Текст книги "Формы в мире почв"
Автор книги: Игорь Степанов
Жанры:
Биология
,сообщить о нарушении
Текущая страница: 6 (всего у книги 11 страниц)
Совмещение мощностей светлозема и подзолистой почвы свидетельствует о наличии у них не только общих геометрических свойств, но и закономерных физических противоположностей: в светлоземе (х) накапливаются карбонаты, а из подзола (1/х) они выносятся; в светлоземе щелочная реакция, а в подзоле – кислая. Тогда возможна запись: если X∈С, то 1/х∈С. Здесь х означает какие-то свойства почвы (степень карбонатности, pH), С – группа симметрии, ∈ – знак принадлежности.
Таким образом, на модели Захарова выполняются условия, определяющие группу: 1) в совокупность вошла единичная, или тождественная, операция, не изменившая структуру модели – поворот на 360°; 2) найдена обратная операция, сохранившая свойства модели – зеркальное отражение и поворот на 180°; 3) для операций выполняется ассоциативный (сочетательный) закон. Совокупность этих трех операций и называется группой операций, или группой преобразований. Выявление групп при изучении почвенных форм, явлений и процессов – важнейшая задача.
ГЛОБАЛЬНАЯ ОДНОМЕРНАЯ МОДЕЛЬ
ПОЧВЕННОГО ПРОСТРАНСТВА

Рис. 11. Одномерная модель структуры почвенной поясности Земли
Одномерная модель (рис. 11) развивает геометрические представления Я. Н. Афанасьева и С. А. Захарова. Прямая линия рассекает северное и южное полушария, следуя от холодных пустынных берегов Арктики (80° с. ш.) через жаркие тропики Африки (0°) к холодным пустынным берегам Антарктиды (80° ю. ш.).
Модель состоит из трех блоков: левого, правого и центрального. Правый, европейский блок, на котором мы живем, имеет в центре наиболее мощные почвы – черноземы; к северу и к югу от них располагаются менее мощные почвы: каштановые, бурые, подзолистые. Резкие колебания водно-воздушных режимов в правом и левом блоках привели к частой, но упорядоченной смене почв, тогда как в центральном блоке эти режимы сглажены, что обусловило слабую выраженность структуры почвенной поясности. В середине центрального блока размещены ферраллиты, а на правом и левом его склонах – тождественные типы почв.
У подножия всех трех блоков лежат пустыни (с севера на юг): холодные, субтропические, тропические, холодные. Они периодически повторяются. Это свидетельствует о проявлении определенного термодинамического закона. Пустыни – пояса с резко несбалансированными притоками тепла и влаги. Поэтому почвы здесь неустойчивы, слабо выражены и на больших площадях отсутствуют. По мере приближения к центрам блоков водные и тепловые потоки становятся все более сбалансированными. В самих центрах равновесие максимально, что благоприятствует развитию здесь наиболее мощных почв с устойчивым профилем: черноземов, ферраллитов и черноземовидных. Все они – геометрические аналоги, возникшие благодаря волновой упорядоченности водно-воздушных, тепловых и магнитных потоков Земли, способствующих образованию симметричной почвенной структуры с четкой периодической повторяемостью тождественных свойств и форм. Видимо, о такой симметрии писал Н. М. Сибирцев (1953, т. 2, с. 82): «…смены почв обыкновенно повторяются много раз и всегда в аналогичных условиях, управляющих этой повторяемостью». И снова видим слова: «повторяемость», «аналогия», «тождество», которые сродни симметрии.
Конечно, модель, представленную на рис. И, нельзя считать завершенной. Она требует еще больших доработок. Но главное ее достоинство – установление в основе реального почвенного покрова Земли воображаемого геометрического каркаса, обладающего свойством симметрии. Симметрия придает концепции о структуре почвенного покрова логическое изящество, что находит отражение в гармонии его реальных форм и связанных с ними физических, химических и минералогических свойств.
