Текст книги "Звезды: их рождение, жизнь и смерть"
Автор книги: Иосиф Шкловский
Жанры:
Физика
,сообщить о нарушении
Текущая страница: 29 (всего у книги 31 страниц)
Долгие годы, несмотря на ряд попыток, никак не удавалось доказать двойственность самого яркого рентгеновского источника Скорпион Х-1. Это оказалось очень трудной задачей, так как на ожидаемое регулярное изменение блеска оптической звезды, отождествляемой с этим источником, накладывались беспорядочные изменения с большой амплитудой. В то же время никакой периодичности в рентгеновском излучении (типа той, которая наблюдается у Центавра Х-3 и Геркулеса Х-1) у Скорпиона Х-1 не было обнаружено. Последнее обстоятельство, конечно, не является аргументом против двойственности этого источника: ведь вполне возможно, что плоскость орбиты наклонена под большим углом к лучу зрения!
Только в 1975 г. американским астрономам из анализа оптических наблюдений удалось найти орбитальный период Скорпиона Х-1, оказавшийся равным 0,787 ± 0,006 суток. Масса каждой из компонент меньше 2M, а скорость системы 145 км/с, т. е. очень велика.
Было также показано, что яркий источник Лебедь Х-2 представляет собой двойную систему с малой массой (MO2M, MX1M), сходную со Скорпионом Х-1 и Геркулесом Х-1. Орбитальный период Лебедя Х-2 T = 0,86 дня, а расстояние 2 кпс.
Особый интерес представляет проблема радиоизлучения рентгеновских звезд. Несколько таких объектов (например, Скорпион Х-1, Лебедь Х-1) оказались источниками очень слабого, переменного радиоизлучения. Заметим, однако, что само по себе это не является проблемой. В последние годы радиоизлучение было обнаружено от нескольких тесных двойных систем, в частности, от Алголя и Лиры. В таких системах мощные потоки газовых струй должны приводить к значительному радиоизлучению. Однако в сентябре 1972 г. наблюдалось уже не совсем обычное явление. Поток очень слабого радиоизлучения от рентгеновской звезды Лебедь Х-3 скачком увеличился в 2000 раз! Вспышка длилась несколько дней, спустя две недели она повторилась. Во время вспышки радиоисточник Лебедь Х-3 оказался одним из самых ярких на небе на сантиметровых волнах. Это позволило, в частности, по «пропечатавшимся» в его спектре межзвездным радиолиниям поглощения 21 и 18 см определить расстояние до него, оказавшееся около 7000 пс. Мощный всплеск радиоизлучения объясняется выбросом облака релятивистских частиц и плазмы. Странно, что рентгеновское излучение этого источника не претерпело при этом никаких изменений. По-видимому, детальное изучение рентгеновских звезд принесет астрономам еще много неожиданностей.
В 1978 г. внимание астрономов было сконцентрировано на совершенно уникальном объекте SS 433. Поразительной особенностью этого звездообразного источника является наличие в его спектре водородных и гелиевых эмиссионных линий, длины волн которых меняются с периодом 164 дня. Каждая «стационарная» линия водорода и гелия имеет по обе стороны от себя две «подвижные» линии, сильно смещенные в красную и фиолетовую части спектра. На рис. 23.12 приведена кривая лучевых скоростей. Обращает на себя внимание ее огромная амплитуда. По характерной кривой лучевых скоростей не представляет особого труда построить кинематическую модель SS433. Она сводится к представлению, что из этого источника в двух противоположных направлениях выбрасываются две газовые струи с огромной скоростью v = 0,27c или 81 000 км/с, причем ось, вдоль которой происходит выбрасывание газа, прецессирует с периодом 164 дня. Этот звездообразный объект находится внутри давно уже известной радиотуманности W 50 – явном остатке сверхновой, имеющем форму неполной оболочки. Объект SS433 является источником рентгеновского излучения, так же как и радиотуманность W 50.
