355 500 произведений, 25 200 авторов.

Электронная библиотека книг » И. Хабловски » Электроника в вопросах и ответах » Текст книги (страница 7)
Электроника в вопросах и ответах
  • Текст добавлен: 15 мая 2017, 15:00

Текст книги "Электроника в вопросах и ответах"


Автор книги: И. Хабловски


Соавторы: В. Скулимовски
сообщить о нарушении

Текущая страница: 7 (всего у книги 29 страниц)

Что такое четырехполюсник типа h?

Это четырехполюсник, параметры которого определяются при условиях короткого замыкания на входе и холостого хода на выходе.

Эти условия наиболее приближенны к реальным условиям работы транзистора в наиболее часто встречаемых схемах с биполярными транзисторами. Ведь биполярный транзистор в типовой схеме имеет относительно малое входное сопротивление и относительно большое выходное.

Основные зависимости четырехполюсника типа h можно получить путем замены его равноценной схемой замещения. В общем случае эквивалентная схема может иметь вид, изображенный на рис. 4.7, а; это схема с двумя источниками напряжения, причем очевидно, что e2 определяющее выходное напряжение, зависит от u1. Затем можно выполнить преобразования, вводя вместо источника напряжение е2 источник тока i'2 (рис. 4.7, б). При коротком замыкании выходной цепи (u2 = 0) будет протекать ток, линейно зависящий (линейный четырехполюсник!) от тока i1; если обозначим коэффициент пропорциональности через h21, то получим i'2 = h21i1. При размыкании входной цепи (i1 = 0) имеем во входной цепи напряжение e1, линейно зависящее от напряжения u2. Обозначая коэффициент пропорциональности через h12, получаем к1 = h12u2. После введения дополнительных обозначений получим окончательную эквивалентную схему, представленную на рис. 4.7, в. На основании этого можем записать два уравнения четырехполюсника:

u1 = h11i1 + h12u2;

i2 = h21i1 + h22u2

в которых в качестве независимых переменных действуют входной ток i1 и выходное напряжение u2, т. е. смешанные, гибридные параметры или сокращенно h-параметры. Параметры четырехполюсника типа h достаточно легко определяются простыми методами измерений.

Выбор переменных i1 и u2 в качестве независимых переменных можно обосновать на примере усилителя рис. 4.3, а. Ток i1 соответствует току базы, и он действительно является независимой переменной, управляющей диодом эмиттер – база в проводящем направлении. Напряжение u1 = uб является зависимой переменной в основном от tб. Ток i2 (= iк) является регулируемым током, т. е. зависимым. Другой независимой переменной может быть только u2 (= uк); диод коллектор – база, смещенный в обратном направлении, должен управляться напряжением.




Рис. 4.7. Эквивалентная схема транзистора четырехполюсника:

а – с двумя источниками напряжения; б – с источником напряжения во входной цепи и источником тока в выходной цепи; в – с h-параметрами

Каков смысл величины и обозначения параметров тока h?

Как уже пояснялось выше, параметры типа h определяются для режима короткого замыкания (к. з.) на входе либо холостого хода (х. х.) на выходе. Смысл этих параметров и функций:

– входное сопротивление при к.з. на выходе,

т. е. входное сопротивление, измеренное при к.з. на выходе (u2 = 0); h11 отражает входное сопротивление и выражается в омах. Значение h11 для низкочастотного транзистора может составить, например, 5 кОм.

– коэффициент обратной связи по напряжению при х.х.,

т. е. коэффициент, измеренный при х. х. на входе (i1 = 0); h12 выражается безразмерным числом. Значение h12 для низкочастотного транзистора в схеме ОЭ может составлять, к примеру, 2·10-4.

 – коэффициент передачи тока при к.з., измеряемый при к. з. на выходе (u2 = 0); h21 представляется безразмерным числом. Значение h21 для низкочастотного транзистора в схеме ОЭ может составлять, например, 300.

