355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Иосиф Шкловский » Звезды: их рождение, жизнь и смерть » Текст книги (страница 27)
Звезды: их рождение, жизнь и смерть
  • Текст добавлен: 31 октября 2016, 00:59

Текст книги "Звезды: их рождение, жизнь и смерть"


Автор книги: Иосиф Шкловский



сообщить о нарушении

Текущая страница: 27 (всего у книги 31 страниц)

Совершенно другую геометрию излучения предложили Радхакришнан и Кук. В развитой ими картине излучение вовсе не обязательно связывать с поверхностью светового цилиндра. Излучающим агентом также являются релятивистские электроны, но они релятивистские «сами по себе», а не потому, что движутся (вращаются) с почти световой скоростью, находясь около поверхности светового цилиндра (как в модели Голда). Релятивистские электроны в картине Радхакришнана – Кука движутся в области магнитных полюсов нейтронной звезды и излучают благодаря некоторой модификации синхротронного механизма. В отличие от обычного синхротронного механизма, где релятивистские электроны движутся по спирали вокруг магнитных силовых линий, причем угол между векторами скорости и поля достаточно велик, здесь электроны движутся практически точно по силовым линиям, а излучают только благодаря кривизне последних. В этом смысле рассмотренный выше механизм Голда также, конечно, является синхротронным.

Хотя применение «обобщенного» (так называемого изгибного) синхротронного механизма к радиоизлучению пульсаров представляет несомненный интерес, так как довольно непринужденно объясняет важнейшее его свойство, а именно – направленность, при более детальном рассмотрении обнаруживаются серьезные трудности. Дело в том, что ширина пучков, определяющая длительность субимпульсов, должна хотя и слабо, но все же зависеть от частоты излучения. Ничего подобного, однако, не наблюдается. На всех частотах длительность субимпульсов одинакова. Имеются также серьезные расхождения между наблюдаемыми свойствами поляризации пульсарного радиоизлучения и ожидаемыми согласно той или иной модификации синхротронного механизма.

Резюмируя, следует сказать, что общепринятой теории радиоизлучения пульсаров пока еще нет, хотя отдельные ее элементы, по-видимому, имеются. Вся сложная картина радиоизлучения пульсаров должна определяться совокупным влиянием большого числа факторов: сильного магнитного поля, коллективным взаимодействием заряженных частиц и полей и, конечно, движением плазмы с релятивистской скоростью около внутренней границы светового цилиндра.

До сих пор мы в основном обсуждали вопрос о «геометрии» излучения. Теперь следует остановиться на тех физических процессах, которые могут быть его причиной. Прежде всего рассмотрим вопрос о мощности излучения пульсаров. Последнюю можно найти, измеряя поток излучения во всем радиодиапазоне в течение импульса, зная отношение длительности импульса и период у пульсара и задаваясь видом диаграммы излучения (карандашная, веерная). Полученная таким образом мощность для разных импульсов меняется в очень широких пределах – от 1027 до 1031 эрг/с или, соответственно, от 1014 до 1018 МВт. Эту мощность любопытно сравнить с совокупной мощностью всех земных радио– и телепередатчиков, работающих в том же диапазоне частот, которые при условии, что они работают одновременно, излучали бы несколько тысяч мегаватт. Как видим, естественные космические радиопередатчики неизмеримо мощнее искусственных земных.

Особняком стоит пульсар в Крабовидной туманности. Наряду с радиоизлучением, средняя мощность которого 1031 эрг/с (на короткое время она иногда увеличивается в сотню раз), этот пульсар излучает также в оптическом, рентгеновском и гамма-диапазонах. Мощность его оптического излучения, которое отличается удивительной стабильностью, достигает 1034 эрг/с, что в 2,5 раза превосходит мощность излучения Солнца. Но основная мощность излучается этим пульсаром в рентгеновском и гамма-диапазонах. Излучаемая мощность в «жестких» квантах этого диапазона достигает значения 3 1037 эрг/с, что в десять тысяч раз превосходит мощность излучения Солнца на оптических частотах и близка к мощности излучения звезд-гигантов на частотах оптического, инфракрасного и ультрафиолетового диапазонов.

