Текст книги "Менделеев"
Автор книги: Герман Смирнов
Жанр:
Биографии и мемуары
сообщить о нарушении
Текущая страница: 22 (всего у книги 25 страниц)
Полуторачасовой визит Дмитрия Ивановича произвел огромное впечатление на Олсуфьева, только что закончившего университет по курсу естественных наук. На следующее лето он зачастил в Боблово, и, когда к нему по-приятельски заехал сын Льва Толстого Сергей, Олсуфьеву не стоило труда уговорить его ехать к Менделееву.
«…Я подпал под его влияние… – описывал свою встречу с Дмитрием Ивановичем С. Толстой. – Виден был большой ум, чувствовалась большая жизненная энергия. Он любил говорить и говорил горячо и образно, хотя не всегда гладко. Он крепко верил в то, чем в данное время увлекался, и не любил возражений на свои, иногда смелые парадоксы. Этим и некоторыми другими чертами он мне напоминал моего отца. Между прочим, он жалел, что мой отец пишет против науки… Ваш отец, – говорил он, – воюет с газетчиками и сам становится на одну доску с ними. Он духа науки не понимает, того духа, которого в книжках не вычитаешь, а который состоит в том, что разум человеческий всего должен касаться; нет области, в которую ему запрещено было бы вторгаться…»
По всей вероятности, во время этих бесед он живо вспомнил свои встречи с Ф. Достоевским и побоялся, что личное знакомство с Л. Толстым произведет на него такое же двойственное, тревожащее впечатление. И спустя много лет, вспоминая о визите двух молодых естественников, он написал: «Олсуфьев сводил с Л. Н. Толстым, но я уклонился».
Но никакие опасения не могли умалить того огромного впечатления, которое всегда производило на Менделеева творчество Толстого. Произведения этого писателя глубиной наблюдения жизни, правдивостью ее изображения потрясали Дмитрия Ивановича. О том, как пристально он читал произведения Толстого и какую неожиданную пищу давали они его уму, можно судить по такому факту. В своих экономических статьях Менделеев уделяет много внимания различию между трудом и работой. О необходимости различать эти понятия много писал в своих набросках к «Диалектике природы» Ф. Энгельс, указывавший, что с помощью килограммометров нельзя оценивать квалифицированный труд. Дмитрий Иванович разработал эту проблему во всех деталях. « Работа, – считал он, – есть понятие чисто механическое, человек способен ее давать, но, познав свою истинную силу, стремится… уменьшить свою физико-механическую работу, заставляя «двигатели» производить главную часть работы и оставляя себе лишь труд…»
И вот, чтобы получше объяснить эту разницу, Дмитрий Иванович привел пример, показывающий, как внимательно и вдумчиво читал он Толстого: «Труд, хотя бы и самый ничтожный по числу затраченных килограммометров, хотя бы состоящий только в одном словеили жесте, как у Багратиона под Шёнграбеном («Война и мир» Толстого)… может быть очень велик и очень важен». Но, помимо отношений, связывающих каждого писателя с читателями его книг, Менделеева и Толстого связывало еще одно обстоятельство…
Люди, которым доводилось слышать Менделеева, утверждали, что грамматической усложненностью его речь напоминала чем-то речь Льва Толстого. «Он говорил, точно медведь валит напролом сквозь кустарник, – пишет литератор В. Ветринский, не раз слушавший лекции Дмитрия Ивановича, – так он шел напролом к доказываемой мысли, убеждая нас неотразимыми доводами. Впечатление, какое на меня производили всегда его лекции, я могу сравнить только с впечатлением от последних сочинений Льва Толстого: та же безграничная убежденность в том, что говорит каждый, и то же глубокое пренебрежение к внешней стороне фразы».
«Пренебрежение к внешней стороне фразы» и у Толстого и у Менделеева приводило к некоторой грамматической неправильности речи, но неправильность эта была такого рода, что она позволяла выражать нужную им мысль самым коротким образом.
Создается впечатление, что неокругленность, «корявость» у обоих авторов есть следствие свободного владения языковым материалом. Толстой не стеснялся, когда ему это нужно, писать: « вправе и влевепроходила… леса, поля, деревни». И Дмитрий Иванович смело пишет непривычные для нашего уха: «солнцы», «дны», а иногда прямо конструирует новые слова – «сочетанность», «вступно» и т. д. Слово «вступно» он особенно любил и применял его для обозначения такого образа действий, когда человек не ходит вокруг да около, а прямо «вступает» в самую толщу дела.