Рис. 23.12: Часть спектра SS 433, на которой видна очень интенсивная «несмещенная» линия Н ( = 6563 Å), с обеих сторон от которой видны две компоненты той же линии с сильным красным (7400—7500 Å) и фиолетовым (6100—6200 Å) смещением. Спектры получены в течение грех последовательных ночей. Отчетливо видно прогрессивное смещение красной и фиолетовой компонент. |
Дальнейшие оптические наблюдения показали, что блеск SS 433 меняется с периодом 13,1 суток. Эти изменения объясняются двойственностью объекта, В этом случае мы наблюдаем в оптических лучах своеобразную «затменную переменную» (см. рис. 23.13), одной компонентой которой является массивная горячая голубая звезда – сверхгигант, другой – плотный, горячий газовый диск, окружающий вторую, весьма компактную компоненту– нейтронную звезду или черную дыру. Этот диск образуется путем перетекания мощной струи газа от звездной компоненты через лагранжеву точку L (см. рис. 14.1). В отличие от других аналогичных систем (например, Лебедь Х-1, Центавр Х-3), скорость перетекания очень велика – до 10-4M/год– в десятки тысяч раз больше, чем в системе Лебедь Х-1. Такая фаза «быстрого перетекания» соответствует «сверхкритической» аккреции и длится сравнительно недолго, 104 лет. При сверхкритической аккреции почти весь перетекающий газ выталкивается из диска силой светового давления. Это и является причиной вытекания двух струй в направлениях, перпендикулярных к плоскости газового диска (рис. 23.14). Так как эта фаза эволюции является кратковременной, число объектов, подобных SS 433, должно быть в нашей Галактике весьма незначительным.
Рис. 23.13: Кривая лучевых скоростей для «красной» и «фиолетовой» компонент SS 433. По оси абсцисс внизу отложены даты в юлианских днях, вверху – даты обычного календаря. |
Рис. 23.14: Рентгеновское изображение SS 433, полученное на обсерватории «Эйнштейн». Около 10% всего излучения исходят от двух вытянутых струй, симметрично расположенных по отношению к источнику. |
Радиоинтерференционные наблюдения выявили излучение струй и убедительно доказали прецессионный характер их движения. С этими струями также связано рентгеновское излучение W 50. Изучение удивительных явлений, происходящих в SS 433, позволило лучше понять характер эволюции массивных двойных систем и связанных с ними рентгеновских и радиоисточников.
В высшей степени интересным, но пока еще загадочным является открытие импульсов жесткого рентгеновского (или мягкого гамма-) излучения космического происхождения. Хотя первые публикации появились во второй половине 1973 г., само открытие было сделано в 1967 г. Его история весьма любопытна.
Как известно, СССР и США заключили в свое время договор о прекращении ядерных взрывов в атмосфере и на поверхности Земли. Подавляющее большинство стран (к сожалению, не все) присоединились к этому соглашению. Для контроля над подобными, взрывами США запустили на большую высоту серию искусственных спутников «Вела», оснащенных специальными регистрирующими приборами. В числе этих приборов были также детекторы мягкого гамма-излучения в диапазоне энергии квантов 0,2—2 МэВ. Чувствительность этих детекторов почти не зависела от направления прихода гамма-излучения, т. е. они были практически «изотропными». Однако в случае, когда гамма-излучение носит импульсный характер (что как раз и следует ожидать во время ядерных испытаний), направление прихода можно зарегистрировать, если известны разности моментов прихода импульсов на разных спутниках контрольной системы. Это, конечно, требует непрерывной регистрации уровня гамма-излучения, наблюдаемого на разных спутниках, с точностью не меньшей, чем 10-2 с.
Велико же, по-видимому, было изумление работников этой «патрульной службы», когда они обнаружили, что временами наблюдаются довольно интенсивные кратковременные импульсы жесткого излучения, не связанные ни с Землей, ни с Солнцем. В тех очень редких случаях, когда удавалось определить координаты (с точностью около 5°), галактические широты источников этого загадочного излучения оказались весьма значительными. Это может означать, что либо источники находятся в Метагалактике, либо они сравнительно близки к Солнцу (например, удалены от нас на расстояния, не превышающие сотню парсек). Раньше чем обсуждать обе эти возможности, остановимся более подробно на наблюдаемых характеристиках этих пока еще загадочных импульсов.