Представляет интерес оценить для пульсаров мощность излучения единицы объема в излучающей области. Учитывая геометрию пульсаров, можно сделать вывод, что протяженность излучающей области «в глубину» не может превосходить радиуса светового цилиндра. С другой стороны, из длительности импульсов следует, что проекция этой области на поверхность нейтронной звезды должна иметь линейные размеры порядка нескольких десятых ее радиуса. Отсюда, в частности, следует, что у пульсара в Крабовидной туманности объем излучающей области не превосходит 1023 см3. Поэтому излучаемая единицей объема мощность в рентгеновском и гамма-диапазонах у этого пульсара превосходит 1014 эрг/см3с. Это фантастически большая величина, в миллиарды раз превосходящая мощность генерации термоядерной энергии в единице объема звездных недр.

Важной характеристикой интенсивности излучения является яркостная температура (см. § 4). Если для оптического излучения пульсара в Крабовидной туманности яркостная температура близка к десяти миллиардам кельвинов, а в рентгеновском диапазоне она равна «всего лишь» сотне тысяч кельвинов, то в радиодиапазоне она достигает огромной величины 1028 кельвинов!

Непомерно мощное радиоизлучение пульсара в Крабовидной туманности (а также всех других пульсаров) совершенно исключает возможность его объяснения суммой независимо излучающих заряженных частиц, как это имеет место в случае синхротронного или теплового излучения. С аналогичной ситуацией астрономы встретились еще в сороковых годах, когда радиоастрономические наблюдения обнаружили гигантские всплески солнечного радиоизлучения. Изучение этого интересного явления заставило сделать вывод, что оно возникает при упорядоченных «когерентных» движениях электронов в сравнительно больших объемах плазмы. При таких упорядоченных движениях элементарных зарядов складываются амплитуды излучаемых ими элементарных электромагнитных волн. Следовательно, интенсивность результирующей электромагнитной волны от всей системы излучающих зарядов (пропорциональная квадрату результирующей амплитуды) будет в огромное число раз больше суммы интенсивностей элементарных волн, излучаемых отдельными зарядами. В лабораторных условиях хорошим примером радиоизлучения упорядоченно (когерентно) движущихся электрических зарядов являются обычные передающие антенны. Например, передающая антенна с эффективной поверхностью в десять тысяч квадратных метров может излучать мощность в несколько мегаватт. Если бы вся поверхность, окружающая магнитосферу пульсара в Крабовидной туманности, была покрыта такими передающими антеннами, то мощность излучения была бы всего лишь 109 МВт, т. е. в десять миллиардов раз меньше мощности радиоизлучения этого пульсара. Даже если бы весь объем его магнитосферы был плотно заполнен такими передающими антеннами, то мощность излучения была бы в сотню тысяч раз меньше наблюдаемой! Этот пример демонстрирует всю ничтожность творения рук и мозга людей по сравнению с естественными процессами в природе.

Исключительно высокая яркостная температура может быть реализована также и в том случае, когда механизм радиоизлучения представляет собой некоторую разновидность процесса мазерного усиления. В § 4 мы уже познакомились с естественными космическими мазерами, которые так неожиданно оказались связанными с процессом звездообразования. В этом случае мазерное усиление имеет место только для узкого интервала частот, соответствующего радиолиниям молекул OH и H2O. Однако процесс мазерного усиления при некоторых условиях может происходить и в очень широком спектральном интервале, совершенно не связанном с той или иной радиолинией.

