 5К).

Следует помнить, что между 1948 и 1953 годом никто не помышлял о том, что можно зафиксировать существование излучения, обладающего столь низкой температурой. Эта часть работы, это предсказание не привлекло внимания ученых и оказалось забытым. Но в нем таился зародыш одной из самых впечатляющих сенсаций науки наших дней.

В 1963 году группа теоретиков, работавших в Принстоне во главе с Р. Дикке, снова заинтересовалась теорией Большого взрыва. За прошедшее десятилетие теория элементарных частиц пережила период бурного развития как в области фундаментальных моделей, так и по методам расчетов и полученным результатам. Значительный прогресс пережила и радиоастрономия. Были построены крупные малошумящие антенны для приема радиоволн сантиметрового диапазона, приходящих из космоса. Одновременно еще более молодая квантовая электроника позволила создать принципиально новые квантовые усилители радиоволн, основанные на применении открытого Е. К. Завойским парамагнитного резонанса. Радиоприемники с такими усилителями могли легко зафиксировать радиоизлучение, интенсивность которого была бы эквивалентна шумам сопротивления, нагретого лишь до нескольких единиц градусов Кельвина.

Один из сотрудников Дикке, П. Пиблс, вновь провел расчеты протекания начальной стадии эволюции Вселенной, следуя стандартной модели Большого взрыва, но с учетом новейших достижений физики элементарных частиц. Расчет подтвердил, что со всех направлений из удаленных областей Вселенной к Земле приходит равновесное радиоизлучение, максимум интенсивности которого после новых вычислений оказался близким к 7К. Основной отличительной чертой этого излучения является независимость его интенсивности от направления в пространстве и его спектр, являющийся характерным шумовым спектром равновесного теплового излучения. Лабораторный жаргон присвоил этому излучению наименование «реликтовое излучение», что подчеркивает его происхождение. Ведь это действительно реликт – остаток давно минувших времен и событий. Наименование сохранилось и вошло в международный словарь науки.

По поручению Дикке двое из его сотрудников начали готовить сверхчувствительный радиоприемник и крупную антенну радиотелескопа для поиска реликтового излучения на длине волны около 3 см.

Открытие

В это время американские радиоастрономы А. Пензиас и Р. Вильсон готовили к очередным экспериментам оригинальную рупорную антенну. Эта большая антенна была построена для исследования возможности создания космической системы радиосвязи, в которой спутник типа Эхо» – большой баллон из тонкой металлизированной пленки, выведенный на околоземную орбиту и раздутый газом, – должен был служить зеркалом, отражающим радиоволны, излученные передатчиком.

После того как эксперименты с «Эхом» были закончены, Пензиас и Вильсон собирались применить эту антенну в качестве радиотелескопа и поэтому тщательно изучали ее шумовые свойства. Они оценивали вклад различных источников шумов в принятых радиоастрономами единицах – градусах Кельвина. За единицу был принят шум, испускаемый сопротивлением величиной в один Ом, нагретым на 1К. Различные источники шумов вносили свой вклад в общую шумовую температуру антенны, а исследователи старались свести шумы антенны к минимуму. Как и другие радиоастрономы, они использовали для калибровки антенны шумы, приходящие из космического пространства, стремясь при этом точно учесть путем вычислений неизбежные шумы, порождаемые земной атмосферой, и шумы, излучаемые поверхностью Земли, попадавшие в антенну, даже когда она была обращена к небу. В последнем случае сказывалось отклонение конструкции антенны от расчетной и явление дифракции, то есть изгибание направления распространения радиоволн вблизи края антенны.

Закончив эти исследования, Пензиас и Вильсон обнаружили, что измеренный ими шум антенны на 3 К превосходит ее расчетный шум с учетом всех мыслимых внешних шумов. Необычно было, что величина избыточного шума не зависела от направления антенны. В процессе исследования антенну поворачивали от зенита почти до горизонта и вращали ее вокруг вертикальной оси так, что она обегала все участки горизонта. Таинственное шумовое излучение не изменялось ни со временем суток, ни в течение года.

В 1964 году, когда измерения закончились, исследователи приобрели полную уверенность в том, что избыточное радиоизлучение, идущее с удивительным постоянством к Земле, одинаково со всех сторон, – реальность.

Неожиданная, непонятная, но несомненная реальность. Они были недостаточно подготовлены даже для того, чтобы выдвинуть сколько-нибудь удовлетворительную гипотезу, способную объяснить наблюдаемый ими избыточный шум. Никто из сотрудников большой и высококвалифицированной научно-исследовательской организации, в которой они работали, тоже не мог сказать ничего определенного. Но цепь случайностей в конце концов привела их к Пиблсу, научный доклад которого слышал знакомый их знакомого.