Прежде всего довольно ясно, что если эти импульсы были обнаружены при помощи «патрульной» аппаратуры, отнюдь не предназначенной для астрономических наблюдений, потоки излучения должны быть достаточно велики. И действительно, при наблюдаемой длительности явления в несколько десятков секунд поток в указанном выше интервале энергий квантов достигает 10-4 эрг/см2с, что в несколько сотен раз превышает полный поток от самого яркого из космических источников рентгеновского излучения, источника Скорпион Х-1. Заметим, однако, что последний излучает преимущественно в мягком рентгеновском диапазоне с энергией квантов в несколько килоэлектронвольт. В диапазоне же около 1 МэВ поток излучения от загадочных космических импульсных источников зачастую превосходит поток от солнечных вспышек и на много порядков превышает потоки от других космических источников.
Естественно, что такое выдающееся явление, как импульсы космического гамма-излучения, стало объектом исследования также и на других спутниках. И хотя после первого известия об обнаружении загадочных импульсов прошло не так уж много времени, сейчас (1983 г.) кое-что прояснилось.
Прежде всего установлено, что спектр космических импульсов простирается в значительно более «мягкую» область, по крайней мере до 10 кэВ. Установлено также, что где-то около энергии квантов E1200 кэВ этот спектр довольно круто (экспоненциально) обрывается, в то время как для E < E1 спектр убывает с ростом E по степенному закону FF-, где ,5, и меняется как для разных источников, так и для одного и того же источника с течением времени. В последнем случае, по-видимому, «жесткость» спектра растет вместе с ростом потока.
Очень интересна «временная» структура импульсов. Они состоят из отдельных весьма интенсивных «всплесков» длительностью около секунды, разделенных промежутком времени 10 с. Полная длительность импульсов, как уже говорилось выше, порядка нескольких десятков секунд. Во время «всплеска» поток излучения достигает максимума очень быстро, за время во всяком случае меньшее, чем 0,1 с. Это означает, что линейные размеры излучающей области довольно незначительны, меньше 10 000 км.
Всплески, в течение которых излучается энергия > 10-4 эрг/см2, наблюдаются один раз в несколько месяцев. Естественно, что всплески, при которых выделяется меньшая энергия, должны наблюдаться значительно чаще, так как они должны исходить от более удаленных, а потому и более многочисленных источников.
Учитывая наблюдаемые свойства импульсов жесткого излучения, вряд ли, по нашему мнению, их можно считать метагалактическими объектами. В принципе, мощное жесткое излучение можно ожидать при вспышках сверхновых звезд. Однако никакой корреляции между вспышками сверхновых, имевшими место в других галактиках за последние несколько лет, и импульсами жесткого излучения не обнаружено. В этой связи заметим, что в 1972 г. вспыхнула сверхновая в довольно близкой к нам галактике NGC 5253 (см. § 15). Никакого импульса жесткого излучения, однако, при этом обнаружено не было.
Определение координат космических импульсных гамма-источников является довольно сложной задачей. Это можно сделать, в принципе, зная моменты регистрации начала импульсов на разных детекторах, удаленных друг от друга на как можно большее расстояние. Чем больше расстояние, тем выше точность локализации источников на небе.
В 1978 г. на борту двух советских межпланетных станций «Венера-11» и «Венера-12» были установлены детекторы мягкого гамма-излучения. Там же были установлены приборы для регистрации моментов времени с точностью 2—3 миллисекунды. Одновременно на околоземной орбите находился советский спутник «Прогноз-7», на котором была установлена такая же аппаратура. Эти наблюдения проводились в содружестве с французскими учеными.
Всего за 11/2 года работы удалось наблюдать свыше 150 гамма-импульсов. В отдельных случаях их координаты определялись с точностью, превосходящей 1. Особенно интересны были наблюдения исключительно мощного всплеска 5 марта 1979 г., у которого удалось выявить 8-секундную периодичность в потоке излучения. Это доказывает, что излучают вращающиеся нейтронные звезды. Большой интерес представляют десятки спектров гамма-импульсов, анализ которых пока не закончился. В высшей степени важно то, что ни одного оптического объекта до 23 звездной величины на месте гамма-импульсных источников пока не найдено. Это может означать, что вспышки связаны с одиночными нейтронными звездами. В противном случае наблюдался бы оптический компонент двойной системы.