Литературные особенности произведений Дмитрия Ивановича заслуживают того, чтобы их изучением занялись специалисты-языковеды. Его язык, навсегда сохранивший нечто от тех исторических и критических разборов и от тех выписок из сочинений Ломоносова, Державина и Карамзина, которыми в годы своего студенчества в Главном педагогическом институте Дмитрий Иванович занимался у профессора российской словесности Лебедева, современному читателю покажется, возможно, несколько тяжеловесным, отдающим стариной. Но когда преодолеешь первое предубеждение, чтение захватывает, и тогда начинаешь понимать, что некоторая старомодность языка придает произведениям Дмитрия Ивановича терпкий и тонкий привкус той добротности, которой, увы, не избалован современный читатель.
Можно только поражаться гармоничности развития личности Менделеева, который всегда ухитрялся интересоваться и делать то, что надо, вовремя – ни раньше и ни позже. Студент Главного педагогического института Дмитрий Менделеев был заядлым меломаном. На склоне лет он признавался своему сыну Ивану, что в первый раз кровь пошла у него горлом после того, как он неистовствовал на галерке, вызывая какую-то знаменитую итальянскую певицу. По-видимому, среди приятелей Дмитрия Ивановича этот факт, как и его увлечение оперой, были хорошо известны, ибо в переписке уехавшего к Симферополь, а потом в Одессу Менделеева сохранилось немало упоминаний об опере и театре.
К тридцати годам интерес Менделеева к опере начал пропадать. В 1862 году после возвращения из Гейдельберга он записал как-то раз в дневнике: «…поехал посмотреть на Ристори – она играла на Мариинском театре в роли Беатрисы… роль трудная, но не говорит душа – недоволен театром». Позднее Дмитрий Иванович окончательно охладел к опере. Но могучее действие музыки на душу Менделеева сохранилось до последних дней его жизни.
В 1886 году обстоятельства сложились так, что Дмитрий Иванович смог наслаждаться очередным и высочайшим триумфом периодического закона всего лишь полгода: предсказанный им германий был открыт в феврале, а уже в сентябре Крукс произнес в Бирмингеме свою знаменитую речь «О происхождении химических элементов». Эта речь всколыхнула давние, затихшие было споры о единстве материи и положила начало той полемике, которая, то усиливаясь, то ослабляясь, тянулась несколько десятилетий, отравив последние годы жизни великого «генерализатора химической науки».
С тех пор как в химии было окончательно установлено представление о простейшем веществе – элементе, – вопрос о том, сколько должно быть элементов, считать ли их самостоятельными, неизменными сущностями или разновидностями некой единой субстанции, не переставал волновать химиков.
Поначалу эти споры велись на почве чисто умозрительных гипотез. И А. Лавуазье был прав, когда говорил: «Все, что можно сказать о числе и природе элементов, это, по моему мнению, только метафизические рассуждения, это значит браться за неопределенные проблемы, которые могут быть разрешены на бесчисленное количество ладов, причем, вероятно, ни одно решение не соответствует природе вещей».
Атомистическая теория Джона Дальтона позволила перевести разговор на язык цифр: стало возможным характеризовать элементы одним числом – атомным весом. И как только накопились соответствующие измерения, появилась гипотеза У. Праута…
Праут, практикующий лондонский врач, любительски занимавшийся химией, в 1815 и в 1816 годах опубликовал две статьи, в которых заявлял о том, что атомные веса элементов должны быть в точности кратны атомному весу водорода, что никаких дробных значений атомных весов быть не может и если они есть, то, значит, измерения произведены недостаточно точно; что, наконец, должен существовать «протил» – единая первичная материя, из которой состоит все сущее. Идеи Праута разделили химиков на дна лагеря. Одни поддерживали его идею о единстве материи, другие отрицали. И наконец, в 1860-х годах бельгийский химик Ж. Стас проводит серию кропотливейших исследований, долженствующих прямым опытным путем установить, существуют или нет дробные атомные веса. Результаты этих опытов нельзя было бы назвать эффективными – небольшая табличка сотни раз перепроверенных чисел. Но эта табличка Стаса оказалась многозначительной для химиков того времени: атомные веса многих элементов были дробными…
Много занимаясь сопоставлением свойств различных элементов, Менделеев до появлении работ Стаса был склонен думать, что в гипотезе Праута что-то есть. Но, как естествоиспытатель, привыкший снова и снова пересматривать свои умозрительные соображения, каждый раз приводить их в соответствие с опытными данными, он сразу оцепил достоверность таблички Стаса.
