Текст книги "Электроника в вопросах и ответах"
Автор книги: И. Хабловски
Соавторы: В. Скулимовски
Жанры:
Справочники
,сообщить о нарушении
Текущая страница: 24 (всего у книги 29 страниц)
Что такое схема делителя частоты на триггерах?
Для уменьшения частоты повторения импульсов можно использовать триггеры. Триггер, возбуждаемый последовательностью импульсов, дает на выходе прямоугольное колебание, частота которого в 2 раза меньше частоты повторения импульсов. Это соответствует делению частоты на 2. Если выходное колебание такого триггера подать на следующий, то суммарно два триггера обеспечивают деление в отношении 2·2·2:1 и т. д.
Какое применение находят операционные усилители в генерировании несинусоидальных колебаний?
Операционные усилители (см. гл. 7) могут применяться как для генерирования несинусоидальных колебаний, так и для их формирования. Для этого используются операционные усилители в виде интегральных микросхем. Имеются, однако, интегральные микросхемы, содержащие триггеры и другие схемы, используемые в цифровой технике и допускающие более простую реализацию сложных схем.
Глава 11
МОДУЛЯЦИЯ И ДЕТЕКТИРОВАНИЕ
Что такое модуляция?
Модуляция – это процесс изменения во времени выбранной характеристической величины одного переменного электрического колебания, называемого модулируемым, под влиянием второго колебания, называемого модулирующим.
Когда применяется модуляция?
Непосредственная передача информации, например по проводам, не всегда возможна и рациональна. Передача информации с помощью электромагнитных волн возможна только в диапазоне высоких частот, в котором энергия может излучаться с большей эффективностью. Для устранения взаимных помех при передаче на расстояние по радио или по проводам большого объема информации, в частности телефонной, существует необходимость переноса ее из занимаемого низкочастотного диапазона частот (звуковых) в диапазон высоких частот.
Модуляция предназначена для переноса информации, содержащейся в некотором диапазоне частот, в другой частотный диапазон и в связи с этим является основным процессом в области передачи сигналов, особенно с помощью электромагнитных волн.
Колебание, с помощью которого передается сигнал, носит название несущего колебания или несущей частоты. В процессе модуляции на несущую накладывается модулирующее колебание, содержащее передаваемую информацию.
Какие существуют виды модуляции?
Существует несколько основных видов модуляции. Перед тем как их определить, следует обратить внимание на то, что несущее колебание, подвергаемое процессу модуляции, является синусоидальным колебанием, которое можно записать в следующем виде:
u = A·cos(ωt + θ)
где А – амплитуда несущего колебания; ω = 2πft – круговая частота несущего колебания; θ – фазовый угол.
Модулирующий сигнал, содержащий информацию, может изменять каждую из этих величии таким способом, который отражает его мгновенное значение. В том случае, когда амплитуда несущего колебания изменяется пропорционально модулирующему сигналу, имеем дело с амплитудной модуляцией. Если пропорционально сигналу изменяется частота f несущего колебания, то говорят о частотной модуляции. И, наконец, если пропорционально сигналу изменяется фазовый угол θ несущего колебания, имеет место фазовая модуляция. Два последних вида модуляции (частотную и фазовую) определяют иногда общим названием – угловая модуляция.
Все указанные виды модуляции относятся к непрерывной модуляции. Кроме того, существует возможность дискретизации модулирующего сигнала путем создания импульсов, которые содержат информаций, соответствующую модулирующему сигналу. Этим импульсом можно модулировать величины А или «несущего колебания. При этом будем иметь дело со многими системами импульсной модуляции.
Следует еще упомянуть, что для каждого вида модуляции всегда очень важным вопросом с практической точки зрения является сохранение лишь одного вида модуляции. Если несущее колебание одновременно модулируется по амплитуде и фазе, то один из этих видов модуляции рассматривается как паразитный.
Каковы основные свойства амплитудной модуляции?
