355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Иосиф Шкловский » Звезды: их рождение, жизнь и смерть » Текст книги (страница 6)
Звезды: их рождение, жизнь и смерть
  • Текст добавлен: 31 октября 2016, 00:59

Текст книги "Звезды: их рождение, жизнь и смерть"


Автор книги: Иосиф Шкловский



сообщить о нарушении

Текущая страница: 6 (всего у книги 31 страниц)



Рис. 4.3: Схема, иллюстрирующая излучение изотропного мазера («ежик»).
 

Все свойства компактных, чрезвычайно ярких радиоисточников, излучающих в линиях ОН и Н2О, говорят о том, что радиоастрономы обнаружили естественные космические мазеры. Как уже говорилось выше, поток радиоизлучения от этих источников необычно велик. Например, на волне 1,35 см (линия Н2О) поток от источника, известного под названием W 49, достигает 10 000 единиц спектральной плотности потока[ 15 ] 15
  Единица спектральной плотности потока равна 10 - 26 Вт/м 2 Гц.


[Закрыть]
. Это – огромная величина. Никакие другие источники космического радиоизлучения, находящиеся за пределами Солнечной системы, не посылают к нам на этом диапазоне таких потоков. Даже Луна, расположенная в самой непосредственной близости к Земле, посылает нам в этом диапазоне поток, который, рассчитанный на единицу частоты, всего лишь примерно в 30 раз больше. Заметим в этой связи, что источник W 49 весьма от нас удален. Расстояние до него около 14 000 пс, т. е. он находится в совершенно другой части Галактики. Это расстояние в тысячу миллиардов раз больше, чем расстояние от Земли до Луны, а ведь потоки излучения обратно пропорциональны квадрату расстояния до источника. Мощность излучения W 49 в линии водяных паров порядка 1031 эрг/с, т. е. всего лишь в несколько сотен раз меньше болометрической светимости Солнца. Для радиодиапазона, тем более в одной узкой спектральной линии, это непомерно большая величина.

Сделаем теперь оценку физических характеристик источников мазерного излучения I типа. Из измеренных угловых размеров излучающих областей (10-2—10-3 секунды дуги) в сочетании с известными расстояниями до зон Н II, в которых эти источники находятся, следует, что линейные размеры космических мазеров l1014 см – всего лишь на порядок больше радиуса орбиты Земли. Для того чтобы яркостная температура была 1013—1015 К, нужно, чтобы излучение увеличило свою интенсивность в 1012—1014 раз. Напомним, что в радиочастотном диапазоне интенсивность пропорциональна яркостной температуре (формула Рэлея—Джинса!). Для нашей грубой оценки будем считать мазер ненасыщенным. Тогда из формулы (4.7) следует, что

откуда l30. В выражение для коэффициента отрицательного поглощения 12 входит эйнштейновский коэффициент A21, который в нашем случае равен 10-11 с-1. Величина D103 с-1, откуда n1 см-3. Примем, что n/n,1. Тогда концентрация молекул гидроксила n10 см-3, что в сотни миллионов раз больше, чем в «нормальных» облаках межзвездного газа (см. § 2). Для насыщенного мазера (что более вероятно) величина n получается значительно больше. Полная концентрация всех атомов и молекул в области мазерного излучения должна быть по меньшей мере 106—107 см-3. Отсюда следует, что эти области никак уже нельзя рассматривать как плотные облака межзвездной среды. Скорее это похоже на разреженные атмосферы звезд-гигантов, да и линейные размеры у них одного порядка. С учетом того, что мазерный эффект уменьшает ширины линий в несколько раз, кинетическая температура среды, в которой усиливается излучение, вряд ли превосходит 2—3 тысячи кельвинов. Скорее она даже меньше. Таким образом, по своим физическим свойствам области мазерного излучения напоминают протяженные атмосферы холодных гигантских звезд.

Потоки мазерного излучения от наиболее ярких источников настолько велики, что они могли бы быть, в принципе, обнаружены даже при той чувствительности радиотелескопов, которая была в 1950—1955 гг. Для этого надо было знать «только» частоту этого излучения и упорно искать источники. Но сами мазеры были изобретены на Земле лишь в 1954 г... Об этом стоит подумать, когда говорят о роли астрономии для практики и о взаимосвязи «чистых» и «прикладных» наук... Сейчас, когда мазеры и лазеры стали могучим орудием переживаемой нами в настоящее время научно-технической революции, мы уже не удивляемся, что в естественной космической среде, при отсутствии теплового равновесия между излучением и веществом, могут реализовываться условия, приводящие к мазерным эффектам. Проблема состоит в том, чтобы понять, каким образом эти условия возникают и прежде всего – какой механизм «накачки» действует в космических мазерах?