Следует еще раз подчеркнуть необычность условий, в которых имеет место генерация и распространение радиоволн. Например, напряженность электрического поля в пульсарном излучении в области генерации доходит до нескольких миллиардов вольт/метр. Отсюда непосредственно следует вывод, что это «собственное» электрическое поле «само по себе» ускоряет «породившие» его электроны до релятивистских энергий. В этой сложной ситуации такие элементарные понятия как показатель преломления, суперпозиция волн и др. уже теряют обычный смысл.

Резюмируя, следует сказать, что радиоизлучение пульсаров представляет собой некоторый когерентный процесс, возникающий в весьма необычных условиях. Для того чтобы такое излучение как-то возникло, необходимо, чтобы в магнитосфере пульсаров было достаточное количество свободных электронов. Необходимость существования свободных электронов в магнитосфере пульсаров следует из основных законов электродинамики (см. выше). Кроме того, имеется довольно мощный поток плазмы, вытекающий с поверхности нейтронной звезды. Это явление мы назвали «пульсарным ветром». Концентрация частиц в таком потоке может быть довольно значительной. Подробнее об этом мы уже говорили применительно к пульсару, находящемуся в Крабовидной туманности. К сожалению, при современном уровне теории неясно, в какой области магнитосферы пульсаров происходит генерация радиоволн. Это может быть слой около магнитных полюсов, непосредственно примыкающий к поверхности нейтронной звезды, или же далекая периферия магнитосферы около внутренней поверхности светового цилиндра. Предстоит еще очень большая работа как наблюдателей, так и теоретиков, чтобы природа радиоизлучения пульсаров, связанная с «активностью» нейтронных звезд, была понята.

Важной особенностью плазмы магнитосферы пульсаров является то, что она состоит не из электронов и положительных ионов (как обычная плазма), а из электронов и позитронов. Само образование такой плазмы можно себе представить следующим образом. Вблизи твердой поверхности сильно намагниченной быстровращающейся нейтронной звезды возникает электрическое поле с составляющей вдоль магнитного поля, отличной от нуля. Это поле вырывает из поверхностных слоев нейтронной звезды первичные заряженные частицы и ускоряет их до огромных значений энергии 107—108mc2. Двигаясь вдоль искривленных магнитных силовых линий, эти частицы генерируют кванты гамма-излучения. В сильном магнитном поле нейтронной звезды каждый такой квант распадается на электрон и позитрон, которые, в свою очередь, порождают гамма-кванты «изгибного» излучения. Таким образом, в магнитосфере пульсара непрерывно образуются электронно-позитронные лавины, «питающие» находящуюся там плазму. Потоки этой специфической плазмы все время движутся с релятивистскими скоростями от поверхности нейтронной звезды наружу. Когерентно излучающие сгустки такой плазмы и являются «материальным носителем» радиоизлучения пульсаров.



Рис. 22.7: Спектр источника с синхротронной реабсорбцией.

Несомненно, что природа высокочастотного излучения пульсара NP 0531, находящегося в Крабовидной туманности, радикально отличается от природы его радиоизлучения. Это ясно видно хотя бы из общего спектра электромагнитного излучения этого пульсара, приведенного на рис. 20.6. Радио– и высокочастотный спектры никак не «сшиваются», т. е. высокочастотное излучение (в котором, кстати сказать, заключена подавляюще большая часть энергии) никоим образом не является «продолжением» радиоизлучения этого пульсара. Кроме того, между ними имеется еще одно фундаментальное различие: высокочастотное излучение весьма постоянно, т. е. профиль импульсов не меняется со временем, радиоизлучение же переменно и по-другому поляризовано. Все факты говорят о том, что в то время как радиоизлучение NP 0531, так же, как и радиоизлучение других пульсаров, обусловлено неким, пока неизвестным «когерентным» механизмом, высокочастотное излучение есть сумма излучений отдельных релятивистских электронов, движущихся в магнитосфере пульсара, т. е. является синхротронным. Эго значительно упрощает задачу теоретического истолкования наблюдаемых свойств оптического и рентгеновского излучения NP 0531.

