Текст книги "Формы в мире почв"
Автор книги: Игорь Степанов
Жанры:
Биология
,сообщить о нарушении
Текущая страница: 5 (всего у книги 11 страниц)
Ю. А. Урманцев (1978, с. 190) по форме изомерных молекул альдогексозы воссоздал структуру соответствующего ей изомера листа липы. Он решил и обратную задачу: исходя из изомера контура листа липы, нарисовал структуру изомера альдогексозы. Воистину справедливы поэтические строки Валерия Брюсова: «Есть тонкие, властительные связи меж контуром и запахом цветка»!
Реализация закона структурных уровней в почвоведении может позволить, например, по форме одних изомеров-агрегатов определить состав соответствующих им других изомеров – органо-минеральных молекулярных соединений, а также решить обратную задачу. Пока это мечта, но ее осуществление позволит перейти к более глубокому пониманию почвенной иерархии. Ниже приводятся описания разных уровней организации почв.
Уровень I, атомарный. Размеры элементов около 1 А. Их свойства зависят от атомной структуры (рис. 8, 7). Энергетическое состояние элементарных зарядов связано с валентностью: ее повышение увеличивает заряды. Поэтому, например, преобладание в почвах водоразделов трех-четырехвалентных ионов, а в почвах понижений одно-двухвалентных обусловливает возникновение и распределение электрогенеза и электромагнитных полей.
Уровень II, молекулярный. Размеры элементов 1—10А, они образуют симметричные структуры (рис. 8, 77).
Если предположить, что информация о конфигурации агрегатов закодирована в структуре электронных оболочек молекул, то знание их архитектуры позволит предвидеть, будут ли эти агрегаты иметь ореховатую, призматическую или пластинчатую формы? Разнообразие форм почвенных агрегатов есть результат состояния равновесия, рассматриваемого как стремление электронов сочетаться в наиболее устойчивых и минимальных в энергетическом отношении положениях. Автоматизм запоминания структур на этом уровне, видимо, связан со свойством почв и наносов создавать магнитное поле; каждый новый этап наносо– и почвообразования характеризуется своей остаточной намагниченностью.

Рис. 8. Иерархия структурных единиц по размерам: от атомов (1 А) до почвенных агрегатов (1 см)
I – атомарный уровень: а – водород, б – углерод, в – азот, г – кислород, д – натрий, е – хлор.
II – молекулярный уровень: а – кислород ~ (mm) б – углекислый газ ~mm; в – вода 2m; г – хлористый водород ~ m; д – сероводород 2mm; е – бензол 6mm.
Электронно-микроскопические фотографии атомов: ж – белка каталазы, з – алюмо-иттриевого граната (Вайнштейн, 1979), и – хлорированного фталоцианина меди («Наука и жизнь», 1983, № 9, с. 55)

Рис. 8 (продолжение)
II – элементарные специфические ячейки: а – молекула ДНК, б – глинный минерал галлуазит, е, г – гуминовая кислота, IV – ядра конденсации коллоидных частиц: а – кристаллы бацилл, б, в – вирусы

Рис. 8 (продолжение)
V – первичные коллоиды– а – крупные амебоидные клетки, зажатые между грибными гифами, б – ловчее кольцо хищного гриба, в – колонии иловой бактерии, г – микробы, атакующие минеральное зерно (Аристовская, 1965); VI – ультра-микроагрегатный уровень: а, б – черноземы, в – серые лесные почвы, г – каштановые и подзолистые почвы, д – такыры, е – болотные и луговые почвы

Рис. 8 (окончание)
VII – микроагрегатный уровень: а – глинистые овальные агрегаты, б – углеподобные растительные остатки, в – сетчатая глинистая плазма, г – округлое образование с концентрической ориентировкой плазмы (Парфенова, Прилова, 1977) VIII – макроагрегатный уровень: а – додекаэдр, б – тетраэдр, в – гексагональная призма, г – куб, д – квадратная призма, е – тригональная бипирамида, ж – эллипсоид, з – моноэдр
Различная ориентировка окислов железа в шлифах, взятых из разновозрастных почв, доказывает, что биогеохимические процессы на данном и более высоком уровнях организации коррелируют с магнитными полями, которые периодически через века и тысячелетия меняют направленность. При этом в связи с полярной инверсией магнитного поля меняется видовой состав почвенной микрофауны и микрофлоры, увеличивается или уменьшается скорость размножения, переориентируется структура тончайших органо-минеральных частиц. Кроме того, в разных точках Земли намагниченность почв разная, особенно она высока на Дальнем Востоке. Это влияет на парамагнитный резонанс электронов (работы Е. А. Завойского, С. А. Алиева).