ЕЩЕ ОБ ОДНОЙ СТРУКТУРНОЙ МОДЕЛИ ЕВРАЗИИ

Рис. 12. Модель структуры почвенной поясности в пределах Евразии
М. М. Филатов (1945) создал рисунок, С. А. Захаров построил первое в мире геометрическое пространство части континента, Я. Н. Афанасьев – всей Земли. Надо было двигаться дальше, охватывая формализованными представлениями другие элементы почвенного покрова. Именно этому и посвящена данная глава. В ней обосновываются пути развития почвенных моделей, как одномерных профильных, так и площадных, на основе теории симметрии и идей общей теории систем. Последняя разработана Ю. А. Урманцевым (1974, 1978) и успешно применена к природным объектам В. Ю. Забродиным (1981), С… И. Сухоносом (1983), а теория симметрии широко используется в работах Н. П. Депенчук (1963), И. И. Шафрановского (1968), Э. М. Сороко (1984).
Рассмотрим модель, которая раскрывает структуру почвенных профилей от пустынных холодных берегов Арктики (Карское море) до жарких пустынь Каракумов в Туркменистане (рис. 12). Модель имеет естественные границы, оконтуривающие Туранскую, Казахстанскую и Западно-Сибирскую геосистемы, а также четко выраженные почвенные структуры склонов северной и южной экспозиций.
Главный строительный элемент модели – отрезок прямой линии, который характеризует по вертикали толщину горизонтов А, В и С, образующих почвенный профиль, а по горизонтали – ширину почвенных поясов. Данные по мощностям горизонтов брались лишь для нормально развитых почв повышений. Выбор мощностей основывался на большом фактическом материале: красочных зарисовках профилей почв Я. Н. Афанасьева (1930), Н. А. Качинского (1965), в определителе «Почвы СССР» (1979), цветных фотографиях из книг советских и зарубежных авторов. Огромную ценность представляли почвенные монолиты музеев страны. Для контроля автор использовал экспедиционные материалы, которые обнаруживали соответствие свойств реальных почв модельным.
В. В. Докучаев особое внимание уделял выявлению характера пространственного распределения почвенных горизонтов; им сделаны тысячи замеров, многие из которых он опубликовал в виде сводных таблиц. Выделив по окраске почвенные горизонты и установив таким образом качественные отношения, Докучаев пытался обнаружить и численные соотношения между ними. Поражает его способность гармонично мыслить: он умело сочетал связи между мыслью и числом, между качеством и количеством.
Измерения, число и образ – важнейшие ступени познания от качества к количеству. Напомним, что количественные отношения обнаружить проще и легче, чем качественные, Поэтому «найти за этими более простыми и доступными наблюдению отношениями скрытую качественную сторону изучаемых явлений – это одна из задач деятельности мышления» (Кедров, 1983). С помощью пропорций в науке сделано много открытий: большинство известных нам законов физики и химии обосновываются простыми соотношениями чисел. Любая система, базирующаяся на наблюдаемых числах, будет «заслуживать предпочтение перед другими системами, не имеющими численных опор» (Менделеев, 1877).
Модель автора книги (см. рис. 12) разработана в двух вариантах. В первом устанавливаются пространственные структурные связи между горизонтами А в системе поясности, а во втором – между горизонтами А, В и С в профилях различных почв. Рассмотрим первый вариант модели, следуя схеме академика Б. М. Кедрова (1983).
Познание конкретных свойств почв начинается в поле, где в выкопанных разрезах констатируются фактические мощности горизонтов А. Все реальное затем переводится в численные соотношения. Делается это поэтапно следующим образом. Полевые наблюдения показали, что фактические мощности горизонтов А равны 5 см в пустынном светлоземе, 8 см в серо-бурой почве, 13 см в бурой полупустынной, 21 см в светло-каштановой, 34 см в темно-каштановой почвах, 55 см в черноземе обыкновенном, 89 см в черноземе выщелоченном (мощном). От последнего через серые лесные и подзолистые почвы к тундровым ряд мощностей горизонта А уменьшается в последовательности: 55, 34, 21, 13, 8, 5 см.
Таким образом, в полевых условиях получены реальные мощности горизонта А основных почв – эмпирические числа, которые в отдельности не раскрывают никаких секретов природы.
Следующий этап познания – связывание этих отдельных, казалось бы, случайных чисел в ряд – позволяет обнаружить определенную закономерность. Она выражается в последовательном возрастании мощностей горизонтов А с юга на север, от песчаных светлоземов к лугово-степным мощным черноземам, достигая максимума (89 см) в черноземах, а затем к северу снова уменьшаясь до 5 см в тундровых почвах. Таким образом, получается ряд: 5, 8, 13, 21, 34, 55, 89, 55, 34, 21, 13, 8, 5 см.