В основу теории высокочастотного излучения пульсара в Крабовидной туманности, по нашему мнению, следует положить знаменательный факт «завала» его спектра в ближней инфракрасной области. Какова причина этого явления? Автор настоящей книги еще в 1970 г. привел аргументы в пользу того, что этот «завал» следует объяснить явлением «синхротронной реабсорбции», в то время как само высокочастотное излучение пульсара NP 0531 объясняется обычным «синхротронным» механизмом, являющимся причиной основной части излучения Крабовидной туманности во всем диапазоне электромагнитных волн (см. § 17). Само явление синхротронной реабсорбции состоит в том, что при очень большой плотности релятивистских частиц космический объект перестает быть прозрачным для «собственного» синхротронного излучения. Эта непрозрачность начинается на некоторой частоте и прогрессивно растет в сторону низких частот. По этой причине интенсивность на низких частотах как бы «срезается» и синхротронный спектр источника приобретает вид, изображенный на рис. 22.7. На этом же рисунке для сравнения прерывистой линией изображен спектр того же источника при условии его прозрачности, т. е. при отсутствии синхротронной реабсорбции. Мы видим, что характер высокочастотного спектра пульсара в Крабовидной туманности (см. рис. 20.6) такой же, как у источника, где существенна синхротронная реабсорбция.

Значение частоты m, начиная с которой эффект синхротронной реабсорбции становится существенным, тем выше, чем «компактнее» источник, т. е. прежде всего чем больше плотность находящихся там релятивистских электронов.

Угловые размеры источника синхротронного излучения, в спектре которого наблюдается синхротронная реабсорбция, определяются формулой


(22.8)

где () – безразмерный множитель порядка единицы, выражается в секундах дуги. Эта очень важная для радиоастрономии формула впервые была получена в 1963 г. советским радиоастрономом В. И. Слышем. Тогда она была особенно полезной для изучения природы только что открытых квазаров, радиоспектры которых часто показывают явление синхротронной реабсорбции на частотах, лежащих в диапазоне сотен и тысяч мегагерц (что соответствует дециметровым и сантиметровым волнам). Тот факт, что в случае пульсара в Крабовидной туманности m1014 с-1 (сто миллионов мегагерц), сам по себе весьма поразителен. Он означает, прежде всего, что этот пульсар представляет собой «сверхкомпактный» источник.

Анализ показывает, что в области синхротронного оптического и рентгеновского излучения пульсара в Крабовидной туманности H3 103 Э, в то время как полное значение вектора напряженности магнитного поля там 106 Э. Это означает, что излучающая область находится где-то вблизи светового цилиндра, радиус которого для пульсара NP 0531 равен 1,5 тысяч километров, что в 100—200 раз больше радиуса нейтронной звезды. По этой причине напряженность магнитного поля в области светового цилиндра в несколько миллионов раз меньше, чем на поверхности нейтронной звезды.

На основе теории синхротронного излучения можно вычислить концентрацию релятивистских электронов в магнитосфере пульсара NP 0531 и их поток в Крабовидную туманность. Оказывается, что этот поток как раз достаточен для непрерывного «питания» этой туманности энергией, необходимой для компенсации ее мощного излучения. Таким образом, синхротронная теория естественно объясняет оптическое и рентгеновское излучение едва ли не самого любопытного космического объекта. Что касается происхождения сверхжесткого гамма-излучения (см. сноску на стр. 616), то скорее всего оно обусловлено столкновениями между заряженными частицами, ускоренными до ультравысоких энергий электрическими полями в магнитосфере пульсара NP 0531.