Уровень III, элементарные специфические ячейки размером 10—100 А с тождественными формами и параметрами блоков: диаметр 10–20 А, высота 10–30 А, расстояние между слоями по вертикали 2,3–3,6 А, число слоев, расположенных параллельно, 4–6; угол кручения создает спиральную пространственную правизну-левизну (рис. 8, III). Преобладают ячейки: а – молекулы ДНК, б – глинного минерала (галлуазита), в, г – гуминовой кислоты[11].
Макромолекулы этого уровня «подражают» по форме одна другой, как бы стараясь одинаково отразиться в зеркале. Отражение в неживой природе подобно примитивной памяти; это процесс адекватного соответствия форм, их взаимного запечатления, передачи основных структурных качеств молекул. При образовании устойчивых почвенных молекул из неустойчивых необходимо, чтобы последние имели упорядоченность, обусловленную какими-то предпочтительными стереохимическими отношениями. В противном случае, если бы молекулы образовывали неустойчивые, хаотичные структуры, их физические свойства были бы непредсказуемыми, а их функции (например, плодородие) невыполнимыми.
Предполагают, что взаимодействие органических и минеральных молекул в современных естественных условиях приводит к созданию специфического для почв органо-глинного минерала (Ковда, Трубин, 1977). Местоположение его составных частей в иерархии почвенных тел рассчитано теоретически (Ковалева и др., 1984). При этом возникает предположение о возможной информационной роли молекулы ДНК в структурообразовании. Этот биополимер в относительно больших количествах в свободном состоянии находится в почвах и коррелирует с содержанием гумуса (работы И. В. Асеевой, Н. С. Паникова, О. Т. Самко, Д. Г. Звягинцева). Видимо, молекулы ДНК почвенных растительных и микроскопических живых организмов контролируют, правда, в очень коротком жизненном цикле, при отмирании клеток, наследственные признаки. Вероятно, в почвах молекулы ДНК и РНК способны «размножаться», синтезируя полимеры с помощью минеральных матриц как источников информации кода. Сочетание минералогического кода с кодом нуклеиновых кислот, по-видимому, может дать матричный синтез органо-глинных минералов – первичных почвенных тел. Эта идея требует строгой проверки.
Уровень IV, ядра конденсации коллоидных частиц размером 100—1000 А. По данным академика Е. Н. Мишустина (1975), любому типу почв соответствует своя микробная ассоциация, каждая с доминантными формами микроорганизмов. Геометрическое соответствие форм микроорганизмов типам почв еще не выявлено, но многое видно из микрофотографий (рис. 8, IV): а — кристаллы бацилл (Вайнштейн, 1979), б, в – вирусы (Феннер и др., 1977). Вирусы и микроорганизмы выполняют огромную разрушительную и созидательную роль при почвообразовании. Но и сами по себе они, как физические тела, служат центрами агрегации, или затравками, определяя конфигурацию почвенных тел следующего уровня.