При амплитудной модуляции амплитуда несущего колебания А изменяется пропорционально модулирующему сигналу. На рис. 11.1 показаны три колебания – несущее, модулирующее и модулированное. Видно, что в модулированном колебании огибающая выходного сигнала идентична модулирующему сигналу. Характерно то, что, когда огибающая увеличивается в положительном направлении, одновременно она увеличивается и в отрицательном. Амплитуда огибающей является долей амплитуды несущего колебания. Эта доля, обозначаемая буквой m, обычно выражена в процентах и называется коэффициентом глубины модуляции или просто глубиной модуляции. Глубина модуляции может изменяться от 0 до 100 %. Если m больше 100 %, то модулированное колебание сильно искажено.
Рис. 11.1. Амплитудная модуляция:
а – не модулированное несущее колебание; б – модулирующий сигнал; в – амплитудно-модулированное колебание
Если несущее колебание промодулировано косинусоидальным сигналом, мгновенное значение модулированного колебания можно записать в следующем виде:
u = (1 + m·cos Ωt)·A·cos ωt
в котором m – глубина модуляции; А – амплитуда несущего колебания; Ω – круговая частота модулирующего сигнала; ω – круговая частота несущего колебания.
Преобразуем это уравнение
Три полученные составляющие определяют спектр модулированного сигнала.
Первая составляющая является несущим колебанием с частотой ω, вторая составляющая с амплитудой m·А/2 и частотой ω + Ω – верхняя боковая полоса, а третья составляющая с амплитудой m·А/2 и частотой ω – Ω – нижняя боковая полоса. Если, например, частота несущего колебания составляет 200, а частота модулирующего сигнала 1 кГц, то спектр модулированного сигнала состоит из трех частот: 200 кГц, 200 – 1 = 199 кГц и 200 + 1 = 201 кГц.
Из рис. 11.2 видно, что модулирующий сигнал с частотой 1 кГц перенесен в полосу несущей 200 кГц и информация в модулированном сигнале содержится в двух боковых полосах, расположенных симметрично относительно несущего колебания. Одновременно можно сделать вывод, что ширина полосы, занимаемой амплитудно-модулированным сигналом, равна удвоенной частоте модулирующего сигнала.
Рис. 11.2. Частотный спектр амплитудно-модулированного сигнала:
1 – несущая частота; 2 – нижняя боковая; 3 – верхняя боковая частота
Следует подчеркнуть, что существование боковых полос не является результатом математического анализа, вытекающего из преобразования выражения для модулированного сигнала, а имеет реальную физическую интерпретацию. С помощью соответствующих фильтров можно выделить отдельные составляющие спектра, так же как, располагая такими составляющими, можно составить колебание, соответствующее модулированному колебанию.
На практике модулирующий сигнал не является простейшим синусоидальным сигналом, а занимает некоторую полосу частот, например звуковых или изображения. В связи с этим боковые полосы выглядят не одиночными линиями, а полосами, расположенными симметрично относительно несущего колебания.
Из анализа спектра амплитудно-модулированного сигнала вытекает, что полезная информация содержится только в боковых полосах (частотах). Сравнивая амплитуды отдельных спектральных линий, приходим к выводу, что они находятся в соотношении 1:(m/2):(m/2). Поскольку мощность пропорциональна квадрату напряжения, отношение мощностей, переносимых боковыми частотами, имеет вид: 1:(m2/4):(m2/4). Например, если мощность несущего колебания составляет 500 Вт, то при m = 1 мощность каждой из боковых составляет 125 Вт и, следовательно, соответствует только 25 % мощности несущего колебания. При меньших глубинах модуляции доля боковых частот в общей мощности еще меньше. Изменению не подвергается только мощность несущего колебания – переносчик энергии.
Далее увидим, что существует возможность передачи информации без несущего колебания, а также без несущей и одной боковой полосы в системах однополосной модуляции.
На каком принципе работают амплитудные модуляторы?
Основное требование, предъявляемое к амплитудному модулятору, – это то, чтобы он был нелинейным устройством. При подведении к нелинейному устройству двух сигналов с разными частотами создаются условия взаимодействия этих сигналов. Рассмотрим простейший диодный модулятор, изображенный на рис. 11.3.