Тем больший интерес представляют результаты анализа старых пластинок Гарвардского Патруля, на которых была сфотографирована область неба, где 19 ноября 1978 г. наблюдался яркий гамма-импульс. Координаты источника этого импульса были измерены на космических аппаратах «Венера-11» и «Венера-12» с точностью, превосходящей 1. Эта область фотографировалась 17 ноября 1928 г. Всего последовательно были получены 4 пластинки, причем время экспозиции каждой из них было 40m. На второй пластинке, в точности на том же месте, где спустя полвека наблюдался гамма-импульс, было получено довольно яркое пятнышко, соответствующее звездному объекту 10-й величины. На остальных пластинках никаких объектов ярче 15-й величины не было. Тщательный анализ удивительного пятнышка позволил прийти к выводу, что наблюдалась вспышка оптического излучения, длительность которой была во всяком случае меньше 10 минут. Недавно выполненные наблюдения на большом оптическом телескопе обнаружили на месте гамма-вспышки 19 ноября 1928 г. очень слабый объект 23-й величины.
Вряд ли можно сомневаться в том, что 17 ноября 1928 г. наблюдалась вспышка оптического излучения, скорее всего сопутствующая гамма-импульсу. Жалко, конечно, что тогда не было гамма-астрономии... Важным результатом описанных наблюдений является установление повторности вспышек. В случае явления 19 ноября 1978 г. интервал времени между импульсами, вероятно, меньше 50 лет или равен этой величине. Любопытно, что из всех гамма-импульсов, зарегистрированных на советских автоматических межпланетных станциях, не было ни одного «повторяющегося», т. е. принадлежащего одному и тому же источнику. Это обстоятельство имеет большое значение для оценки полного количества источников импульсного гамма-излучения.
При современной чувствительности детекторов этого излучения можно зарегистрировать (в среднем, конечно) 1 импульс в день. Если за пару лет работы детекторов не было замечено ни одного повторного импульса, то для данного источника средний интервал между ними заведомо превосходит 2—3 года. С другой стороны, в случае явления 19 ноября 1978 г. этот интервал, как мы видели, равен (или меньше) 50 годам. Можно, очень грубо, конечно, принять, что средний интервал между гамма-импульсами у источников составляет примерно 10 лет. За это время с современными средствами можно было наблюдать 3000 источников. Но все они (в среднем) – сравнительно близкие объекты. Из распределения источников импульсного излучения по небу следует, что никакой реальной концентрации их к галактической плоскости нет. Это означает, что даже слабейшие из них находятся от нас на расстоянии, меньшем, чем половина толщины «диска», соответствующего их пространственному распределению. Так как потоки излучения от самых ярких гамма-импульсов в несколько сот раз больше, чем от самых слабых, то последние находятся от нас в среднем в 20—30 раз дальше, чем самые близкие (и, следовательно, в среднем самые яркие) источники. Например, если самые близкие источники импульсного гамма-излучения удалены на расстояние 30 пс (расстояние до ближайших пульсаров), то самые слабые (т. е. в среднем далекие) будут находиться на расстоянии 1000 пс. Следовательно, мы можем наблюдать импульсные источники внутри сферы радиуса 1000 пс, что составляет 3 10-4 объема Галактики. Значит, полное количество импульсов в Галактике за 10 лет составляет 107. Одновременно мы таким образом получаем оценку полного количества источников импульсного гамма-излучения, так как среднее время между импульсами у одного источника выше было принято равным 10 годам.
Наша оценка, конечно, является очень грубой, а главное – содержит произвольные элементы (например, расстояние до ближайших источников). Дальнейшие наблюдения, особенно более слабых импульсов, позволят эту оценку существенно уточнить. Тем не менее уже сейчас видно, что полное число источников импульсного гамма-излучения в Галактике очень велико: оно заключено, вероятно, между 106 и 108. Ничего удивительного в этом нет. Вряд ли можно теперь сомневаться в том, что источниками импульсного гамма-излучения являются нейтронные звезды, число которых в Галактике должно быть очень велико, 108. Это следует из частоты вспышек сверхновых II типа, в результате которых и образуются нейтронные звезды. Создается впечатление, что существенная, если не большая часть нейтронных звезд, когда-либо образовывавшихся в Галактике, время от времени излучает гамма-импульсы. Речь идет, главным образом, о старых объектах, возраст которых исчисляется многими миллиардами лет. Мы приходим к представлению, что более или менее периодически повторяющиеся всплески мягкого гамма-излучения есть фундаментальное свойство нейтронных звезд. Таким же свойством является их радиоизлучение, проявляющееся в феномене пульсаров. Однако, как мы видели в § 21, пульсары – это сравнительно молодые нейтронные звезды, возраст которых 2—3 миллиона лет, между тем как способность к импульсному гамма-излучению нейтронные звезды, по-видимому, сохраняют «до глубокой старости», когда их возраст исчисляется уже миллиардами лет.