На очередном этапе исследования ставится задача – обнаружить в этом ряду эмпирический закон, который выступил бы как обобщение всего данного ряда чисел. Деление каждого последующего числа на предыдущее, т. е. поиск отношений между мощностями горизонта, дает постоянную величину, равную 1,618… Следовательно, в данном ряду, характеризующем изменение мощностей горизонта А в системе широтной поясности, мы видим замечательную возвратную последовательность чисел Фибоначчи[12]. В этом ряду мощность любого почвенного горизонта равна сумме двух предыдущих мощностей, например 21 см каштановой почвы есть сумма двух предыдущих чисел, 8 и 13 см (бурой и серо-бурой почв). Все это свидетельствует о том, что приращение мощностей почвенного горизонта А, как и других (В, С), в системе поясности подчиняется закону симметрии подобия.
Таким образом, правильность увеличения (и уменьшения) мощностей почвенных горизонтов, наблюдаемая в модели (см. рис. 12), приводит к мысли о том, что за этой упорядоченностью чисел скрывается фундаментальная закономерность почвообразования, количественно обосновывающая установленный В. В. Докучаевым закон горизонтальной почвенной поясности. Теперь покажем, что подобная же закономерность выявляется и в соотношении отдельно взятых горизонтов А, В и С по вертикали.
Вооружившись платоновским изречением: «Геометрия приближает нас к истине», выпишем числовые характеристики модели, представленной на рис. 13. У чернозема обнаруживаются следующие отметки нижних границ горизонтов от поверхности склона вниз к горной породе: 89, 157, 210 см, а также мощности горизонтов: для А 68 см (157—89 = 68), для В 53 см (210–157 = 53). Наиболее значительным является горизонт А чернозема в центре модели: его мощность равна 89 см. Если это значение разделить на величину мощности лежащего под ним горизонта В, а эту последнюю на мощность горизонта С, то получим: 89:68 = 1,3 и 68:53 = 1,3.
Проведение подобных операций с другими почвами (каштановыми, бурыми, подзолистыми, тундровыми, пустынными) показало, что в модели отношение величины мощности одного горизонта к другому, соседнему, всегда равно 1,3.
Величина 1,3, так называемое «Вурфово число»[13], является фундаментальной и тесно связана с золотым сечением 1,618… (Петухов, 1981). Обнаружение этих величин свидетельствует о высокой упорядоченности структур почвенного покрова, которая описывается симметрией подобия, или, иначе, масштабной симметрией. Постоянство этих соотношений позволяет, например, структуру профиля серо-бурой почвы считать эквивалентом структуры подзолистой глеевой почвы, а светло-каштановой – подзолистой дерновой. Действительно, в серо-бурой почве горизонты сменяются по глубинам 8, 14, 18 см, так же как и в подзолистой глеевой почве. И такое соответствие можно обнаружить в любой паре почв, которая зеркально отражается от плоскости р – р', проходящей через центр модели (черноземы мощные). Поставив зеркальце ребром по линии р– р'' можно убедиться в этом (см. рис. 12, 13).

Рис. 13. Иллюстрация закона «почвенных октав»
А, В, С – индексы почвенных горизонтов, их мощности даны в см; р-р – плоскость зеркального отражения
Некоторые читатели подумают: «Да это же игра в фиктивные цифирьки! Мистика! Что же получается: цифры управляют миром?» На это можно ответить словами великого Гете: «Числа не управляют миром, но показывают, как управляется мир». И доказать это могут только абстракции, модели. Вспомним их предназначение с помощью простых идеализированных (!) построений найти такое соотношение чисел, которое позволило бы проникнуть в качество изучаемого объекта.
Установление постоянных величин (1,6; 1,3) свидетельствует о том, что почвенные профили Земли упорядочены по законам симметрии. И в пространстве они располагаются симметрично. Иначе не может быть. Природа создает свои объекты энергетически целесообразными, компактными, правильными. Разве почва – случайное на Земле тело? Конечно же, почва возникла не по воле случая; она – составная часть биосферы и подчиняется всем правилам ее возникновения и эволюции. А раз это так, то не следует удивляться и тому, что все почвенные структуры на Земле упорядоченные и могут быть выражены строгими рядами чисел (Соркин, 1982).