Рис. 11.3. Диодный модулятор
Во входную цепь диода включены два источника сигналов, из которых один является несущим сигналом с частотой f, значительно большей, чем частота F другого сигнала, являющегося модулирующим. Напряжение, возникающее на нагрузочном сопротивлении диода, управляет буферным усилителем, нагруженным резонансным контуром, настроенным на частоту несущего сигнала. Из-за нелинейности характеристики диода в его выходной цепи возникают сигналы основной частоты и комбинированных частот типа f + F; f + 2F; f – F; f – 2F; 2f + F и т. д. Подбирая соответственно ширину полосы резонансного контура, можно выделить на выходе сигналы с частотами f; f – F и f + F, соответствующие несущему колебанию, а также нижней и верхней боковым частотам. Как уже известно, сумма этих сигналов является амплитудно-модулированным колебанием.
Какие существуют схемы амплитудных модуляторов?
Диодный модулятор, изображенный на рис. 11.3, на практике почти не применяется, поскольку не позволяет получать большие глубины модуляции без значительных искажений. Чаще всего амплитудная модуляция осуществляется в одном из каскадов высокочастотных усилителей мощности, работающих в классе С, так как только при этом можно получить достаточную линейность модулированного колебания. Модуляцию можно осуществлять как на низком, так и на высоком уровне мощности. В первом случае амплитудно-модулированное колебание усиливается в линейном усилителе класса В до требуемого выходного уровня.
Принцип работы модуляторов класса С основывается на увеличении коэффициента усиления усилителя высокой частоты в положительный полупериод модулирующего сигнала и уменьшении его в отрицательный полупериод. Этот принцип осуществляется подачей модулирующего сигнала на сетку, анод или катод триода. В пентоде модулирующий сигнал может быть подан на экранную или защитную сетку. Обычно уже в названии схемы модулятора указывается, на какой из электродов усилительной лампы подается модулирующий сигнал. В передатчиках малой мощности в модуляторах работают транзисторы, при этом модулирующий сигнал подводится к коллектору, эмиттеру либо базе.
На рис. 11.4 изображены основные схемы модуляторов. При анодной модуляции напряжение, питающее анод лампы усилителя высокой частоты, изменяется в такт с модулирующей частотой благодаря включению в цепь питания трансформатора. В сеточном модуляторе модуляционный трансформатор включен последовательно с источником отрицательного сеточного напряжения. Достоинством сеточного модулятора является то, что он требует относительно малой мощности модулирующего сигнала. Обычно этот вид модулятора применяется в телевизионных передатчиках большой мощности, поскольку анодный модулятор был бы более сложным устройством из-за широкой полосы частот, требуемой для передачи телевизионного сигнала. Катодный модулятор действует аналогично сеточному модулятору (рис. 11.4, в).
Рис. 11.4. Основные схемы модуляторов:
а – анодный; б – сеточный; в – катодный
Что такое однополосная модуляция и как ее получают?
Из анализа спектра амплитудно-модулированного сигнала следует, что несущее колебание не принимает активного участия в переносе информации, несмотря на то, что оно поглощает большую часть энергии передатчика. Кроме того, известно, что одна боковая полоса содержит все необходимые данные о модулирующем сигнале, а вторая лишь удваивает информацию, содержащуюся в первой боковой полосе. На основании этого были разработаны два новых вида амплитудной модуляции.
Если несущее колебание подавляется, а передаются только боковые полосы, то такой вид модуляции называется двух полосной, модуляцией с подавляемой несущей. Несущее колебание можно исключить путем использования балансного модулятора, примером которого служит кольцевой модулятор, состоящий из четырех диодов (рис. 11.5).
Рис. 11.5. Электрическая схема (а) и форма выходного сигнала (б) кольцевого модулятора
Четыре диода в этой схеме идентичны, а точки р и р' являются средними точками обмоток. Между точками р и р' включается источник модулирующего колебания, а к трансформатору Tp1 подводится модулируемый' сигнал. Поскольку схема симметрична, на выходе отсутствуют модулирующий сигнал и сигнал несущего колебания. При наличии модулирующего сигнала высокочастотное напряжение на выходе схемы пропорционально мгновенному значению модулирующего сигнала. Анализируя такой сигнал, можно прийти к выводу, что он содержит только модуляционные боковые частоты f + F и f + F без несущей.