Микроорганизмы могут иметь формы: 1) спиральные, или палочковидные; 2) изометрические, или сферические; 3) симметричных многогранников, или икосаэдрические. Так, в черноземах преобладают изометрические микробы, образующие микроагрегаты почв сферической формы – наиболее «выгодные» энергетически природные структуры. В каштановых и подзолистых почвах развиты спиральные микробы, образующие призматические агрегаты.
Уровень V, первичные коллоиды размером до 10000 А. Образуют агрегаты иловатой фракции (менее 0,001 мм) почв; их структура определяется симметрией микробных пейзажей (рис. 8, V). Каждый из этих микробных узоров, как видно на фотографиях, имеет определенную симметрию: а – плоской кристаллографической решетки (гексагональную, косоугольную), б – спиральную, в — радиальную, г — бордюрную.
Уровень VI, ультрамикроагрегатный. Твердые органо-минеральные частицы размером около 100000 А, образующие агрегаты фракции «физическая глина». Они изучаются по микроскопическим срезам почв – шлифам. Здесь организующая роль принадлежит плазме – подвижной части почв; в ней упорядоченно рассеяны минеральные зерна – скелет. Плазма, видимо, создает пленки-мембраны, через которые осуществляется избирательная миграция ионов, способствующая возникновению разности потенциалов.
На рис. 8, VI схематично показана симметрия взаимного расположения коллоидных частиц различных почв: а, б – черноземов, гексагональная, в — серых лесных, квадратная; а – каштановых и подзолистых, ромбическая, д – такырных, слоистая, е – болотных и луговых, концентрическая.
Уровень VII, микроагрегатный. Твердые органоминеральные частицы размером 0,1–1 мм, возникшие в результате агрегации более мелких частичек. Почвообразование – это прежде всего агрегация, что и запечатлено на фотографиях шлифов (рис. 8, VII).
Уровень VIII, макроагрегатный. Естественные почвенные комочки (агрегаты) размером до 1 см, представленные в идеализированной форме на рис. 8, VIII. Каждому типу почв соответствует своя, присущая только ему геометрическая форма агрегатов: чернозему – додекаэдр, солонцу – призма, подзолу и такыру – моноэдр.
Агрегаты – основной строительный материал почвенных отдельностей и горизонтов. Их внутренняя морфология изучается с учетом центра – затравки, а также текстурной неоднородности в виде пирамид и зон роста. Так, следуя И. И. Шафрановскому, в почвенных агрегатах можно выделить 9 вершинных и 27 плоских реберных форм. Завершив описание всех восьми уровней, сделаем следующие предположения, касающиеся автоматизма процесса самоорганизации. Почвообразование требует значительных энергетических ресурсов. Последние создаются в результате фотосинтеза зелеными растениями, использующими энергию Солнца, и микроорганизмами, потребляющими рассеянную энергию. При этом формируются новые энергетически емкие почвенные электромагнитные структуры в виде агрегатов разных уровней. Преобразуемая и в значительной части рассеиваемая свободная энергия в результате почвообразования частично концентрируется в разноуровенных структурах, замыкая тем самым биологический круговорот вещества. Превращения элементов различных почвенных уровней высвобождают дополнительные внутренние запасы свободной энергии, столь необходимые для агрегирования.
В борьбе за энергию из конкурирующих живых организмов или матричных молекул побеждают те, у которых скорость приращения массы в биохимических реакциях выше (Шноль, 1979). Это и позволяет сравнивать почвенные реакции по кинетическому или биологическому совершенству. По признаку наибольшей скорости реакции молекул со средой на первом месте, видимо, стоят черноземы, а на последнем – пустынные такырные и тундровые почвы. Внешнее и физико-химическое сходство любых почвенных типов различных точек Земли обусловлено тем, что из специфических органо-глинных соединений почв в конкуренции за вещество и энергию побеждают те «молекулы-мутанты», у которых выше коллективная скорость заполнения пространства. У почв с близкими скоростями биологических и физико-химических реакций, возможно, тождественны электродвижущие силы и конфигурации электромагнитных полей.