Глава 23 Рентгеновские звезды

Как уже указывалось во введении к этой книге, бурное развитие внеатмосферной астрономии, так же как и радиоастрономии, привело в послевоенные годы к революции в нашей науке. Пожалуй, наиболее впечатляющими достижениями внеатмосферной астрономии были выдающиеся успехи рентгеновской астрономии. Первые наблюдения рентгеновского излучения Солнца были выполнены сразу же после войны, в 1946 г., с помощью счетчиков фотонов, установленных на маленьких ракетах. Потребовалось, однако, целых 16 лет для того, чтобы прогресс техники таких наблюдений позволил обнаружить первый рентгеновский источник, находящийся далеко за пределами Солнечной системы. Низкая разрешающая способность, характерная для рентгеновской астрономии (в то время порядка десятка градусов), не позволила сразу же более или менее точно определить положение нового рентгеновского источника на небе. Возникло даже предположение, что этот довольно яркий источник находится в центре Галактики. Вскоре, однако, выяснилось, что этот источник ничего общего с галактическим центром не имеет, находится в созвездии Скорпиона и удален от галактической плоскости почти на 20°. Последнее обстоятельство указывало на сравнительную его близость к Солнцу. Ведь толщина «галактического диска» – области, где находится подавляющее большинство звезд,– не превосходит 500 пс, в то время как радиус этого диска доходит до 15 000 пс. Так как галактическая широта рентгеновского источника в Скорпионе около 20°, то вероятное расстояние до него не должно быть больше, чем 250/ sin 20° 750 пс. Такой простой способ грубой оценки расстояний до неизвестных галактических источников весьма распространен в астрономии. Вернемся теперь к космическим рентгеновским источникам.

Вновь открытый рентгеновский источник получил название «Скорпион Х-1», где буква «X» символизирует рентгеновское излучение («икс-лучи»). Аналогичная «номенклатура» для вновь открываемых источников была принята в первые бурные годы развития радиоастрономии. Самые яркие радиоисточники получили названия по созвездиям, где они были обнаружены: Лебедь А, Кассиопея А, Телец А, Дева А и т. д. До сих пор эти названия сохранились, хотя сейчас уже каждый астроном знает, что Телец А – это Крабовидная туманность, а Дева А – это гигантская сфероидальная галактика NGC 4486. Вскоре после открытия источника Скорпион Х-1 было обнаружено рентгеновское излучение от Крабовидной туманности – об этом уже шла речь в § 17, а также два новых источника в созвездии Лебедя, сразу же получившие названия Лебедь Х-1 и Лебедь Х-2.

В последовавшие после открытия источника Скорпион Х-1 8 лет развитие рентгеновской астрономии все еще было недостаточно быстрым. Наблюдения проводились на ракетах, причем запуски их были немногочисленны и более или менее случайны (исключение составило наблюдение покрытия рентгеновского источника в Крабовидной туманности Луной, о чем речь шла в § 17). Все же в этот период была получена весьма ценная информация о природе рентгеновских источников. Прежде всего обращает на себя внимание огромная величина потока рентгеновского излучения от источника Скорпион Х-1. В интервале энергии рентгеновских квантов 1—10 кэВ (длины волн порядка нескольких ангстрем) этот поток 3 10-7 эрг/см2. Примерно такой же поток (болометрический!) дает звезда седьмой видимой величины. Только в 1966 г. улучшившаяся техника рентгеноастрономических наблюдений дала возможность локализовать на небе источник в Скорпионе с точностью в несколько минут дуги, что сразу же позволило отождествить этот загадочный объект с довольно слабой и до того времени ничем не обращавшей на себя внимание звездой 13-й величины. К этому времени было обнаружено, что поток рентгеновского излучения от источника Скорпион Х-1 довольно сильно меняется: ото дня ко дню вариации потока достигают многих десятков процентов. Оптическая звездочка, отождествляемая с этим источником, также довольно беспорядочно меняет свой блеск (примерно от 12-й до 13-й звездной величины), причем эти изменения практически не связаны с изменениями рентгеновского потока (см., однако, ниже).