Казалось бы, далекие по свойствам пары почв: серобурые – подзолистые глеевые, светло-каштановые – подзолистые дерновые и другие – вдруг оказываются сходными по геометрической структуре профилей. Это сходство вскрывает тождество вещественного состава указанных пар профилей. Видимо, модель можно рассматривать как триадную, имеющую две стороны – левую, правую и середину, или правое кислотное плечо, левое щелочное плечо и нейтральную область в центре. Попробуем проникнуть в суть понятий «левизна» и «правизна», на существование которых в геометрии земного пространства указывал В. И. Вернадский.
Для понимания природы «левизны» и «правизны» почвенного пространства прибегнем к аналогии, сравнив горизонтальную почвенную поясность (см. рис. 12, 13) с клавиатурой фортепьяно. Ведь ноты в каждой октаве одинаковы, но отличаются высотой звука. В этом сравнении еще не все понятно. Многие при построении абстрактных схем привыкли понимать почвенный покров как континуум. Но эта континуальность, очевидно, образована дискретностью, как звукоряд: он един, непрерывен, но построен из самостоятельных звуков.
Вспомним аналогии Высоцкого, Захарова, Афанасьева, касающиеся свойств почв севера и юга России. Они наводят на мысль о сходстве природы горизонтальной и вертикальной поясности с музыкальными октавами. Предшественник Д. И. Менделеева английский химик Джон Ньюленде в 1865 г., изучая периодическую повторяемость свойств элементов, подметил, что каждый восьмой элемент в его схеме напоминает по свойствам исходный элемент, с которого начинается счет. Это позволило прибегнуть к музыкальной аналогии и назвать установленную периодичность свойств элементов законом октав. И хотя Ньюленде ошибся в расчетах, его аналогия сыграла огромную роль в науке.
Как видно из рис. 12, 13, почвы в ряду горизонтальной зональности располагаются подобно нотам в музыкальной гамме. Здесь каждая «нота звукоряда» повторяется через семь других основных «звуков». Эту зависимость можно назвать «законом почвенных октав». Она означает, что у почв, расположенных в ряду по величине увеличения (или уменьшения) мощностей горизонтов, обнаруживается периодическое повторение некоторых фундаментальных свойств, например геометрических, через каждые семь элементарных почвенных поясов.
Структура почвенного покрова настолько гармонична, что ее можно «сыграть» на инструменте. Для этого изолированные, не связанные между собой профили и горизонты (стаккато) надо представить как мотивы, затем сгруппировать их в повторяющиеся или противопоставляющиеся группы (многоголосие) и лишь после этого с помощью операций симметрии эти группы привести в непрерывное движение (легато). Элементарные профили и ареалы в комбинации с непрерывным движением, выявленным, например, по почвенной карте, составят систему, или контрапункт. По сути, проводятся те же операции, которые предлагались ранее: находятся буквы алфавита форм почвенных горизонтов, профилей и ареалов, из них складываются слова, из слов – предложения и т. д. Но эти операции по составлению текста или музыкальной записи будут напрасными, если не установить организующее начало, связывающее слова и звуки в осмысленное единое целое. Для музыки, как и для почв, такое начало найдено – это «золотое сечение».
Композитор М. Марутаев («Техника и наука», 1977, № 9) в статье «Поверить алгеброй гармонию» показал, что музыкальная гамма– темперированный звукоряд – основана на золотой пропорции (1,618…). Эта числовая закономерность обнаружена в Периодической системе Менделеева, в соотношении размеров животных и человека, в расположении планет солнечной системы и в «осколках», образующихся при распаде урана[14]. Везде, подобно вездесущему Фигаро, присутствует эта поистине волшебная, но в то же время и самая простая пропорция. Уже найдена связь золотого сечения с теорией возвратных рядов, комбинаторной математикой, теорией чисел, теорией поисков… Теперь эта величина – появилась в почвоведении.
Видимо, научное знание о почвах, совершив виток, вернулось, но уже в обновленном виде, к представлениям начала XX в. о симметрии аналогичных рядов почв. Теперь все почвы горизонтальной и вертикальной поясности Земли, а также ее частей можно рассматривать как симметричные с еще большим основанием, чем прежде.