Естественная иерархия почвенных тел – это отражение способности разных уровней проводить через себя непрерывные информационные сигналы – потоки электронов – и тем самым осуществлять роль электрических проводников. По В. С. Авязнову и др. (1971), многоуровенность почв и горных пород можно понять лишь тогда, когда при построении иерархической модели будут учтены электрические законы. Разность потенциалов порождается любым изменением состояния атомов или ионов в почве: ее нагреванием, охлаждением, сжатием, растяжением, дроблением, смачиванием, иссушением; четко она возникает на поверхности контакта двух тел, особенно на границе раздела: лед – вода или лед – почва.
Лед может заряжаться положительно или отрицательно, что зависит от свойств контактирующей с ним почвы. Способствуя перераспределению вещества, лед при фазовых переходах (лед – талая вода) в течение суток, сезонов, лет и веков периодически изменяет электрическое поле, количество и качество химического состава почв, создавая в них «мерцающий» эффект различной продолжительности. Так как лед и мерзлота раньше занимали обширные пространства Земли, то следы их упорядоченной деятельности заметны повсюду.
А. Ф. Вадюнина, А. И. Поздняков (1977), Л. П. Пивоваров и др. (1979) видят причины появления стационарного электрического поля естественной природы в почве в неоднородностях любого порядка: физического, химического, биологического. Вероятно, электрический ток возникает на мембранах, которые, облекая твердые органо-минеральные части почв, формируют непрерывность и могут быть солевыми, в виде органических пленок и глинистой плазмы. По обе стороны мембран создается разность концентраций протонов, в результате чего образуется электрическое поле.
Электромагнитные поля действуют в ограниченных диапазонах тепла и влаги, строя внешне одинаковые свойства почв, что является источником почвенных аналогий. Несмотря на большое разнообразие внешней среды, почвы разных точек Земли имеют большое сходство. Оно вызвано самопроизвольным отбором немногих почвенных элементов из большого их разнообразия электромагнитными волнами определенной для каждой среды частоты. Влияние электронов проявляется во всем: это электролитическое осаждение таких элементов, как медь и железо, образующих красноватые пленки на агрегатах, или как кальций и магний, создающих белые налеты. Окрашивание профиля почвы гумусом – ровное, плавное, без отдельных пятен и линз – возможно только при электрофорезе, особенно во влажных почвах, где увеличивается количество подвижных электрически заряженных частиц.
ЧТО ТАКОЕ ПОЧВЕННЫЙ ПОКРОВ И КАК ИЗОБРАЖАЮТ ЕГО ФОРМЫ
ОБЩИЕ ПРЕДСТАВЛЕНИЯ
Термин «почвенный покров» отсутствует даже в книге «Толковый словарь по почвоведению» (1975). Многие исследователи считают, что почвенный покров – это совокупность однородных по форме почвенных тел (или ареалов), расположенных по строгим правилам и образующих единую целостную систему. Если учесть, что верхние 10–20 м толщ склонов, как правило, состоят из чередующихся разновозрастных слоев почв и наносов, то можно говорить о почвенно-геологических телах и характере их пространственного размещения. Однако определение должно включать количественную оценку. Ее поиск предполагает выделение элементарных почвенных форм – букв, а затем их сочетаний – слов. После этого переходят к составлению почвенной карты – предложений, текста, структура которой впоследствии может быть описана математически.
Путь нахождения количественного критерия целостности структур почвенного покрова можно определить кратко словами: точка – линия – площадь – объем. Иначе – это движение научной мысли от простых нульмерных почвенных форм к более сложным – одномерным, от них к еще более сложным – двумерным и трехмерным, а от последних – к n-мерным. Но здесь наши рассуждения могут быть прерваны словами: «Куда же вы заведете по такому пути нашу науку?». Так, академик С. В. Калесник (1970) писал, что если географическое пространство многомерно, то, «значит, оно может быть и более трех измерений и выйти за пределы обычного евклидова пространства? И если да, то зачем?».