В приемнике амплитудно-модулированных сигналов с подавленной несущей эту несущую следует восстановить для того, чтобы можно было осуществить процесс обратный модуляции, т. е. детектирование. Для того чтобы упростить восстановление несущей в приемнике, ее устраняют из передаваемого сигнала не полностью, а частично. Поэтому такая система носит название «с подавляемой несущей».
Другая схема модуляции – это схема однополосной модуляции, в которой кроме частичного подавления несущей используется полное исключение нижней боковой полосы (рис. 11.6). Однополосная модуляция помимо большой энергетической эффективности, являющейся следствием подавления несущей, дает еще экономию полосы пропускания, используемой для передачи сигнала, поскольку снижает в 2 раза необходимую ширину полосы. Исключение боковой полосы осуществляется с помощью соответствующих фильтрующих схем либо более сложных схем с фазовращателями. Схему однополосной модуляции применяют в проводной связи и радиосвязи.
Рис. 11.6. Спектры амплитудно-модулированных сигналов при двухполосной (а) и однополосной (б) модуляции
Что такое детектирование?
Детектирование или демодуляция – это процесс, обратный модуляции, в результате которого из модулированного колебания получают модулирующий сигнал. Очевидно, что для каждого вида модуляции существует соответствующий ему вид демодуляции, например амплитудная демодуляция, частотная и т. п.
Процесс демодуляции используется в радиоприемниках и телевизорах, предназначенных для приема модулированных сигналов. В результате получают полезный сигнал, идентичный модулирующему сигналу в передатчике.
Каков принцип работы амплитудного детектора?
Задачей амплитудного детектора является перенос спектра модулирующего сигнала, расположенного около несущей частоты (в виде боковых полос), в полосу частот, первоначально занимаемую этим сигналом. Так же как и при модуляции, процесс детектирования требует использования устройства с нелинейной характеристикой. Разница по сравнению с модулятором заключается в том, что в детекторе сигнал с несущей частотой не подводится от отдельного источника, а содержится в самом сигнале. Если в сигнале несущая подавлена, как это происходит при однополосном сигнале, то она должна быть восстановлена в приемнике и добавлена к сигналу, подвергаемому детектированию.
Требуемую нелинейность характеристики детектора получают путем соответствующего выбора рабочей точки транзистора, лампы или диода. Принцип работы нелинейного (квадратичного) детектора на транзисторе можно пояснить с помощью схемы, представленной на рис. 11.7.
Рис. 11.7. Схема детектора на транзисторе
Детектирование происходит после подачи модулированного колебания на базу транзистора. Из-за нелинейности входной характеристики в выходном колебании появляется составляющая, которая изменяется в такт с модулирующей частотой. Имеющийся сигнал высокой частоты устраняется с помощью RС-цепочки, образующей фильтр нижних частот. Из более подробного анализа выходного колебания следует, что помимо основной составляющей в нем действует составляющая с частотой второй гармоники модулирующего сигнала, пропорциональная глубине модуляции. Поэтому в результате детектирования возникают искажения полезного сигнала, которые оправдывают название этого типа детектирования (нелинейное детектирование), но одновременно ограничивают применение рассматриваемой схемы.
Как действует линейный диодный детектор?
Схема диодного детектора представлена рис. 11.8.
Рис. 11.8. Диодный детектор
Диод в этой схеме работает как выпрямитель напряжения высокой частоты. Входной амплитудно-модулированный сигнал подводится от резонансного контура, настроенного на несущую частоту и имеющего достаточную ширину полосы для выделения амплитудно-модулированного колебания. Диод как элемент с однонаправленным действием выпрямляет модулированное колебание, поэтому в нагрузку проходит только положительная полуволна сигнала. Если бы диод был включен в обратном направлении (катодом к резонансному контуру), то выпрямлялась бы отрицательная полуволна сигнала.