Ничего не зная о теории Большого взрыва, Пензиас и Вильсон связались с Пиблсом. Личный контакт поставил все на свои места – Пиблс поздравил радиоастрономов с открытием. Да, обнаруженный ими избыточный шум не ошибка, не влияние какого-то неучтенного ими источника помех. Это открытие. И оно имеет огромное принципиальное значение. Вскоре это открытие – результат тщательно проведенного эксперимента – принесло им Нобелевскую премию.

Но на этом история реликтового излучения не окончилась.

Сразу после создания Общей теории относительности Эйнштейн разъяснял, что пространство обладает вполне определенным свойством – кривизной, причем величина и характер искривления пространства в каждой его точке вызывается материей, распределенной по всей Вселенной. Эта кривизна может быть обнаружена и изучена, как и все физические характеристики остальных реальных объектов. Это не было возвращением к Ньютону.

Уже Специальная теория относительности вывела за пределы науки абсолютное однородное евклидово пространство и абсолютное время механики Ньютона как ненужные и приводящие к недоразумениям абстракции.

Эйнштейн отлично понимал, что равномерное движение в реальном искривленном пространстве может быть в принципе измерено. Он даже несколько раз писал о том, что Общая теория относительности, в отличие от Специальной теории относительности, выявив реальные свойства пространства, одновременно привела к принципиальной возможности наблюдения «нового эфирного ветра»– то есть обнаружения равномерного движения измерительного прибора в мировом пространстве.

Эйнштейн писал об этом, когда все уже признали отсутствие эфира, невозможность обнаружения «эфирного ветра» в опытах, подобных опыту Майкельсона, и никто не предполагал реальной возможности обнаружения того, что он назвал «новым эфирным ветром». Он тоже не знал, как можно судить о перемещении прибора относительно искривленного пространства, не располагая возможностью независимо определять свойства этого пространства. В то время никто не предполагал существования реликтового радиоизлучения, заполняющего пространство и отображающего его свойства.

Поэтому Эйнштейн не думал о том, что можно поставить реальный опыт, способный продемонстрировать «новый эфирный ветер».

Прошли годы, в 1976 году группа американских ученых в составе Г. Ф. Смута, М. В. Горенштейна и Р. А. Маллера задалась целью обнаружить «новый эфирный ветер». Увеличив чувствительность своей аппаратуры в тысячу раз по сравнению с имевшейся у Пензиаса и Вильсона и подняв ее на высоту 15 км, за пределы плотных слоев земной атмосферы, чтобы уменьшить величину атмосферных шумов, они обнаружили пространственную несимметрию реликтового излучения. Несимметрия составляла всего тысячную долю градуса Кельвина, но она была установлена надежно. Температура излучения, приходящего с того направления, куда движется Земля в космическом пространстве, была на 0,003 К выше, а температура излучения, приходящего с противоположной стороны, оказалась на такую же величину ниже, чем точно установленное среднее значение температуры реликтового излучения (2,7 К). Это было одним из проявлений эффекта Доплера. Точность измерения была столь велика, что на фоне вращения Солнечной системы вокруг центра Галактики и движения Галактики относительно других удаленных галактик можно было выделить сравнительно медленное (30 км/с) движение Земли по ее орбите вокруг Солнца.

Так был обнаружен «новый эфирный ветер». Так было установлено, что с учетом «нового эфирного ветра» интенсивность реликтового излучения, приходящего из любой точки небосвода, не отличается и на одну десятитысячную градуса Кельвина от интенсивности реликтового излучения, приходящего от любой другой точки небосвода. Астрофизики называют такую независимость от направления изотропностью. Изотропность реликтового излучения, как мы увидим ниже, играет решающую роль при оценке достоверности различных теорий эволюции Вселенной.

Забегая вперед, скажем, что такая оценка позволит составить более детальное представление о свойствах Вселенной в тот период, когда при температуре порядка 4000 К она стала прозрачной для электромагнитных волн. От этого зависит, приходит ли реликтовое излучение одинаково интенсивным со всех направлений или его интенсивность зависит от направления. А это непосредственно связано с тем, сколь однородной была Вселенная в тот отдаленный период.

Первооткрыватели «нового эфирного ветра» сообщили о том, что, учтя его, они не обнаружили изменений интенсивности реликтового излучения в пределах чувствительности их аппаратуры, составлявшей около 10-4 К.