Спектр источника Скорпион Х-1 многократно измерялся и в области 1—20 кэВ хорошо представляется экспоненциальным законом


(23.1)

где E – энергия рентгеновских квантов, T – параметр, имеющий смысл температуры. Величина T порядка нескольких десятков миллионов кельвинов. Такой спектр бывает у очень горячей плазмы с температурой T, причем эта плазма должна быть прозрачна к собственному рентгеновскому излучению. Наряду с изменениями потока рентгеновского излучения наблюдаются одновременные изменения спектра, который, однако, сохраняет свой экспоненциальный характер. При таких изменениях характеризующая спектр температура меняется от 25 до 100 миллионов кельвинов! Следует, однако, заметить, что в области высоких энергий (E50 кэВ) в спектре источника Скорпион Х-1 имеется довольно значительное избыточное излучение, заведомо не являющееся «продолжением» излучения горячей плазмы в этом спектральном диапазоне.

Оптический спектр звездочки, с которой отождествляется Скорпион Х-1, изображен на рис. 23.1. В ближней инфракрасной области спектральная плотность потока излучения растет с ростом частоты, а в видимой и ультрафиолетовой областях спектральная кривая идет почти горизонтально. Важную точку на спектральной кривой дали наблюдения в ультрафиолетовой области около 1500 Å, выполненные методами внеатмосферной астрономии. Эта точка ложится на продолжение горизонтальной части кривой рис. 23.1. На этот яркий непрерывный спектр накладываются довольно слабые линии излучения бальмеровской серии водорода, гелия и ионизованных атомов углерода и кислорода. Интенсивности этих линий, равно как и их лучевые скорости, очень сильно меняются. Например, лучевые скорости за несколько часов колеблются в пределах многих сотен километров в секунду, меняя при этом свой знак. Это означает, что облака ионизованного газа, излучающего эти линии, иногда движутся с такой большой скоростью на наблюдателя, иногда – от него. Интересно, что лучевые скорости линий, принадлежащих разным элементам, различны и часто меняются в противоположной фазе. Все вместе это означает, что в окрестностях источника Скорпион Х-1 происходят бурные процессы, сопровождаемые выбросами довольно больших масс газа.



Рис. 23.1: Оптический и инфракрасный спектр источника Скорпион Х-1.


Основная часть непрерывного оптического спектра источника Скорпион Х-1 скорее всего является продолжением его рентгеновского спектра. Это означает, что как рентгеновское, так и оптическое излучение этого источника представляет собой обыкновенное тепловое излучение очень горячего газа, температура которого порядка нескольких десятков миллионов градусов. Но так как коэффициент поглощения такого газа сильно растет с уменьшением частоты излучения, то в близкой инфракрасной и в красной областях спектра он уже перестает быть прозрачным для собственного излучения. На этих частотах горячий газ должен поэтому излучать как абсолютно черное тело. В области частот, удовлетворяющих условию h< kT, зависимость интенсивности от частоты должна определяться классической формулой Рэлея – Джинса:


(23.2)