Почвенный покров Земли обладает свойством изоморфизма. То есть в любой точке нашей планеты его морфологический облик сохраняет наиболее существенные и устойчивые черты относительно другой точки, расположенной в аналогичных пространстве, времени и условиях существования. Поэтому не удивительно, что за тысячи километров, в заморских странах, можно встретить «копию» своей родной почвы, сходную не только по внешнему облику, но и по вещественному составу. Именно это обстоятельство позволяет считать почву самостоятельным природным телом, имеющим свою геометрическую специфику. Как по внешним признакам различают виды растений, животных, минералов, так и по обобщенным образам почвы отличают один ее вид от другого.
СВЯЗЬ МЕЖДУ ЧИСЛОВЫМИ
И КАЧЕСТВЕННЫМИ ХАРАКТЕРИСТИКАМИ МОДЕЛИ
Можно подумать, что модели, представленные на рис. 12, 13, дают числовой ряд мощностей почвенных профилей без раскрытия их физического содержания. Однако этот ряд, характеризующий геометрическую структуру почвенного пространства, имеет рациональный смысл: за ним скрывается упорядоченность водно-физического и геохимического состояния почв. Леонардо да Винчи писал: «Пропорция обретается не только в числах и мерах, но также и в звуках, тяжестях, временах и положениях, и в любой силе, какая бы она ни была» (1933, с. 37). Данные таблицы подтверждают его слова. Они показывают, что в основании числовых рядов лежит идея взаимосвязи геометрии почвенного пространства с его вещественным составом.
В таблице приведены те же типы и подтипы почв, что и в модели (см. рис. 12). Оценка их элементов плодородия дана по литературным материалам, которые были подвергнуты статистической обработке (Петербургский и др., 1985). Как видно, величины элементов почвенного плодородия: калий, фосфор, азот – образуют зеркально-симметричный ряд. Максимальные их значения приурочены к центру модели – к чернозему. К северу и к югу от него они убывают в последовательности, подчиняющейся закону масштабной симметрии, с интервалами 1,6 и 1,3.
Другие свойства почв также имеют подобные соотношения. Так, отражательная способность почв образует ряд чисел Фибоначчи: 3 % – чернозем мощный, 5 % – чернозем обыкновенный, 8 % – темно-каштановая, 13 % – светло-каштановая, 21 % – бурая полупустынная, 34 % – серо-бурая, 55 % – такырная пустынная (светлозем). Затраты энергии на почвообразование как в горизонтальном ряду поясности, так и по глубине профиля также соответствуют ряду чисел Фибоначчи.
Что же лежит в основе этой фундаментальной закономерности, которая так близка к закону периодической повторяемости элементов? Следует обратить внимание на относительное преобладание характерных химических элементов в следующих почвах: Na и К в пустынных, Mg и Са в полупустынных, С в черноземах, N, Р в лесных, S в подзолистых, Сl в арктических пустынях. И хотя многое еще в этом спорно, но закономерное распределение почв и указанных химических элементов можно, вероятно, связать с периодическим изменением количественного отношения атомов в гидридах: число присоединенных атомов водорода оказывается равным номеру группы элемента в таблице Менделеева (или 8 минус номер группы). Как видим, металлы составляют левое крыло модели (см. рис. 13), а неметаллы – правое.

Видимо, периодичность свойств почв в ряду горизонтальной (и вертикальной) поясности можно объяснить тем, что через определенные интервалы повторяются сходные виды электронных конфигураций атомов. Ведь число электронов в атоме определяет его поведение при почвенных реакциях: последнее зависит от энергии, необходимой для отрыва электронов от атома. Значит, возникающие в почве электрические заряды связаны с валентностью атомов. Вероятно, информация о будущих микро-, макроагрегатах, горизонтах и профилях кодируется в структуре электронных оболочек характерных для каждой почвы химических элементов.
Гидриды правой части модели (см. рис. 13) – это молекулы, где число атомов водорода определяется числом не ионных, как в левой части, а ковалентных связей. Здесь формируются первичные элементарные ячейки, аналогичные ячейкам левой части модели, являясь их зазеркальными двойниками, или изомерами. Так, известен факт сходства морфологии и химического состава тундровых (правая часть) и пустынных (левая часть) почв; затраты энергии на почвообразование у них также одинаковые.
Видимо, существует пока еще не выясненная симметрия почвенных законов – инвариантность по отношению к зеркальному отражению. При отражении в зеркале (по середине модели) каждый почвенный профиль левой части превращается в соответствующий по геометрической структуре и вещественному составу профиль правой части, но с другим знаком. Можно полагать, что вещественные свойства первичных ячеек, передающиеся ячейкам других уровней организации почв, вплоть до макроагрегатов, находятся в периодической зависимости от числа валентных электронов характерного для каждой почвы химического элемента и образуемых им электромагнитных полей.