Конечно, такое предостережение настораживает. Однако вспомним недавний спор о роли математики в биологии. Тогда некоторые видные ученые резко выступали против формализации науки, так как главным в исследовании считали опыт и думали, что такой сложный объект, как живой организм, не может быть охарактеризован математически.
В период формирования почвенной науки В. В. Докучаев писал «Современное почвоведение далеко от совершенства» (1953, т. 4). Его слова можно отнести и к нынешней стадии развития, так как не выполнен важнейший этап исследования – математизация знаний. Леонардо да Винчи в XV в. в «Книге о живописи…» (1934, с. 60) писал: «Никакое человеческое исследование не может быть названо истинной наукой, если оно не проходит через математические доказательства… Наукой называют такое разумное рассуждение, которое ведет начало от своих первых оснований… Первым основанием науки…является точка; вторым – линия; третьим – поверхность; четвертым – тело». Представим эти основания в виде пространственных почвенных моделей: точки – нульмерной, линии – одномерной, плоскости – двумерной, объема – трехмерной.
НУЛЬМЕРНАЯ (ТОЧЕЧНАЯ) МОДЕЛЬ
Нульмерное представление господствовало до работ Докучаева и Сибирцева. Сведения о ценности земельных угодий и почв стекались в правительственные ведомства по различным каналам. Описания почв хозяйств составляли сами землевладельцы. Им достаточно было взять пробу (рис. 9,а) в одной точке угодья, чтобы определить категорию качества почв, по которой затем изымались налоги: с бедных почв меньше, с* богатых – больше.
В России в начале 60-х годов XIX в. только зарождались представления о путях управления почвенным плодородием. Но и то, что уже было известно ученому миру, некому было внедрять в практику сельского хозяйства. Земледелие необходимо было связать с научными разработками. Вольное экономическое общество в России организовало четыре опытных поля, где работали талантливые ученые: в Симбирской губернии К. А. Тимирязев, в Петербургской – А. В. Столетов, в Смоленской – Г. Г. Густавсон, в Московской – Т. А. Шмидт/ Но эксперименты были точечными, а не площадными: они не охватывали всего многообразия почв, что затрудняло использование полученных результатов даже на соседних угодьях.
Для широкого распространения опытов потребовались карты, на которых свойства почв можно было бы сравнивать по четким критериям – геометрическим ареалам-аналогам, отражающим генетические особенности почв. Такие карты могли быть созданы только в результате перехода от нульмерного понимания почвенных структур к одномерному, от показа на картах хаотического, лоскутного расположения почвенных контуров к установлению их упорядоченного залегания, обусловленного законами природы.

Рис. 9. Размерности почвенного покрова
а – нульмерная, б – одномерная, в – двумерная, г – трехмерная, д – n-мерная
Известный немецкий географ К. Риттер мечтал о графических способах изображения пространственных форм земной поверхности в виде отношений геометрических фигур и чисел, стремился выявить «правильные математические отношения и ряды чисел», а также показать, «как пространственные отношения при точном определении мерою и числами ведут к более живому представлению сущности географических отношений вообще» (1853, с. 463–480). Это был первый сигнал о необходимости перехода от нульмерных представлений к более высоким, в частности к одномерным.
ОДНОМЕРНАЯ МОДЕЛЬ ПОЧВЕННОГО ПОКРОВА
В. В. ДОКУЧАЕВА
Переход от нульмерной модели к одномерной произошел тогда, когда на карты стали наносить свойства почв не в виде изолированных точек или кружков, а в форме взаимосвязанных лент. Последние характеризовали закономерное полосное залегание почв по водоразделам, склонам и понижениям (рис. 9, б). Венцом развития одномерных моделей являются работы Я. Н. Афанасьева (1930), установившего законы концентрического расположения почвенных полос в макро-, мезо– и микроформах земной поверхности. Следует заметить, что выводы Афанасьева подтвердились аэрокосмическими исследованиями.