 – входная проводимость при х.х., измеренная при х. х. на входе (i1 = 0); h22 имеет размерность проводимости и выражается в сименсах. Значение h22 для транзистора в схеме ОЭ может составлять, например, 30 Cм.

Используются также и другие обозначения параметров типа h и у: вместо индекса 11 – применяется индекс i (от английского Input – вход), вместо 22 – индекс о (output – выход), вместо 12 – индекс г (reverse – обратный), вместо 21 – индекс f (forward – прямой).

Параметры транзистора как четырехполюсника зависят от cxeмы, в которой работает транзистор. Для различения параметров в различных схемах включения применяются дополнительные индексы: Э – для схемы ОЭ; Б – для схемы ОБ; К – для схемы ОК.

Следовательно, получаем, например, hi (= h11), hf (= h21), h (= h21э).

Параметрами типа h особенно часто пользуются в случае низкочастотных схем. С помощью h-параметров можно выразить такие параметры усилительной схемы (рис. 4.8), например усилителя, как входное и выходное сопротивления, усиление по току, напряжению и мощности. Например, усиление по току выражается как

Ki = i2/i1 = h21/(1 + h22RII)

Рис. 4.8. Транзистор в виде четырехполюсника в схеме усилителя

Что такое y-параметры четырехполюсника?

Это параметры проводимостей транзистора, определяемые для режима к. з. на входе (u1 = 0) или на выходе (u2 = 0). Близкие условия обычно имеют место в транзисторных схемах, работающих в диапазоне высоких частот с малыми сопротивлениями, и поэтому y-параметры широко используют при проектировании высокочастотных схем. Эквивалентная схема четырехполюсника (транзистора) с y-параметрами представлена на рис. 4.9.


Рис. 4.9. Эквивалентная схема транзистора четырехполюсника с y-параметрами

Значения отдельных параметров следующие:

 – входная проводимость при к. з. на выходе цепи;

– проводимость обратной связи при к. з. на входе;

 – проводимость прямой передачи при к. з. на выходе цепи;

– выходная проводимость при к.з. на входе (u1 = 0).

В общем случае y-параметры в системе проводимостей состоят из действительной части активной проводимости g и мнимой части – реактивной проводимости Ь.

Между h– и y-параметрами существуют соотношения, допускающие их пересчеты, например h11 = 1/y11, h12C = y12/у11 и т. д.

Что такое схема с общей базой и каковы ее свойства?

В схеме ОБ сигнал подводится между эмиттером и базой, а нагрузка включается между коллектором и базой (рис. 4.10, а).

Существует ряд физических моделей схемы ОБ. Наиболее часто встречается схема, представленная на рис. 4.10, б, называемая Т-образной моделью или Т-образной эквивалентной схемой. В этой схеме слой базы транзистора изображается сопротивлением базовой области rб, значение которого убывает с ростом тока базы. Параллельно сопротивлению коллекторного перехода rк включена барьерная емкость Ск, сильно зависящая от напряжения Uкб и тока Iк.

Частотная зависимость элементов, образующих рассматриваемую физическую модель, в большом диапазоне частот невелика. Большое практическое значение при работе в диапазоне высоких частот имеет произведение rбСк. Его значение должно быть как можно меньше. Также имеет большое значение и произведение диффузионной емкости Сэ на сопротивление эмиттерного перехода rэ, определяющее предельную частоту f0h11 схемы ОБ, при которой h21б уменьшаете на 3 дБ, т. е. до относительного уровня 0,707, rэСэ ~= 1/2πfh11.

Схему ОБ можно представить также в виде четырехполюсника с h-или y-параметрами, заменяя в схеме, показанной на рис. 4.7, в ток i1 на iэ, i2 на iк, u1 на uэб, u2 на uкб. В этом случае получаем схему, показанную на рис. 4.10, в.