Две группы ученых, помещая свои приборы на высотных баллонах и самолетах, сообщили в 1980 и 1981 годах об обнаружении азимутальной асимметрии, то есть о зависимости интенсивности реликтового излучения от направления. Однако две другие группы опровергли в 1983 году их результаты.

Еще в конце шестидесятых годов Н. С. Кардашев из Института космических исследований АН СССР (ИКИ) обосновал преимущества исследования реликтового излучения при помощи приборов, помещенных на искусственном спутнике Земли. При этом устраняются шумы и помехи, порожденные атмосферой и различными наземными электрическими устройствами. Вторым существенным преимуществом является много большее время работы приборов. Один год работы на спутниках эквивалентен полувековым исследованиям, основанным на сравнительно кратковременных полетах баллонов и высотных самолетов.

Спутниковый эксперимент был выполнен сотрудниками ИКИ И. А. Струковым и Д. П. Скулачевым на спутнике «Прогноз-9». Они опубликовали в январе 1984 года первые результаты своей работы в статье под названием «Эксперимент «Реликт». Первый результат».

Первый результат таков: если азимутальная асимметрия реликтового излучения существует, то она не превышает 0,2 м К (м К – милликельвин). Последующая обработка полученных опытных данных позволяет считать, что эта асимметрия не превышает 10 от средней интенсивности реликтового излучения, имеющего температуру около 2,7 К.

Ученые, конечно, не остановятся на достигнутом, потому что им уже видны пути дальнейшего улучшения аппаратуры, способной длительно работать в космическом пространстве.

Открытие реликтового излучения сыграло для теории Большого взрыва такую же роль решающего эксперимента, которую для Общей теории относительности сыграло обнаружение искривления световых лучей в окрестностях Солнца.

Теория Большого взрыва сразу получила признание Физиков и астрофизиков.

Многие интересуются, почему реликтовое излучение было обнаружено только в 1965 году (дата публикации статьи Пензиаса и Вильсона и статьи Дикке, Пиблса и др.) и то случайно, если его существование было предсказано еще в 1948 году.

Причин много. Прежде всего нужно учесть, что радиофизики не знали работ Гамова и его сотрудников, а значит, не знали об их предсказании. Физики не подозревали, что такое слабое излучение можно зафиксировать и измерить.

В свою очередь физики-теоретики, обнаружив огрехи в работе Гамова и его сотрудников (ошибка с постоянной Хаббла, ошибка с синтезом тяжелых ядер), надолго потеряли интерес к теории Большого взрыва.

Мы уже знаем, что только в 1964 году Дикке и его сотрудники вновь оценили температуру реликтового излучения и начали подготовку к его наблюдению. Одновременно и независимо Зельдович и его ученики А. Дорошкевич и И. Новиков тоже изучали раннюю историю Вселенной, чтобы решить, была ли она в самом начале раскаленной или холодной. В короткой статье Дорошкевича и Новикова сказано, что решить этот вопрос можно, наблюдая, существует ли реликтовое излучение, с необходимостью следующее из теории Большого взрыва. В этой статье они указывали, что наиболее подходящей антенной для такого эксперимента является большая рупорная антенна лаборатории «Белл» в Кронфорд Хилле, та самая антенна, при помощи которой Пензиас и Вильсон сделали свое открытие, ничего не зная об этой статье.

Лишь недавно сотрудник Института общей физики АН СССР Т. А. Шмаонов вспомнил, что в середине пятидесятых годов он при помощи рупорной антенны изучал радиоволны длиной в 3,2 см, приходящие из космоса. Учтя все возможные помехи, он пришел к выводу, что из космоса со всех сторон приходит радиоизлучение с температурой 4+3 К. Этот результат он опубликовал в 1957 году в журнале «Приборы и техника эксперимента», но Шмаонов не пытался установить источник этого излучения.

В те годы он не мог получить помощи теоретиков, ибо теория Большого взрыва была прочно забыта, а интерес к ней возродился лишь через 7 лет.

Позже, когда в 1964 году вновь возник интерес к Большому взрыву, никто не помнил о статье Шмаонова. Никто не сообщил Дорошкевичу и Новикову, указавшим на антенну в Кронфорд Хилле, что в Советском Союзе тоже есть подходящая антенна и что реликтовое излучение уже обнаружено. Не помнил об этом и сам Шмаонов.

Статья Шмаонова воскресла и вновь возникла из журнальных дебрей через 27 лет после ее опубликования, через 18 лет после открытия Пензиаса и Вильсона и через 5 лет после вручения им Нобелевской премии.

Так еще раз подтвердилась старая истина: открыть – не значит увидеть, а значит – понять.


    Ваша оценка произведения:

Популярные книги за неделю