Карты, содержащие линейную информацию о распределении почв па Земле, можно назвать одномерными картографическими моделями. Двумерные картографические модели появились позже, в 40—50-е годы, когда горизонтальные почвенные пояса начали делить на составные части: зоны, формации, фации, секторы, провинции, а в распределении местных почв и ландшафтов стали обнаруживать повторяемость ареалов по клеткам, сеткам, ячеям (Глазовская, 1964; Солнцев, 1981; Степанов, 1983 б).
Одномерная модель Докучаева позволила неформально установить законы распределения почвенных поясов и их симметрию. Пояс – это линейная периодически повторяющаяся форма сочетания ареалов, или природных тел, на определенном уровне иерархии.
И. И. Шафрановский указывает, что Докучаеву принадлежит «видная роль в развитии симметрийных понятий в геологии, географии и учении о почвах». В подтверждение этих слов он приводит отрывок из статьи Докучаева «Горизонтальные и вертикальные Почвенные зоны Кавказа» (1898 г.): «…раз все важнейшие почвообразователи располагаются на земной поверхности в виде поясов или зон, вытянутых более или менее параллельно широтам, то неизбежно, что и почвы – наши черноземы, подзолы и пр. – должны располагаться по земной поверхности зонально, в строжайшей зависимости от климата, растительности и пр.». Шафрановский так оценивает эту статью: «Трудно найти более наглядное и яркое описание зональной симметрии» (Шафрановский, Плотников, 1975, с. 28).
Позже В. И. Вернадский, развивая идеи В. В. Докучаева и П. Кюри, приложил теорию симметрии к изучению природы вообще. Он вместе с Б. Л. Дичковым обнаружил симметрию вращения для почвенноклиматических поясов и диссимметрию (вернее, «антисимметрию») природных вод Земли. В. И. Вернадский (1975) писал: «…я ввожу в геологию новое определение – пространство земной реальности, то, которое всегда изучает неизбежно натуралист. В частности, геолог изучает пространственные явления (т. е. явления симметрии)…».
Отмечая симметричную повторяемость почв горизонтальной поясности Земли, Я. Н. Афанасьев (1930) писал: «Почвенные системы северного полушария найдут себе в южном полушарии «вторую родину44, сохранят свою идею и стиль генетики». Он указывал, что его почвенная модель создана по принципу «зеркального отражения».
РОЛЬ АНАЛОГИИ ПРИ МОДЕЛИРОВАНИИ
Представление о симметрии почв долгое время находило выражение в понятии «аналог» и являлось методологической основой системно-структурного анализа. Проблема аналогов рассмотрена академиком А. Л. Тахтаджяном (1972), который указывает, что аналогиям всегда уделялось в науке большое внимание. Так, Л. Больцман считал, что «познание есть не что иное, как изыскание аналогий». Д. Пойа писал: «Не существует… открытий… которые могли бы быть сделаны без аналогий». М. Петрович разработал учение об аналогиях, а Е. С. Федоров – о «перфекционизме», т. е. об общих законах совершенствования в природе. Э. Витцман признавал принцип ритма и периодичности универсальным. Л. Берталанфи (1950–1969 гг.) пришел к концепции «перспективизма», в основе которого лежит принцип отыскания изоморфизма структурных законов в различных явлениях природы.
А. А. Богданов (1873–1928 гг.) разработал теорию структур и систем «всеобщей естественной науки». Им доказано наличие единых и общих (аналогичных) структурных связей для самых разнородных природных явлений. Для почвоведения важен его вывод о том, что «структурные отношения могут быть обобщены до такой же степени формальной чистоты схем, как в математике отношения величин».