Рис. 4.10. Транзистор в усилительной схеме ОБ (a), физическая модель транзистора, работающего в схеме ОБ (б), схема с ОБ в виде четырехполюсника с h-параметрами (в)

Между h-параметрами и параметрами транзистора, соответствующими Т-образной эквивалентной схеме, существует определенная связь:

h11б ~= rэ, h21б = – К, h12б/h22б = rб, h22б = 1/rк

С помощью h-параметров можно определить параметры схемы, работающей в качестве усилителя, возбуждаемого от источника с внутренним сопротивлением Rг и нагруженного сопротивлением (рис. 4.10, а).

При расчете коэффициента усиления по напряжению КU можно воспользоваться формулой

K= uкб/uвх = Rк/(h11б+ Rг) или K= uкб/uэб= Rк/h

Коэффициент усиления по току схемы ОБ К = h21Б ~ 1.

Выходное и входное сопротивления схемы определяются соответственно как

Rвых ~= 1/h22б; Rвх ~= h11б

Основные свойства схемы ОБ кратко можно свести к следующим: большое усиление по напряжению (не менее 1000), коэффициент усиления по току меньше единицы, большее усиление по мощности (примерно 1000), малое входное сопротивление (около 200 Ом), высокое выходное сопротивление (около 500 кОм).

Что называют статическими характеристиками транзистора?

Статические характеристики транзистора – зависимости между токами и напряжениями на различных электродах транзистора, которые получают при подаче на соответствующие электроды регулируемых постоянных напряжений. Статические характеристики снимают путем измерении в простой измерительной схеме либо находят в каталогах или справочниках, разработанных заводом-изготовителем. Статические характеристики позволяют определить ряд параметров транзистора и выбрать соответствующие условия работы, например при усилении сигналов переменного и постоянного тока.

Каковы статические характеристики транзистора в схеме ОБ?

Типичные статические характеристики транзистора в схеме ОБ представляют собой зависимость тока коллектора от постоянного напряжения между коллектором и базой, они называются выходными или коллекторными характеристиками. Такие характеристики можно определить для двух разных случаев: поддерживая постоянным ток эмиттера (рис. 4.11) или поддерживая постоянное значение напряжения эмиттер – база. В обоих случаях уже при малых напряжениях uкб ток коллектора Iк достигает значения, которое незначительно возрастает при дальнейшем увеличении коллекторного напряжения, причем это возрастание связано в основном с ростом составляющей обратного тока Iкбо (Iко), который существует из-за наличия неосновных носителей в полупроводнике и определяется для Iэ = 0. Основная составляющая тока коллектора, связанная с основными носителями, не зависит от напряжения Uкб смещающего коллекторный переход в запирающем направлении.

Нулевое значение коллекторного тока Iк достигается при небольшом напряжении Uкб противоположной полярности, т. е. при смещении коллекторного перехода в проводящем направлении.

Если при снятии характеристики Iк = φ·(Uкб) в измерительной схеме поддерживается постоянным ток Iэ, то ток Iэ является в этом случае параметром. Для транзистора типа n-р-n напряжение Uкб и ток коллектора положительны, а для транзистора типа р-n-р – отрицательны[11]11
  К коллектору транзистора типа n-р-n прикладывается «+» от источника постоянного напряжения, а типа р-n-р «-» – Прим. ред.


[Закрыть]
.

По приведенной на рис. 4.11 характеристике можно простым способом определить коэффициент передачи тока h21Б как отношение приращения тока коллектора ΔIк к приращению тока эмиттера ΔIэ при постоянном напряжении коллектор-база (Uкб = const). Для ΔUкб = 0


Из этих характеристик можно также определить параметр h22б или выходную проводимость схемы ОБ, а именно:


Рис. 4. 11. Статические выходные характеристики транзистора в схеме ОБ

Что такое схема с общим эмиттером и каковы ее свойства?