Естественнее всего считать, что механизм накачки космических мазеров, работающих на линиях ОН и Н2О, является «радиационным». Особенно это относится к молекулам гидроксила, имеющим богатейший инфракрасный и ультрафиолетовый спектры. Можно полагать, что при отсутствии термодинамического равновесия в сравнительной близости от «сторонних» источников инфракрасного или ультрафиолетового излучения поглощение этого излучения в различных линиях и последующие «каскадные» переходы на нижележащие уровни в конечном счете могут привести к аномально высокой населенности возбужденных уровней этих молекул. Первая гипотеза о природе накачки исходила из представления, что накачка «верхнего» уровня лямбда-удвоения основного вращательного уровня молекулы ОН происходит при поглощении ультрафиолетовых квантов, соответствующих резонансному электронному переходу у этой молекулы. В этом случае длина волны излучения накачки 3080 Е.

Основанием для этой гипотезы было то, что первоначально открытые источники аномального излучения, относящиеся к первому типу, находились в областях H II, внутри которых, как известно, находятся горячие О—В-звезды (см. § 2). Можно было полагать, что излучение этих звезд в ближней ультрафиолетовой области достаточно мощно, чтобы обеспечить необходимую накачку. Увы, эти ожидания не оправдались!

Дело в том, что есть все основания полагать, что мазеры от ярких космических источников ОН (так же, как и Н2О) насыщенны. Это следует из спектрального профиля отдельных «пиков», который во всех исследовавшихся случаях является гауссовым (т. е. уменьшение интенсивности по мере удаления от центра пика следует закону I ~ e-()2, где  – расстояние от центра «пика»). Гауссов профиль является необходимым атрибутом линий насыщенного мазера. Если же мазер ненасыщенный, то интенсивность будет спадать с ростом по другому закону. Коль скоро наш мазер насыщенный, можно утверждать, что число квантов накачки должно быть никак не меньше, чем число мазерных радиоквантов, излучаемых источником. Следует, однако, помнить, что каждый ультрафиолетовый квант накачки имеет энергию в 6 105 раз большую, чем радиоквант. С другой стороны, только очень узкая полоска непрерывного спектра горячих звезд идет на накачку. Отсюда, например, следует, что в мощнейшем источнике мазерного излучения W 49 для обеспечения нужной накачки должно находиться около 1000 звезд спектрального класса О. Между тем для поддержания оптического излучения этого источника требуется не больше 10 таких горячих звезд!

Наш расчет получен в предположении, что излучение космических мазеров обладает малой направленностью, т. е. телесный угол близок к единице. Конечно, делая достаточно малым, например, 1/100, мы можем описанную выше энергетическую трудность снять. Но тогда мы неизбежно столкнемся с другой трудностью: если 1, то должно быть по крайней мере в сотни раз большее количество источников мазерного излучения, чьи «лучи» направлены мимо нас. Это потребует непомерно большого количества горячих звезд в Галактике, чего заведомо не наблюдается. Другим недостатком такого механизма накачки является сильное поглощение ультрафиолетового излучения космической пылью, в большом количестве находящейся в источниках космического мазерного излучения. Итак, механизм накачки ультрафиолетовым излучением находящихся поблизости от источников ОН горячих звезд оказался несостоятельным.

Вскоре после открытия источников мазерного излучения на линиях ОН автор этой книги в 1966 г. высказал гипотезу, что накачка может осуществляться инфракрасными квантами вращательно-колебательного спектра ОН. Источником такого инфракрасного излучения накачки могут быть звездообразные объекты, имеющие высокую светимость в длинноволновой спектральной области, т. е. сочетающие сравнительно низкую температуру поверхности и огромные линейные размеры. Вполне естественно было предположить, что такими инфракрасными объектами могут быть протозвезды. Действительно, уже на стадии свободного падения протозвезды должны быть мощными источниками инфракрасного излучения. На последующей стадии гравитационного сжатия (так называемая «стадия Хаяши» – см. § 5) протозвезды также должны быть источниками мощного инфракрасного излучения, так как их поверхностные температуры в течение довольно длительного времени поддерживаются на постоянном уровне, близком к 3500 К. Заметим, что в 1966 г. были известны только источники ОН, отождествляемые с зонами Н II, в которых имеются молодые звезды, входящие в ассоциации, и где, как можно полагать, процесс звездообразования продолжается «на наших глазах» либо недавно кончился. Итак, нами была высказана гипотеза, что мазерные источники ОН связаны с рождением звезд, а механизмом накачки является инфракрасное излучение протозвезд.