где R – радиус излучающей области, r – расстояние до источника. Действительно, из наблюдаемого спектра, приведенного на рис. 23.1, следует, что в инфракрасной и красной областях FT2, как это и должно быть по закону Рэлея—Джинса. Зная T[ (3 5) 107 K] и оценивая грубо r500 пс, нетрудно получить оценку радиуса излучающей области R109 см, т. е. размеры источника рентгеновского излучения должны быть всего лишь около 10 000 км! Следовательно, это очень компактный объект. Из принятого нами значения r (которое, по причине высокой галактической широты источника, вряд ли может быть ошибочно больше, чем в два раза в ту или другую сторону) следует, что мощность рентгеновского излучения Скорпиона Х-1 (его «рентгеновская светимость») должна быть LX1037 эрг/с, т. е. в 2—3 тысячи раз больше «полной» болометрической светимости Солнца! Если известны размеры источника, кинетическая температура заполняющей его горячей плазмы и теория ее излучения (которая очень хорошо и надежно разработана!), то не представляет труда оценить плотность частиц (электронов и ионов) в этой плазме. Эта плотность (вернее, концентрация) оказывается порядка 1016 см-3 – величина достаточно большая, близкая к концентрации частиц в верхних слоях солнечной фотосферы. Наконец, если известны размеры источника и его плотность, то легко оценить полную массу газа, излучающего наблюдаемые от этого источника рентгеновские кванты. Эта масса по астрономическим масштабам совершенно ничтожна: всего лишь около 1020 г, т. е. в сотню миллионов раз меньше массы земного шара. Запас тепловой энергии в этом плотном облаке плазмы около 1036 эрг. Это означает, что «предоставленное самому себе» плазменное облако должно было высветиться за какую-нибудь десятую долю секунды! Так как этот источник наблюдается вот уже свыше 20 лет (а «живет» по крайней мере многие тысячи лет), то должен существовать какой-то непрерывный и притом очень мощный источник «накачки» энергии в горячую плазму. Горячее плазменное облако, которое каким-то образом, перманентно нагреваясь, излучает рентгеновские кванты – это только «второстепенная деталь» совершенно необычного космического тела, непосредственно не наблюдаемого.

Как видим, анализ рентгеновского и оптического излучения источника Скорпион Х-1 позволил получить ряд важных выводов о его природе и вскрыть его совершенно неожиданные, дотоле неизвестные в астрономии свойства. Этот источник по своим общим характеристикам оказался не уникальным. Приблизительно такие же свойства были обнаружены и у другого источника, Лебедь Х-2, отождествляемого с любопытной звездой 15-й величины.

Естественно, что сразу же после открытия галактических рентгеновских звезд теоретики стали размышлять об их природе и прежде всего об источниках огромной энергии их рентгеновского излучения. Уж такова натура теоретиков; хотя информация о рентгеновских звездах тогда была совершенно не достаточна (она и сейчас, мягко выражаясь, не избыточна...), недостатка в различных гипотезах и теориях не было. Не надо быть, однако, слишком строгим к теоретикам – они верны человеческой природе. Очень уж хотелось, и это так естественно, понять сущность этих удивительных объектов... В то время «в воздухе чувствовалось», что открытие нейтронных звезд уже не за горами. Напомним, что это было за несколько лет до открытия пульсаров. Первая идея объяснения природы нейтронных звезд была простая и, если можно так выразиться, «лобовая». Спектр наблюдаемого излучения не исключал возможности его тепловой природы, т. е. возможности описания его формулой Планка с температурой порядка десяти миллионов кельвинов. Однако идея о том, что рентгеновские источники – это горячие нейтронные звезды, быстро обнаружила свою несостоятельность (см. § 19).

«Новая эпоха» в рентгеновской астрономии качалась в декабре 1970 г., когда американцы с восточноафриканского полигона запустили на экваториальную орбиту специализированный рентгеновский спутник «Ухуру» (см. введение). Если до запуска этого спутника число известных космических рентгеновских источников было около 35, то после двух лет работы «Ухуру» число известных рентгеновских источников возросло почти до 200. При этом были зарегистрированы практически все источники, потоки от которых превышают одну тысячную потока от источника Скорпион Х-1 (в интервале энергий рентгеновских квантов от 2 до 20 кэВ). Наблюдаемые источники можно разделить на два класса. Источники первого класса имеют галактическую широту меньше 20°, источники второго класса – больше 20°. Как правило, самые интенсивные источники принадлежат к первому классу. Отсюда можно сделать вывод, что оба класса источников действительно представляют собой совершенно различные по своей природе объекты. В самом деле, если бы все рентгеновские источники представляли собой объекты сходной природы и находились в Галактике, то тогда источники, наблюдаемые в высоких галактических широтах, в среднем были бы к нам гораздо ближе. Но в таком случае они должны были бы быть более яркими. Такую картину мы наблюдаем в оптической астрономии: самые яркие звезды совершенно не концентрируются к Млечному Пути, между тем как слабые («телескопические») звезды очень сильно к нему концентрируются. «Высокоширотные» рентгеновские источники распределены по небу изотропно. Некоторые из них отождествляются с метагалактическими объектами – отдельными галактиками и скоплениями удаленных галактик. Поэтому можно сделать вывод, что по крайней мере часть «высокоширотных» рентгеновских источников суть весьма удаленные от нас метагалактические объекты. Что касается ярких источников, расположенных в низких галактических широтах (т. е. в полосе Млечного Пути), то подавляющее их большинство находится в нашей Галактике. Всего таких источников оказалось около 100. Из этого количества около 10 отождествляются с остатками вспышек сверхновых. Мы уже говорили о них в § 16. Основная же часть наблюдаемых галактических источников рентгеновского излучения должна принадлежать к совершенно особому классу объектов звездной природы, более или менее сходных с источниками Скорпион Х-1. В дальнейшем такие источники мы будем называть «рентгеновскими звездами». Следует различать два типа рентгеновских звезд. Первый тип концентрируется к галактической плоскости, что явно указывает на связь с молодыми массивными звездами. Ниже речь будет идти об объектах такого типа.