Именно на атомарном и молекулярном уровнях начинают образовываться специфические первичные вещества, структура и свойства которых отличают почву от непочвенных тел, например от горных пород (Ковалева и др., 1984). Действительно, несмотря на значительные изменения среды в ряду горизонтальной поясности, специфика почвообразования: формирование гумусового профиля, горизонтов, агрегатов – сохраняется неизменной. Это значит, что в любой почве Земли отношения между ее морфологическими и физико-химическими свойствами остаются постоянными. Вероятно, сущность почвообразования обусловлена внутренними причинами, связанными с гравитацией и электромагнетизмом, перераспределяющими массу и заряды живого и неживого. Гравитационные и электромагнитные поля, пронизывающие иерархическую структуру почвенных тел, создают внутрипочвенный механизм, который управляет всеми свойствами почв.
Итак, одномерные модели сыграли свою положительную роль в развитии почвоведения. За ними сохраняется будущее, ибо с моделированием связаны самые общие и строгие законы почвоведения. Но одномерные модели ограничивают возможности научного поиска, тогда как двумерные снимают эти ограничения, позволяют шире рассматривать окружающие нас почвенные формы. Однако в двумерном мире почв обнаруживают себя другие ограничения разнообразий, другие законы природы. Посмотрим, как они проявляются.
ПУТИ РАЗВИТИЯ ПРЕДСТАВЛЕНИЙ
О РАЗМЕРНОСТЯХ ПОЧВЕННЫХ МОДЕЛЕЙ
ОТ НУЛЬМЕРНЫХ К ДВУМЕРНЫМ
Две тысячи лет тому назад, во времена Евклида, появилось учение о формах пашен – геометрия: «гео» – земля, «metren» – измерение, т. е. землемерие. В те далекие времена господствовала нульмерная концепция, когда почвенный покров воспринимался как участок склона или пашни, без связи с соседними территориями (см. рис. 9, а).
Нульмерные представления в почвоведении и картографии критиковал В. В. Докучаев. По его мнению, при нульмерном, подходе почвы воспринимаются в виде изолированных, не связанных друг с другом тел, не отражающих пространственную закономерность. На таких картах хаотично разбросанные почвы останцов, куполов, замкнутых понижений имеют по единственной особенной точке, к которой они «жестко» привязаны. Особенные точки ареалов совмещаются сами с собой всеми операциями симметрии. По этой причине их называют конечными, точечными, или ареалами нулевого измерения – нульмерными, тогда как Докучаев видел «всю прелесть естествознания» в изучении не изолированных, точечных, а взаимодействующих почвенных тел, т. е. выходящих за пределы нулевого измерения.
В природе почвенные тела объемные, а на картах и фотографиях плоские: при переходе от реального, увиденного в поле, к абстрактному, показанному на карте, теряется одна размерность. Задача специалистов – восполнить на картах эту потерю путем разработок оригинальных способов «объемного» изображения почвенных тел; метод рисовки пластики – один из них, но существует много других.
Почвенные тела имеют «лицо» и «изнанку», которые можно обнаружить с помощью особенных точек и плоскостей. На картах плоские ареалы изображены так, что их обратная, нижняя сторона – изнанка – не видна; в таком случае ареалы называются односторонними розетками. Если же под почвенную карту подложить геологическую, то последняя явится ее «изнанкой», и тогда почвенно-геологические тела можно называть двусторонними розетками. Последние только начинают воспроизводить на специальных объемных картах.
Нульмерный подход сдерживал развитие географии и картографии, так как затруднял выявление законов залегания почв одна относительно другой. Докучаев стремился обнаружить пространственную структуру ареалов, видел прогресс науки в переходе от нульмерных моделей к одномерным. Лишь на основе одномерного понимания природы почв ему удалось установить их полосную структуру по широтам, а также по местным склонам. В его классификации почвы «выстроены» в ряд по линии от водораздела к понижению: 1) почвы повышений (нормальные); 2) почвы склонов (переходные); 3) почвы понижений (наносные). В совокупности они образуют одномерное почвенное пространство, например распределение ареалов вдоль условной линии по геологическим разломам, поймам, троговым долинам. Здесь все зависит от выбора направления по этой условной линии, называемой особенной. Операции одномерной симметрии, ограничивающие действия вдоль особенной линии и оставляющие ее инвариантной по отношению к этим операциям, называются трансляционными, или переносными.