Эта гипотеза сразу же привлекла к себе внимание и в последующие годы интенсивно разрабатывалась рядом авторов. Одновременно шел быстрый процесс накопления наблюдательного материала, приведший к выяснению структуры источников, их отождествлению с другими объектами и классификации на три группы. Говоря о накачке инфракрасными квантами, следует иметь в виду два совершенно различных процесса. Во-первых, накачка может осуществляться квантами близкой инфракрасной области с длиной волны 2,8 мкм. Такие кванты возбуждают высшие колебательные уровни молекул ОН, переходы с которых «вниз» могут создать «избыточную» населенность исходного для излучения линии 18 см уровня. Во-вторых, накачка может осуществляться «далекими» инфракрасными квантами с длинами волн 120 и 80 мкм, возбуждающими вращательные уровни ОН. Развитие теории потребовало значительного усложнения картины накачки. В частности, при расчете накачки «далекими» инфракрасными «вращательными» квантами потребовалось рассмотрение процессов многократного рассеяния таких квантов в среде, где находятся молекулы ОН. Тщательные вычисления показали, что одни лишь «вращательные» кванты могут обеспечить мазерный эффект только для компонент лямбда-удвоения с частотами 1612 и 1720 МГц. Таким образом, они не могут обеспечить избыточную населенность для исходных уровней основных компонент линии 18 см – 1665 и 1667 МГц, которые как раз характерны для источников первого типа. Однако и результат для линии 1612 МГц представляет большой интерес. Учет одновременного присутствия большого количества квантов в «близкой» инфракрасной области при достаточно высокой кинетической температуре среды ( 2000 К) дополнительно даст сравнительно небольшую избыточную населенность и для «верхних» уровней линий 1665 и 1667 МГц. Следовательно, при таких условиях можно ожидать очень яркую линию 1612 МГц и значительно более слабые линии 1665 и 1667 МГц, между тем как линия 1720 МГц должна быть в поглощении. Но как раз это и наблюдается для источников излучения ОН II типа, отождествляемых с инфракрасными звездами!

Лучше всего исследован источник этого типа, отождествляемый с незадолго до этого открытой инфракрасной звездой NML Лебедя. Эта звезда находится сравнительно близко от Солнца. Подобные объекты представляют собой красные гигантские звезды «позднего» спектрального класса М с очень большим избытком инфракрасного излучения в диапазоне 2—5 мкм. Указанный инфракрасный избыток объясняется плотной пылевой оболочкой, окружающей эти звезды. Такая оболочка поглощает излучение своей «центральной» звезды, нагревается до температуры 600—800 К и переизлучает его в инфракрасную область. Наряду с мазерным излучением в линии 1612 МГц эти звезды излучают также мазерное излучение в линии паров воды 1,35 см. У звезд такого типа наблюдается несколько компонент линии 1612 МГц, немного отличающихся по частоте. Обычно эти компоненты образуют в каждой звезде две группы, причем спектральное расстояние между этими группами соответствует разнице «доплеровских» скоростей в несколько десятков километров. Эти группы называются «красная» (с большей лучевой скоростью) и «синяя». Скорее всего, наличие этих двух групп линий связано с вращением звезды. Очень возможно, что объекты типа NML Лебедя представляют собой не звезды, а протозвезды, хотя это пока еще не доказано. Вообще, проблема далеко не так проста. Дело осложняется еще и тем, что некоторые красные сверхгиганты с неправильно сильно меняющимся блеском типа знаменитой звезды «Мира Кита» также обнаруживают мазерные линии излучения 1612 МГц (ОН) (довольно умеренной интенсивности) и линию водяного пара 1,35 см. В инфракрасном спектре поглощения у этих звезд обнаружены линии водяного пара. Но звезды типа Миры Кита заведомо не являются молодыми, что следует хотя бы из их пространственного распределения.