Если сопротивление диода rд мало по сравнению с сопротивлением резистора R на выходе возникает напряжение, равное амплитуде входного сигнала. Постоянная времени RC подбирается таким образом, что высокочастотная составляющая отфильтровывается и на выходных зажимах действуют только постоянная составляющая и модулирующий сигнал. Постоянную составляющую можно устранить с помощью конденсатора, включенного последовательно с дальнейшей частью тракта, предназначенного для усиления сигнала, полученного в результате детектирования. На рис. 11.9 представлены последовательные этапы получения напряжения, соответствующего огибающей модулированного сигнала.
Рис. 11.9. Формы колебаний при диодном детектировании:
а – амплитудно-модулированное на входе; б – после одпополупериодного выпрямителя; в – на нагрузке; г – выходное колебание без постоянной составляющей
Пояснения требует определение диодного детектора как линейного. Название происходит от динамической характеристики диода, представленной на рис. 11.10[25]25
Детектор называется линейным, если характеристика детектирования, устанавливающая связь между постоянной составляющей тока, диода и амплитудой входного сигнала, линейна. – Прим. ред.
[Закрыть].
Рис 11.10. Динамическая характеристика линейного детектора
Эта характеристика является отрезком прямой линии, поэтому выпрямленное детектором напряжение линейно зависит от напряжения, подвергаемого процессу детектирования. Линейная зависимость обоих напряжений имеет место только при больших амплитудах, примерно более полувольта.
При малых амплитудах детектор ведет себя, как описанный выше нелинейный детектор. Следует добавить, что линейный диодный детектор во всем остальном остается нелинейным устройством, поскольку начальная рабочая точка схемы находится в месте излома динамической характеристики диода. Именно эта нелинейность в начале системы координат (при отрицательных управляющих напряжениях ток через диод не протекает) и является фактором, способствующим детектированию.
Какие критерии выбора постоянной составляющей RС-цепи в диодном детекторе?
Резистор R и конденсатор С в детекторе образуют двухполюсник, характеризующийся определенной постоянной времени RC, зависящей от нескольких факторов. Прежде всего, с точки зрения обеспечения высокого КПД детектирования, определяемого отношением выпрямленного напряжения к амплитуде сигнала высокой частоты, сопротивление резистора R должно быть как можно больше.
По этой же причине как можно больше должна быть емкость конденсатора С (падение напряжения высокой частоты на емкостном сопротивлении будет малым). Однако, с другой стороны, излишне большая емкость конденсатора С приводит к тому, что изменения выпрямленного напряжения не успевают за изменениями модулирующего сигнала, что является источником искажений. В связи с этим принимаются компромиссные значения этих элементов в соответствии с соотношением
где ω – несущая частота; Ω – наивысшая модулирующая частота.
В детекторе радиовещательного сигнала сопротивление резистора R обычно лежит в пределах 0,5–1 МОм, а емкость конденсатора С составляет около 100 пФ, тогда как в широкополосном телевизионном детекторе сопротивление R около 2–4 кОм при шунтирующей емкости около 10 пФ. Очевидно, что во втором случае КПД детектирования меньше.
Может ли полевой транзистор работать как амплитудный детектор?
Да. Полевой транзистор в схеме па рис. 11.11, а работает в качестве амплитудного детектора, если сопротивление резистора Ru около 100 кОм и даже 1 МОм. Столь высокое сопротивление приводит к тому, что рабочая точка лежит достаточно близко к точке отсечки тока стока. Если на затвор транзистора подать амплитудно-модулированный сигнал, то ток стока будет протекать в виде импульсов, амплитуда которых определяется огибающей модуляции (рис. 11.11, б). Средний ток стока будет изменяться в соответствии с изменением модулирующего сигнала.
При больших амплитудах модулированного ВЧ сигнала условия работы детектора приближаются к условиям работы линейного диодного детектора. Дополнительным преимуществом является усиление демодулированного сигнала.
Детектор на полевом транзисторе является эквивалентом лампового детектора, работающего в схеме сеточного детектирования, принцип которого идентичен принципу описанного выше детектора.
Рис. 11.11. Схема (а) и формы колебаний (б) в амплитудном детекторе на полевом транзисторе