Одномерность привела к пониманию почвенного покрова как континуума и семиконтинуума, т. е. как непрерывной поверхности. Это обусловило возможности использования соответствующего математического аппарата, основанного на дифференциальном исчислении. Идея непрерывности, слитости почвенного покрова и происходящих в нем процессов закрепилась моделями взаимоотношения остаточной и переотложенной форм коры выветривания академика Б. Б. Полынова, а затем работами В. А. Ковды, М. А. Глазовской, А. И. Перельмана по почвенно-геохимическому сопряжению. Многие современные почвоведы считают почвенный покров континуальным.
Одномерное представление играет важную роль в науке и практике. В поле картограф в первую очередь мысленно делит поверхность Земли на верхнюю, среднюю и нижнюю части склонов и затем выявляет приуроченность к ним почв. Такое их сочетание характерно не только для местных склонов, оно представляет в идеальной схеме зональное и полосчатое распределение по поверхности материков (Сибирцев, 1953). Напомним, что Я. Н. Афанасьев (1930) почвенную зональность рассматривал в виде концентрических, а не линейных полос.
В конце XIX в. в России были опубликованы топографические карты А. А. Тилло. Эти карты стимулировали бурное развитие наук о Земле, переход от одномерного к двумерному представлению природы поверхности суши. Почвенный покров начал восприниматься не как чередование полос, а как нечто похожее на паркетный пол, состоящий из разных узоров. Выяснилось, что почвенные ареалы могут залегать не только вдоль одной линии, а сразу по двум осям, образуя сетки, соты, клетки, ячеи.
Повышение размерности освобождает ареалы от уз субординации, усиливает их тенденцию к «анархии». Чем выше размерность, тем больше равноправия в связях между ареалами и тем труднее описать геометрию пространства какой-то единой упорядоченной системой. Поэтому в отличие от одномерного двумерное почвенное пространство богаче формами. Это потребовало от науки более совершенного способа их фиксации и распознавания пространства не как континуального, а как дискретного.
Современное почвенное картографирование, только недавно освоившее специфику двумерности, еще не успело разработать соответствующие ей методы математического описания. Поэтому топографические карты, имеющие не такой уж большой возраст, остались до конца не расшифрованными. Их потенциальные возможности до сих пор не использованы. Отсутствуют надежные способы, которые позволили бы по топокарте выделить естественные границы почвенных ареалов. Снова, уже на базе двумерности, возникла проблема границ. Ни в одной методике не дается описание правил их рисовки по топографической карте. Лишь в «Общесоюзной инструкции…» (1973) такие указания даны, но в расплывчатом виде. В ней, например, рекомендуется наносить на карту контуры «на основании изучения почвенных разрезов, рельефа, растительности и других выраженных на местности элементов ландшафта» (с. 12). Этим закладываются разные принципы картографирования, что логически недопустимо: объем понятия должен делиться только по одному основанию. Это означает, что на одной карте нельзя выделять почвенные контуры в одном случае по растительности, в другом – по горным породам, в третьем – по какому-либо приглянувшемуся почвоведу элементу ландшафта. На то и существует специализация: растительность картирует геоботаник, горные породы – геолог, ландшафты – географ. Выделяя по совокупности признаков контуры, почвоведы делают свои карты эклектическими, в них ареалы несравнимы, качественно неравноценны. Только картографирование почв по одному признаку – по линиям переломов рельефа – делает карты содержательными.
В той же инструкции предложено картировать «выраженные» элементы ландшафтов. Однако известный геоморфолог А. И. Спиридонов (1952) писал, что в поле исследователь часто фиксирует не основные, а второстепенные формы рельефа, которые отличаются большей выразительностью. Этого, с его точки зрения, делать нельзя, так как в таком случае фундаментальный рельеф и связанные с ним почвы остаются незакартированными. Но до сих пор на карты наносятся преимущественно яркие, броские элементы. Аэрометоды только закрепили это положение, тогда как каркасные формы рельефа, определяющие жизнь биосферы, так и остаются незакартированными.