Рентгеновские звезды, помимо концентрации к галактическому экватору, обнаруживают явно выраженную концентрацию к галактическому центру: свыше половины их расположено в интервале долгот 60° по обе стороны галактического центра. Отсюда можно сделать вывод, что среднее расстояние до этих источников равно расстоянию от Солнца до галактического центра – около 10 000 пс. Этот вывод следует также из анализа спектров рентгеновских источников, находящихся в области созвездия Стрельца (это созвездие находится в направлении на галактический центр). У таких источников спектр часто обрывается со стороны низких энергий. Такой «обрыв» происходит из-за поглощения рентгеновского излучения межзвездным газом, причем для того, чтобы спектр оборвался у энергии квантов, равной 3 кэВ (как это наблюдается), нужно как раз такое количество межзвездных атомов, какое находится между Солнцем и центром Галактики.

Зная расстояние до таких источников ( 10 000 пс) и величину потоков рентгеновского излучения (которые непосредственно наблюдаются), можно сделать вывод, что мощности рентгеновского излучения у таких объектов доходят до 1038 эрг/с, т. е. в десятки раз превосходят болометрическую светимость Солнца. Этот важный вывод подтверждается наблюдениями рентгеновских источников в ближайших к нам галактиках – Магеллановых Облаках, расстояние до которых хорошо известно (60 000 пс). С другой стороны, из статистического анализа результатов наблюдений следует, что среди рентгеновских источников почти нет объектов, мощность излучения которых была бы 1034—1035 эрг/с. Если бы это было не так, то в Галактике наряду со сравнительно яркими источниками наблюдалось бы значительно большее количество слабых. Таким образом, рентгеновские звезды образуют в Галактике довольно ограниченную по мощности (1039—1038 эрг/с) и по численности ( 100 объектов) популяцию. Это означает, что большая часть всех существующих в Галактике рентгеновских звезд уже наблюдается. Подтверждением вывода о малочисленности рентгеновских звезд являются результаты наблюдения рентгеновского излучения от туманности Андромеды, которая регистрируется как довольно слабый источник. Как известно, эта туманность представляет собой гигантскую спиральную звездную систему, во многих отношениях сходную с нашей Галактикой. Учитывая, что туманность Андромеды удалена от нас на расстояние около 600 000 пс, можно найти по измеренной величине потока суммарную мощность всех находящихся в ней рентгеновских источников, которая оказывается около 2 1039 эрг/с. Так как средняя мощность рентгеновского излучения источников около 1037 эрг/с, то мы непосредственно получаем, что в туманности Андромеды имеется примерно сотня таких рентгеновских звезд (см. ниже).


    Ваша оценка произведения:

Популярные книги за неделю