Этот пример показывает, что излучение мазерных линий может и не быть связанным с процессами звездообразования. Поэтому очень актуальной задачей современной астрономии является выяснение возраста объектов типа NML Лебедя.

Источники мазерного излучения ОН третьего типа, в которых усиливается линия 1720 МГц, скорее всего генетически связаны с расширяющимися туманностями – остатками вспышек сверхновых звезд (см. часть III). Следует, впрочем, заметить, что мазерные источники «III типа» пока еще очень плохо исследованы. По-видимому, за фронтом ударной волны, вызываемой в межзвездной среде взрывом сверхновой (см. § 16), образуется плотный, довольно холодный газ с большим содержанием молекул.

Но вернемся к источникам ОН и Н2О первого типа, находящимся в зонах Н II. Ведь именно эти источники скорее всего связаны с процессом звездообразования. Следует заметить, что в непосредственной близости от таких источников наблюдаются как «точечные» (т. е. «звездообразные»), так и протяженные инфракрасные источники. Следовательно, возможность накачки инфракрасными квантами пока исключить нельзя. Тем не менее в последнее время для таких мазерных источников все большее предпочтение исследователи оказывают химическим механизмам накачки.

Выше были получены (правда, весьма грубо) самые общие физические характеристики мазерных источников. Напомним, что эти источники должны представлять собой довольно плотные газовые облака, кинетическая температура которых может быть 1—2 тысячи градусов, а размеры близки к размерам красных сверхгигантов. Протяженность областей мазерного усиления для самых ярких источников в линии Н2О, следующая из наблюдаемых 5-минутных вариаций потока, вряд ли превышает «астрономическую единицу» – расстояние от Земли до Солнца, равное 1,5 1013 см. Тогда из теории насыщенного мазера (см. формулу (4.8), где Wн1 с-1) следует, что концентрация «рабочих молекул» воды должна быть 106 см-3, а полная концентрация всех молекул (преимущественно Н2) должна быть 1010 см-3. При такой высокой плотности весьма велика вероятность столкновения между частицами. Например, обычная «газо-кинетическая» частота столкновений WсnH2 V1 с-1, где 10-15 см2 – поперечное сечение молекулы, V105 см/с – ее скорость (при оценке величины n мы приняли WнWс). Среди столкновений будут и такие, которые сопровождаются образованием возбужденных молекул ОН. В результате такого «химического возбуждения» может возникнуть избыточная населенность исходных для излучения радиолиний ОН и Н2О уровней.

Следует заметить, что эта проблема кинетики химических реакций довольно сложна и окончательного решения вопроса о возможности химической накачки космических мазеров пока еще нет. Разными авторами рассчитывались различные реакции, которые, по идее, могли бы обеспечить химическую накачку космических мазеров. Укажем, например, на такие реакции:


(4.9)

Значок «звездочка» означает возбужденное состояние молекулы. Некоторые из предложенных реакций являются экзотермическими (например, реакция образования воды ОН + Н2Н2О + Н + 0,69 эВ). Сравнительно высокая кинетическая температура газа поэтому является благоприятным фактором. Очень перспективно образование возбужденных молекул ОН и Н2О на фронте ударной волны. Такие волны следует ожидать в протозвездах на самых поздних фазах стадии свободного падения, а также в «старых» остатках сверхновых (см. ниже). Возбужденные молекулы ОН могут образовываться также при столкновении молекул воды со сравнительно энергичными атомами или ионами водорода:


(4.10)

Для этого механизма накачки большой трудностью является вопрос: откуда берутся такие энергичные атомы или ионы атомарного водорода? Возможно, что и в этом случае ударные волны могут «спасти положение». Наконец, не следует забывать о наличии большого количества пылинок в области генерации мазерного излучения. Пылинки могут быть катализаторами химических реакций, приводящих к образованию возбужденных молекул ОН и Н2О. Кроме того, сравнительно быстрые протоны, которые могут образовываться на фронтах ударных волн, будут просто «выбивать» возбужденные молекулы ОН из поверхностного слоя «ледяных» пылинок, вернее,– кристалликов льда.

Мы видим, что проблема накачки космических мазеров первого типа может быть и, по-видимому, является труднейшей проблемой современной «астрохимии». Можно, однако, надеяться, что она будет решена в близком будущем.

В заключение этого параграфа мы резюмируем аргументы в пользу связи источников мазерного излучения радиолиний ОН и Н2О с областями, где происходит процесс звездообразования.