Приняв измерения Стаса и вытекающие из них последствия: множественность и взаимную непревращаемость элементов, положив эти идеи в основу периодической системы, Дмитрий Иванович спустя 15–20 лет, естественно, не считал нужным ни с того ни с сего отказаться от принципов, давших такие плодотворные результаты, и принять ничем еще не прославившуюся идею единства материи.
В множественности элементов Дмитрия Ивановича убеждало и то, что никто еще не наблюдал превращения одного элемента в другой и что спектральное изучение космических тел неизменно свидетельствовало: элементы распространены до отдаленнейших светил и выдерживают, не разлагаясь, самые высокие космические температуры.
Бирмингемское выступление У. Крукса, воскресившее в обновленном виде праутовский «протил», вывело Дмитрия Ивановича из себя. Безукоризненному предшествующему опыту всей химии Крукс противопоставлял туманные аналогии, вроде распространения дарвиновской идеи об эволюции на химические элементы.
Выступление Крукса широко обсуждалось в русских научных кругах. Как-то раз после оживленного заседания в физическом обществе Дмитрий Иванович, А. Столетов и К. Тимирязев проспорили до поздней ночи о единстве материи. Наконец Дмитрий Иванович, исчерпав все свои доводы и разгорячившись до предела, буквально простонал:
«Александр Григорьевич! Клементий Аркадьевич! Помилосердствуйте! Ведь вы же сознаете свою личность. Предоставьте же и Кобальту и Никелю сохранить свою личность».
«Мы переглянулись, – вспоминал потом Тимирязев, – и разговор быстро перешел на другую тему…»
Десятилетие, последовавшее за 1886 годом, было относительно спокойным для периодической системы, хотя, кроме умозрительных споров о единстве материи, Дмитрия Ивановича продолжали беспокоить «три предмета, касающиеся периодического закона и до сих пор с ним не согласованные». Предметами этими были: кобальт, который, несмотря на меньший атомный вес, был помещен Менделеевым перед никелем, теллур, помещенный перед более легким йодом, и необычное положение редкоземельных элементов, которые все пришлось расположить как бы в одной клетке таблицы. Дмитрий Иванович понимал, что за этими мелкими на первый взгляд неправильностями могут крыться как неточности измерений, так и глубокие фундаментальные противоречия. Однако на первых порах исследования, ведущиеся в этом направлении рядом химиков, не предвещали угрозы целостности менделеевского детища.
Но Дмитрий Иванович ощущал приближение серьезнейших испытаний для периодического закона. И чувства его были настолько обострены, что по первым коротким и невнятным сообщениям он безошибочно угадал важность открытий, которым было суждено подвергнуть решительному испытанию периодический закон…
Когда 13 августа 1894 года английский химик У. Рамзай на заседании Британской ассоциации в Оксфорде сделал первое сообщение об открытии в воздухе нового газа, более инертного, чем азот, оно было встречено хотя и с интересом, но без особого доверия. Воздух изучали так давно и так основательно, что трудно было поверить, будто в нем удалось обнаружить нечто новое. Но поскольку Рамзай и Д. Рэлей в течение нескольких последовавших месяцев сделали ряд докладов и сообщений, в которых доказывалось, что открытый ими газ – они назвали его аргоном – есть новый элемент, среди ученых вспыхнули горячие дискуссии. Одни считали, что аргон – элемент, другие – что он сложное тело, возможно, надеятельная разновидность азота, состоящая из трех атомов.
Дмитрий Иванович, никогда не допускавший мысли о возможности существования элементов, не ложащихся в периодическую систему, тоже поначалу склонялся ко второму мнению. 12 февраля 1895 года он телеграфировал Рамзаю: «Поздравляя открытием аргона, думаю, молекула содержит три азота, образуемые выделением тепла». Сразу поняв всю глубину душевного волнения Менделеева, Рамзай поспешил заверить Дмитрия Ивановича: «Периодическая классификация совершенно отвечает его (аргона) атомному весу, и даже он дает новое доказательство закона периодичности». Успокоенный Менделеев 2 марта 1895 года на заседании Русского физико-химического общества твердо заявил: все свидетельствует в пользу того, что аргон – элемент. Но поскольку в письмах Рамзая не указывалось, «каким именно образом… получено упомянутое соглашение атомного веса аргона с периодическою законностью», Дмитрий Иванович немедленно поручил Блумбаху, находившемуся в то время в Лондоне по метрологическим делам, узнать у Рамзая подробности открытия.