Схема ОЭ наиболее часто используется на практике, особенно при работе транзистора в качестве усилителя. В этой схеме входной сигнал подводится между базой и эмиттером, а нагрузка включается между коллектором и эмиттером (рис. 4.12, а). Наиболее часто используемой физической моделью или эквивалентной схемой для транзистора ОЭ является П-образная гибридная схема, представленная на рис. 4.12, б, которая отражает малосигнальные свойства транзистора в достаточно широком интервале изменений условий работы и частоты. Некоторые из элементов этой модели такие же как и для схемы ОБ. Проводимость gб'к совместно с емкостью Сб'к определяет обратную связь с выхода на вход схемы. Проводимость gкэ определяет выходное сопротивление схемы. Параметр S называется внутренней крутизной транзистора или взаимной проводимостью и выражается зависимостью

S = Δiк/Δuбэ

Внутренняя крутизна S обычно равна нескольким десяткам миллиампер на вольт.

Предельная частота fгр схемы ОЭ определяет ту частоту, на которой коэффициент h21э уменьшается на 3 дБ

fгр = fh11·(1 – h21б) = fh11/(1 + h21э)

Схема ОЭ в виде четырехполюсника с h-параметрами представлена на рис. 4.12, в. Если известны h-параметры для схемы ОБ, то можно путем пересчета получить h-параметры для схемы ОЭ:

h11э ~= h21э·h11б; h21э = h21б/(1 – h21б); h22э = h21э·h22б




Рис. 4.12. Транзистор в усилительной схеме ОЭ (а), физическая модель транзистора, работающего в схеме ОЭ (б) и схема ОЭ в виде четырехполюсника с h-параметрами (в)

Для определения параметров схемы ОЭ, используемой в качестве усилителя, возбуждаемого от источника сопротивлением Rг и нагруженного сопротивлением Rк (рис. 4.12, а), воспользуемся следующими соотношениями:

uбэ = h11б·iэ = (1 + h21эh11б·iб;

uкэ = iк·Rк

Тогда усиление по напряжению

Кuкэ/uбэ = h21э·Rк/h11э ~= Rк/h11б

а усиление по току, как уже было известно, равно Кh21э

Входное сопротивление

rвх ~= (1 + h21эh11б ~= h11э

включено параллельно Rб.

Основные свойства схемы ОЭ в сравнении со схемами ОБ и ОК можно свести к следующим: большое усиление по напряжению (возможно не менее 1000), большое усиление по току (возможно не менее 30), очень большое усиление по мощности (возможно не менее 30 000), среднее входное сопротивление (около 2 кОм), среднее или большое выходное сопротивление (примерно 100 кОм).

Какие статические характеристики транзистора в схеме ОЭ?

Типичными статическими характеристиками транзистора в схеме ОЭ являются: выходная характеристика рис. 4.13, а – зависимость тока коллектора Iк от напряжения при постоянном напряжении Uбэ или токе Iб[12]12
  В отечественной литературе статические характеристики транзистора Iк = φ·(Uкэ) приводятся чаще в зависимости от значения тока базы IбПрим. ред.


[Закрыть]
и входная характеристика (рис. 4.13, б) – зависимость тока базы Iб от напряжения Uбэ при постоянном напряжении Uкэ, выбранном в качестве параметра.


Рис. 4.13. Статические характеристики транзистора в схеме ОЭ:

а – выходные; б – входные

Как видно из выходных характеристик, ток коллектора начинает появляться уже при очень небольших значениях напряжения Uкэ, смещающего коллекторный переход в запирающем направлении, и быстро достигает значения, выше которого возрастает уже незначительно. При токе базы, равном нулю, в цепи коллектора протекает обратный ток коллектора

Iкэо = Iкбо/(1 – h21б)

Из выходной характеристики можно легко определить коэффициент передачи по току в схеме ОЭ h21э как отношение приращения тока коллектора ΔIк к приращению тока базы ΔIб при постоянном напряжении коллектор – эмиттер (Uкэ = const), т. е. для ΔUкэ = 0. Получим


Из характеристики транзистора, работающего в схеме ОЭ, можно также определить h11э и h22э:


Что такое схемы с общим коллектором и каковы ее свойства?