Метод аналогий основан на принципе симметрии. И тот и другой предполагают отыскание такого общего признака почв (например, геометрию пространства), от которого должны зависеть иные свойства: вещественные, энергетические. Всеобщность этого метода была понята ведущими почвоведами. Поражает смелость и научная обоснованность проводимых ими аналогий. Так, Я. Н. Афанасьев устанавливает связь между горизонтальными и вертикальными почвенными поясами Земли по закону аналогий. Д. Г. Виленский (1924) составляет классификационные аналогичные почвенные ряды. Г. Н. Высоцкий считает аккумуляцию закисного железа в подзолистых почвах подобной аккумуляции солей в солончаках юга России: «…соли – на юге, углекислая известь – в средней полосе и охра – в пределах… влажной северной полосы образуют довольно идентичные скопления» (1905, с. 325).
По С. А. Захарову (1935), «образование охристоболотистых луговин или торфяников… нужно считать полными аналогами солонцов сухих областей». Создается впечатление, что иероглифы на почвенных профилях холодного севера и теплого юга – «дело одних рук», зеркально отраженных. Фрэнсис Бэкон (1627) считал, что «тепло и холод – это две руки природы, которыми она делает почти все» (надо добавить: с отображением левизны и правизны).
Несмотря на различия биоклиматических условий севера и юга, важнейшие почвообразовательные процессы оказываются аналогичными. Почвенные узоры нарисованы как бы разными «чернилами»: голубыми – глей, красными – охра, белыми – карбонаты, черными – гумус, но одним и тем же «существом». Это «существо» – электромагнитные и гравитационные поля; создающие сходную мозаику в столь непохожих и удаленных друг от друга почвах. И не только в них. Можно предполагать, что гравитационные литодинамические потоки и почвенные структуры также несут на себе отпечаток влияния полей: меняется в течение тысячелетий поляризация – искажается направление наносов рек, ледников, дельт, а значит, преобразуется и рисунок структуры почвенного покрова. Аналогичные процессы почвообразования в различных точках Земли описаны В. Р. Волобуевым (1953, 1963) общими уравнениями, которые в свою очередь коррелируют с фундаментальными физическими и химическими законами.
Как бы ни старались точно отразить природу на картах, это будут воображаемые, упрощенные образы. Если эти абстракции допускают свою проекцию на реальный почвенный мир, или, иначе, погружаются в него, то в таком случае они могут служить моделью для конкретных объектов. Когда говорят о модели, то подразумевают подражание чему-то, аналог чего-то. Между реальным почвенным объектом и его моделью, в частности рисунком или схемой на листе бумаги, должно наблюдаться определенное соответствие – аналогия. Считают, что «хотя аналогия часто вводит нас в заблуждение, это наименьшее из того, что вводит в заблуждение». Модель – это грубая, но вместе с тем и самая простая аналогия, что делает ее незаменимой во всех научных исследованиях. Создать модель – значит установить структуру связей, выявить симметрию почвенного образа и его частей.
Художественный рисунок или фотографию можно преобразовать в модель, если в них обнаружены упорядоченные числовые пропорции, например между размерами, формами почвенных горизонтов, профилей или ареалов. Некоторые исследователи избегают построения структурных моделей. Для них важнее выяснить качественные соотношения. Конечно, поиск последних заманчив. Именно поэтому им и занимается большинство почвоведов. Количественные отношения проще качественных, однако за ними всегда скрывается качественная сторона почвенных явлений. Например, за количественными отношениями SiO2: R2O3; SiO2: Аl2О3; C: N стоит качество образования в профиле вторичных минералов и гумуса.
НЕФОРМАЛЬНЫЕ ПОЧВЕННЫЕ МОДЕЛИ
МИРА И ЕВРАЗИИ
Модели могут быть неформальными и формальными. Если это художественно выполненный рисунок почвенного покрова с невыявленными структурными связями, то он – неформальная модель (рис. 10). Модель известного английского почвоведа Фитцпатрика (Fitzpatrik, 1980) показывает, каким образом на поверхности Земли распределены главные почвы (рис. 10, А).