1. Многие, хотя и не все, мазерные источники связаны с яркими зонами H II. Эти области межзвездной среды возбуждаются к свечению очень горячими массивными звездами спектральных классов О и В, которые, как будет показано ниже, являются молодыми объектами. Вместе с тем нужно подчеркнуть, что далеко не во всех зонах H II наблюдаются мазерные источники. В этой связи следует заметить, что возраст различных зон H II меняется в довольно широких пределах – от нескольких десятков тысяч до нескольких миллионов лет. Похоже на то, что мазерные источники ОН и Н2О группируются преимущественно в молодых зонах Н II. Хорошим примером «молодой» зоны Н II является известная туманность Ориона.

2. Вскоре после открытия космических мазеров в зонах Н II, где они наблюдаются, были обнаружены до тех пор неизвестные радиоисточники нового типа. Их спектр оказался по своему характеру тепловым, а угловые размеры очень малыми – порядка нескольких секунд дуги. Стало ясно, что излучают малые, довольно плотные облака плазмы, нагретые до температуры около 10 000 К. То, что эти источники по своей природе являются тепловыми, наглядно доказывается наличием в их спектре рекомбинационных радиолиний водорода (см. § 2). Описанные источники получили название «компактных H II областей». Линейные размеры этих образований порядка 0,1 парсека, а концентрация электронов в них 104—105 см-3, т. е. в сотни раз больше среднего значения для ярких H II областей. Компактные H II области ионизованы и излучают только потому, что внутри них должна находиться горячая О—В звезда. Но такие звезды там не наблюдаются, так же как не наблюдаются и сами компактные H II области в оптических лучах. Вывод отсюда только один: там имеется огромная толща поглощающей свет пыли. С другой стороны, плотность окружающей среды, как правило, ниже, чем внутри компактной H II зоны, где температура в сотню раз выше. Следовательно, внешнее давление никак не может остановить расширение компактной зоны Н II и последующее ее рассеяние за время порядка нескольких десятков тысяч лет. Значит, компактные Н II зоны и находящиеся внутри них горячие массивные звезды представляют собой «ультрамолодые» объекты: они образовались «на памяти» кроманьонского человека! Откуда же взялся там газ, масса которого порядка нескольких солнечных масс или даже больше? Все говорит о том, что этот газ – «остаток» диффузной среды, из которой образовалась звезда. Там очень много пыли, делающей такой объект совершенно непрозрачным для оптических лучей. Поэтому находящиеся внутри компактных H II областей звезды получили образное название «звезды-коконы». Исключительный интерес представляет то обстоятельство, что очень многие мазерные источники ОН и Н2О, принадлежащие к первому типу, в пределах ошибок наблюдений (которые очень малы, порядка секунды дуги) совпадают с компактными Н II областями. Тесная ассоциация мазерных источников первого типа с компактными H II областями, несомненно, доказывает их молодость и прямую связь с процессом звездообразования (см. § 5).

3. Многие мазерные источники первого типа отождествляются с «точечными» инфракрасными источниками. В данном случае слово «точечные» означает, что их угловые размеры меньше 2. Такие инфракрасные объекты наблюдаются, в частности, в туманностях Ориона, W 3 и W 49, где находятся самые яркие мазерные источники. Тщательные исследования типичного «точечного» инфракрасного источника в туманности Ориона (он там находится рядом с источником длинноволнового инфракрасного излучения с угловым диаметром около 30, о котором речь шла выше) показали, что его никак нельзя рассматривать как «нормальную» звезду высокой светимости, погруженную в плотное пылевое облако. Вычисленный по его излучению диаметр точечного источника в Орионе равен 50 астрономическим единицам, в то время как в W 3 он около 600. Температура излучающего плотного газово-пылевого облака, которым является такой источник, равна соответственно 550 и 350 кельвинов. Полная светимость таких объектов в тысячи раз превышает светимость Солнца. Таким образом, вся совокупность наблюдений говорит о том, что эти объекты являются не чем иным, как протозвездными оболочками. Более подробно об этом будет говориться в § 5.

Итак, мы можем теперь с полным основанием сказать, что образовавшиеся из диффузной межзвездной среды протозвезды как бы «громко кричат», используя для этого новейшую технику квантовой радиофизики... Что касается «первых шагов» новорожденных звезд, то об этом будет разговор в следующем параграфе.


    Ваша оценка произведения:

Популярные книги за неделю