Транзисторную схему с общим коллектором (ОК) часто называют эмиттерным повторителем. Входной сигнал подводится между базой и коллектором, а нагрузка включается между эмиттером и коллектором (рис. 4.14, а). Физическая модель (эквивалентная схема ОК) представлена на рис. 4.14, б. Для эмиттерного повторителя справедливы следующие соотношения:

h11к = h11э; h12к ~= 1; h21к = – h21э; h22к ~= h22э ~= h21э·h22б;



Рис. 4.14. Транзистор в усилительной схеме ОК (а) и физическая модель транзистора, работающего в схеме ОК (б)

Основные свойства схемы ОК по сравнению со схемами ОБ и ОЭ сводятся к следующему: большое усиление по току (возможно примерно 30), усиление по напряжению меньше единицы, малое усиление по мощности (примерно 30), очень большое входное сопротивление (возможно 2 МОм), очень малое выходное сопротивление (не более 200 Ом).

Какая разница в свойствах схем ОБ, ОЭ, ОК?

Схемы ОБ, ОЭ, ОК отличаются входным и выходным сопротивлениями, усилением по напряжению, току и мощности. Численное значение каждого из этих параметров зависит от типа транзистора и условий его работы. Наибольшее усиление по мощности в каждой из схем достигается при согласовании транзистора, с одной стороны, с источником сигнала и, с другой стороны, – с нагрузкой.

Наибольшее входное сопротивление достигается в схеме с ОК, наименьшее в схеме ОБ. Что касается выходного сопротивления, то ситуация обратная: наибольшее сопротивление можно получить в схеме ОБ, наименьшее – в схеме ОК. Коэффициент усиления по напряжению в схемах ОБ и ОЭ почти одинаков (возможно 1000), а в схеме ОК он меньше единицы. Наибольшее усиление по мощности достигается в схеме ОЭ (можно получить несколько десятков тысяч), наименьшее – в схеме ОК (несколько десятков). Наибольшую рабочую частоту для данного транзистора можно получить в схеме ОБ. Она определяется частотой fh11 и в h21э раз больше предельной частоты fгр схемы ОЭ.

Существенной особенностью схемы ОЭ является переворачивание фазы сигнала. Это основано на том факте, что в случае нагрузки схемы резистором фаза выходного сигнала перевернута на 180 относительно фазы входного. В схемах ОБ и ОК переворачивание фазы сигнала отсутствует.

Что такое рабочая или нагрузочная характеристика транзистора?

Это уравнение прямой, выражающее зависимость тока коллектора от напряжения на нем при определенных значениях напряжения источника питания и сопротивления нагрузки. По характеристике можно определить мгновенные значения напряжений и токов при возбуждении входной цепи управляющим сигналом.

При построении рабочей характеристики используются статистические характеристики транзистора, которые, как известно, снимаются в измерительной схеме без сопротивления нагрузки и без управляющего входного колебания.

Наличие сопротивления нагрузки приводит к возникновению падения напряжения на этом сопротивлении за счет постоянной составляющей выходного тока, а подключение источника управляющего напряжения вызывает как изменение протекающего через транзистор тока, так и дополнительное падение напряжения на сопротивлении нагрузки. Связь между токами и напряжениями в этом случае определяется именно рабочей характеристикой.

При определении рабочей (нагрузочной) характеристики при усилении переменных колебаний следует учитывать фактическое сопротивление нагрузки, которое для переменного тока может иметь другое значение, чем для постоянного тока.

Что можно сказать о рабочей характеристике схемы ОБ?

Усилитель, работающий в схеме ОБ, представлен на рис. 4.10, а, а выходные характеристики Iкf(Uкб) для Iэ = const – на рис. 4.15.