Другая модель (рис. 10, Б) принадлежит основателю науки о грунтах – профессору Московского университета М. М. Филатову (1877–1942). Им написан учебник по географии почв (1945), в котором приведен рисунок, характеризующий смену почв и растительности от Кольского полуострова до полупустынь юга России. В структуре горизонтальной поясности центральное место занимают черноземы (см. рис. 10, Б). Они самые мощные, к северу и к югу от них залегают меньшей толщины подзолистые и каштановые почвы. Модель Филатова – смелое и новаторское решение. До сих пор немногие исследователи решаются показать структуру переходов горизонтов от одного типа почв к другому, обычно ограничиваясь демонстрацией изолированных почвенных монолитов, расположенных один возле другого, как в музеях (рис. 10, А).
Если же создается схема, на которой устанавливаются количественные связи между почвенными элементами (горизонтами, профилями, ареалами), то это уже научная геометрическая модель. Все модели, формальные и неформальные, одинаково необходимы для исследования. Но математические модели определяют самые общие и простые структурные связи между почвами и их элементами. Выявить структурные отношения – это значит установить новые законы почвоведения. Важно, однако, чтобы понятие «модель» в почвоведении отвечало предъявляемым требованиям. То же самое относится к определениям «поле», «пространство», «группа». Эти ограничения ведут почвоведение к более тесному содружеству с точными науками.

Рис. 10. Модели структур горизонтальной почвенной поясности
А – Фитцпатрика, Б – М. М. Филатова, В – С. А. Захарова
Почвы: 2–2 – ферралитные, 3 – железистые, 4 – камбисоли, 5 – вертисоли, 6 – сероземы, 7 – солончаки, 8 – солонцы, 9—10 – каштановые, 11–12 – черноземы, 13 – дерново-подзолистые, 24 – лессиве, 15 – подзолистые, 16 – болотные, 17 – глеевые
В наши дни, когда интенсивно разрабатываются модели почвенного плодородия, указанные выше понятия приобретают особенную актуальность и ценность, ибо часто принимаемое за модель оказывается рисунком или в лучшем случае схемой, так как в них отсутствуют четкие понятия: «элемент», «структура», «движение», «время», «симметрия». Почвенная модель – это прежде всего соотношение объемов, весов, линейных размеров, а не простое их перечисление, построение из них случайного ряда чисел или приведение табличных данных.
ФОРМАЛЬНАЯ ПОЧВЕННАЯ МОДЕЛЬ
ЕВРАЗИИ С. А. ЗАХАРОВА
Модель по линии Нукус (пустынные светлоземы) – Ленинград (подзолистые почвы) разработал С. А. Захаров. Нами она упрощена и дана лишь для верхнего горизонта А, который имеет мощность 80—130 см в черноземах и 3—13 см в тундровых почвах и светлоземах (рис. 10, В). Эту модель можно назвать формальной, геометрической, так как в ней данные о мощности почвенного горизонта (об элементе профиля) доведены до абстракции – приведен отрезок прямой разной длины для различных почв. Упорядоченное соотношение этих длин (мощностей почвенных горизонтов) показывает. что перед нами модель, обладающая симметрией подобия, или масштабной симметрией. Но она имеет и другие математические конструкции.
Докажем, что модель Захарова можно назвать математическим термином «группа». Внешне модель напоминает коромысло весов с центром в середине (черноземы), от которого по обе стороны на равные расстояния удалены границы почвенных поясов. Центр позволяет осуществлять операции симметрии: повороты, отражения. При повороте на 360° светлозем (х) совместится сам с собой, т. е. вернется в исходное положение. При повороте на 180° и при зеркальном отражении мощности горизонтов А светлозема (х) и подзолистой почвы (1/х) совпадут.