Пока вопрос о причине самого явления гамма-всплесков у нейтронных звезд покрыт густым туманом. Можно только высказывать разного рода гипотезы. При всех условиях важно оценить энергетические соотношения. Если принять, что расстояние до ближайших источников импульсов около 30 пс, а поток энергии в импульсе 10-4 эрг/см2, то полная энергия излучения будет 1037 эрг. За несколько миллиардов лет будет излучено 3 1045 эрг – величина, ничтожно малая по сравнению с энергией гравитационной связи нейтронной звезды ( 1053 эрг). Квазипериодический характер явления наводит на мысль о постепенном накоплении какой-то неустойчивости, которая время от времени как бы «сбрасывается». Вполне возможно, что существует глубокая связь между описанными в § 21 «звездотрясениями» и всплесками гамма-излучения. Такое «звездотрясение» может привести к сильнейшему возмущению магнитосферы нейтронной звезды, стимулирующему всплеск гамма-излучения. Другая гипотеза исходит из аналога «вулканического извержения», когда богатая нейтронами неравновесная материя недр нейтронной звезды прорывается через «трещины» на ее поверхность...
Только будущие наблюдения помогут сделать правильный выбор между различными, как правило, довольно экзотическими возможностями объяснения природы космических гамма-импульсов.
1975 год в рентгеновской астрономии прошел под знаком рентгеновских всплесков. Одновременно работающие три спутника – «АНС», «SAS-3» (США) и «Ариэль» (Англия) непрерывно получали богатый наблюдательный материал. Было установлено, что всплески, исходящие от NGC 6624, почти периодичны; наблюдалась последовательность всплесков, разделенных промежутками времени 0,22 суток. Впрочем, через месяц этот интервал сильно укоротился. Вскоре были обнаружены рентгеновские всплески от других шаровых скоплений, например, NGG1851, NGC 6388, NGC6541 и ряда других. Очень интересный источник рентгеновских всплесков был обнаружен около галактического центра. «Квазипериод» рентгеновских всплесков в этом случае оказался рекордно коротким, около 17 с. От этого источника уже наблюдалось несколько тысяч импульсов (см. рис. 23.15).
Любопытно отметить, что мощность каждого отдельного всплеска от указанного источника тем больше, чем длительнее «спокойный» интервал времени до последующего всплеска. Создается определенное впечатление, что всплеск определяется постепенным «накоплением» некоторого запаса энергии, которая затем быстро освобождается. Это может быть, например, накоплением газа в сильном магнитном поле магнитосферы нейтронной звезды с последующим быстрым «высыпанием» на ее поверхность. После того, как координаты этого источника были определены с точностью 1, на его месте в красных лучах было обнаружено дотоле неизвестное (из-за сильного межзвездного поглощения света) шаровое скопление.
В настоящее время (начало 1983 г.) 12 (из 35) таких источников рентгеновского излучения (получивших название «барстеров») отождествляются с шаровыми скоплениями, вернее, с их самыми центральными частями.
Рис. 23.15: Запись всплеска рентгеновского излучения от источника МХВ 1728—34. |
Тот факт, что пространственное распределение барстеров такое же, как и шаровых скоплений, означает, что эти рентгеновские источники принадлежат к старейшему («второму») типу звездного населения нашей Галактики. По-видимому, значительная, если не большая, часть рентгеновских источников в туманности Андромеды (см. рис. 23.2) является барстерами. В этой галактике 17 из 224 обнаруженных рентгеновских источников находятся в шаровых скоплениях. Всего в М 31 насчитывается 237 шаровых скоплений, в то время как в нашей Галактике их около 150.