Для выходной цепи можно записать следующее уравнение:

IкRк + Uкб = Ек

которое говорит о том, что сумма падений напряжения на сопротивлении Rк и на переходе коллектор – база должна быть численно равна напряжению источника питания. Для Rк = 2 кОм и Ек = 12 В на основании этого уравнения получим два крайних значения: Uкб = 0, если Iк = 6 мА, и Uкб = 12 В, если Iк = 0.

На семействе характеристик Iкf(Uкб) обозначим через Р1 и Р2 точки, соответствующие этим значениям, а затем проведем через них прямую, называемую нагрузочной прямой.

В рассматриваемом примере нагрузочная прямая одинакова для переменного и постоянного тока, поскольку в представленной на рис. 4.10, а схеме сопротивление нагрузки (резистивное) не зависит от частоты. Точка Р0, лежащая на этой прямой и соответствующая значениям Iк и Uкб в схеме при отсутствии сигнала на входе, называется рабочей точкой в состоянии покоя Р0. При заданных значениях Rк и Ек рабочая точка зависит от значений Rэ и Еэ, определяющих напряжение смещения перехода эмиттер – база, а следовательно, и ток Iэ. В режиме линейного усиления рабочую точку выбирают таким образом, чтобы она лежала вблизи середины нагрузочной прямой, проходящей через точки Р1 и Р2.

На семействе характеристик Iкf(Uкб) можно нанести управляющее колебание. Если изменения мгновенного значения тока эмиттера, вызванные этим колебанием, будут находиться, в пределах от iэ мах до iэ min, то, двигаясь вдоль этой прямой, можем определить диапазон изменений тока и напряжения между коллектором и базой.

Когда сопротивление нагрузки для переменного тока имеет другое значение, чем для постоянного, на семействе характеристик строим две нагрузочные прямые: одну для постоянной составляющей, другую для переменной. Обе прямые всегда пересекаются в рабочей точке.


Рис. 4.15. Нагрузочная характеристика в семействе статических выходных характеристик схемы ОБ

Что можно сказать о рабочей характеристике схемы ОЭ?

Схема усилителя, работающего по схеме ОЭ, представлена на рис. 4.12, а, а примерные выходные характеристики Iкf(Uкэ) для Iб = const на рис. 4.16, а. При построении рабочей характеристики принято Ек = 12 В, Rк = 2 кОм, а также использовано уравнение

IкRк + Uкэ = Ек

Затем построена нагрузочная прямая. Рабочая точка покоя Р0 выбрана для Iб = 80 мкА. Для точек Р1 и Р2 в этом случае имеем:

Iб(Р1) = 120 мкА; Iк(Р1) = 5 мА;

Iб(Р2) = 40 мкА; Iк(Р2) = 1,3 мА.

Используя нагрузочную прямую, можно вычислить некоторые параметры рассматриваемой схемы. Например, коэффициент усиления по току

Можно также рассчитать значение коэффициента передачи по напряжению. Для этого следует воспользоваться входной статической характеристикой Iбφ(Uбэ) для Uкэ = const (рис. 4, 16, б, с учетом того, что для Uкэ выбираем значение, соответствующее рабочей точке Р0 на характеристике Iкf(Uкэ) (рис. 4.16, а). Затем выбираем такое значение Eб или для заданного Еб такое сопротивление Rб, чтобы нагрузочная прямая пересекла эту характеристику в точке, соответствующей току базы для рабочей точки Р0 (рис. 4.16, а). Вдоль оси напряжения Uбэ определим Uбэ управляющего напряжения для токов базы от Iб(Р1) до Iб(Р2). Из рис. 4.16, а получим Uкб = 30 мВ, а из рис. 4.16, Uкб = ΔIкRк = 6 В, т. е. коэффициент усиления по напряжению для этого примера равен

K = Uкб/Uбэ = 6 В/30 мВ = 200.


Рис. 4.16. Нагрузочная характеристика в семействе выходных (а) характеристик схемы ОЭ и определение управляющего напряжения в схеме ОЭ (б)


    Ваша оценка произведения:

Популярные книги за неделю