Выше, на стр. 696, мы уже говорили о двух типах рентгеновских источников в Галактике, имеющих, соответственно, «плоское» и «полусферическое» распределение. Теперь мы можем первые отождествить с массивными двойными системами типа Центавр Х-3, у которых «оптическим» компонентом является голубой массивный сверхгигант. Источники второго типа – это барстеры и сходные с ними старые объекты, у которых мощность рентгеновского излучения примерно такая же, как у источников I типа, но зато мощность оптического излучения в 1000 раз меньше. Хотя двойственность барстеров пока еще не доказана прямыми наблюдениями, вряд ли в этом можно сомневаться. Напрашивается вывод, что у барстеров и сходных с ними объектов оптическим компонентом является маломассивный красный карлик. Объектами, сходными по своей природе с барстерами, могут быть ярчайшие источники Скорпион Х-1 и Лебедь Х-2.
Вернемся теперь к «обычным» барстерам. Доказано, что они испускают рентгеновское излучение и в промежутках между вспышками. Существенно, что энергия, излученная между вспышками, примерно в сто раз превышает энергию, излученную при вспышках. Это обстоятельство имеет решающее значение для понимания природы рентгеновского излучения барстеров. Излучение барстеров в промежутках между вспышками обусловлено аккрецией газа от второго компонента двойной системы, подобно тому, как это происходит в массивных двойных системах. Однако, по мере накопления вещества на поверхности нейтронной звезды, возникают благоприятные условия для термоядерного взрыва на ее поверхности, вызывающего мощную вспышку рентгеновского излучения. При такой вспышке на грамм вещества выделяется c2 энергии (где = 10-3 – «упаковочный эффект» при синтезе ядер), а при аккреции на нейтронную звезду 0,1c2 эрг/г. Теперь понятно, почему энергия, излучаемая между всплесками, примерно в 100 раз превосходит энергию, излучаемую при всплесках[ 59 ] 59
У барстера, расположенного около галактического центра (см. выше), наряду с 17-секундными импульсами, вызванными аккрецией газа, обнаружены значительно более «редкие» всплески термоядерного происхождения.
[Закрыть].
Существует полная аналогия между барстерами и обычными новыми звездами, вспышки которых обусловлены термоядерными взрывами водорода, скапливающегося на поверхности белого карлика. Оптической астрономии давно известны пекулярные звездные объекты, являющиеся тесными двойными системами, одна из компонент которых – белый карлик. Можно провести интересную аналогию между такими системами и системами, содержащими нейтронную звезду. Заметим, что свойства тесных двойных систем зависят еще от характера перетекания вещества на компактный объект (звездный ветер, перетекание через лагранжеву точку).
У классических новых звезд дана компонента (некомпактная) – красный карлик, а другая – белый, причем перетекание вещества осуществляется через лагранжеву точку. Если же одной из компонент белого карлика является красный гигант, наблюдаются «новоподобные» звезды. Их «рентгеновским аналогом» могут служить некоторые «временные» источники, о которых речь шла выше. У карликовых новых типа U Близнецов (см. гл. 14) ядерные вспышки на поверхности белого карлика не происходят. Рентгеновским аналогом таких систем могут быть старые источники типа Скорпион Х-1 и Лебедь Х-2.
Огромное увеличение чувствительности детекторов рентгеновского излучения на космической обсерватории «Эйнштейн» открыло возможность изучать сравнительно слабые источники. Было открыто и исследовано рентгеновское излучение от многих десятков звезд – «карликовых» новых типа U Близнецов, новоподобных и других пекулярных объектов. Исключительный интерес представляет исследование обычных звезд главной последовательности, рентгеновское излучение которых обусловлено их коронами. Сравнительный анализ корон у звезд разных спектральных классов совершенно по-новому поставил проблему солнечной активности.
Вернемся теперь к проблеме барстеров. Как объяснить тот удивительный факт, что более 1/3 их входят в состав шаровых скоплений, в которых заключена всего 1/3000 всех старых звезд? Скорее всего, такие двойные системы (красный карлик плюс нейтронная звезда) образовались только при захватах до этого одиночных звезд. При этом избыток энергии шел на возбуждение колебаний в толще красного карлика. Очевидно, захваты могли происходить только там, где звездная плотность очень велика, а относительные скорости малы. Такие условия реализуются в ядрах шаровых скоплений. Некоторые барстеры со временем могли покидать шаровые скопления. Да и шаровые скопления могли разрушаться. Именно таким образом могли возникнуть барстеры, не связанные с шаровыми скоплениями.