По поручению Менделеева Блумбах посетил Рамзая в его лаборатории, где англичанин любезно сообщил ему еще не опубликованные данные об аргоне. В частности, Рамзай сообщал, что «аргон» встречается в минерале клевеите вместе с «гелием».
«Когда я осмелился повторить в вопросительном тоне слово «гелием», – вспоминал Блумбах, – то получил короткое выразительное замечание: «Сейчас увидите у меня в лаборатории спектр гелия». Через полчаса Рамзай показал мне в спектроскопе желтую спектральную линию».
Известие о том, что Рамзай открыл, точнее переоткрыл, гелий, в короткое время стало сенсацией. Еще в 1868 году французский астроном П. Жансен и английский астрофизик Н. Локьер независимо друг от друга обнаружили в спектре солнечной короны яркую желтую линию, которую они приписали новому, не обнаруженному на Земле элементу. Четверть века гелий – солнечный – так предложил Локьер называть новый элемент – оставался загадкой – гипотетическим элементом, существование которого связывалось только с солнцем. И вот теперь Рамзай мог, как говорится, потрогать гелий на ощупь… Письмо Блумбаха заставило Дмитрия Ивановича поторопиться, и, когда весной 1895 года он приехал в Лондон, в научных кругах только и было разговоров, что о гелии и об аргоне.
И вот что удивительно: если до поездки в Лондон, основываясь на первых скупых сообщениях, Дмитрий Иванович был склонен уверенно говорить об аргоне и гелии как о новых элементах, то после пребывания в Англии у него вдруг появляется какая-то неприязненная неуверенность в этом. «Предмет мало продвинулся вперед», «материала для его разрешения мало», «дело представляется неясным» – вот характерные обороты его послелондонских выступлений и публикаций. Думается, что в такой перемене отношения сыграл большую роль визит к Локьеру, который с самого начала считал гелий первичной материей, из которых построены все элементы. «Локьер, – вспоминал Менделеев об этом визите, – руководимый идеями астрономического свойства и мечтательными представлениями о первичной материи, стал искать новых газов в минералах. Его лаборатория вся установлена рядами пробирок с газами… Вот что особенно красиво говорит Локьер, справедливо или нет – вопрос второй. В солнечном спектре известно около 3000 фраунгоферовых линий; из них лишь около 1000 принадлежат известным элементам; Локьер думает, что линия спектров газообразных тел из минералов и суть недостающие спектральные линии солнца. Доказывает это первичную материю, как полагает Локьер, или нет, во всяком случае, надо думать, что его исследование расширяет наши познания о химических элементах».
Но, пожалуй, самую главную роль в перемене его отношения к гелию и аргону было то, что первоначальные мысли Рамзая о месте аргона в периодической системе элементов не оправдались. Во время визита в его лабораторию Менделеев застал там Марселена Бертло. Рамзай показывал гостям свои установки для выяснения природы аргона и с грустью признался: он решительно не знает, что такое аргон.
В ученых кругах поползли слухи о низвержении периодической системы, не могущей вместить вновь открытые элементы, и эти разговоры в течение трех лет доставляли Дмитрию Ивановичу неприятные волнения. Но вот в течение трех месяцев 1898 года Рамзай открывает три новых элемента: криптон, неон и ксенон. Его новое открытие разом изменило всю ситуацию, ибо пять инертных газов, обладающих нулевой валентностью, составили целую группу периодической системы элементов.
Это была победа, вырванная из поражения, – настоящий триумф периодического закона. «По образцу учителя нашего Менделеева, – вспоминал Рамзай, – я описал, поскольку возможно было, ожидаемые свойства и предполагаемые отношения газообразного элемента, который должен был заполнить пробел между гелием и аргоном. Я мог бы предсказать также еще два других элемента, но предполагал, что нужно быть очень осторожным при предсказаниях».
Любопытно, что Дмитрий Иванович еще в 1869 году на основе только что установленной им периодической зависимости предугадывал, что должны находиться какие-то элементы между фтором и натрием, калием и хлором, водородом и литием. Черновой набросок с соответствующими расчетами в 1950-х годах был обнаружен в архиве ученого. Но он, по-видимому, совершенно забыл об этой догадке, так как спустя 33 года даже не вспомнил о ней, когда писал: «Сопоставление ат. весов аргоновых элементов с ат. весом галоидов и щелочных металлов словесно сообщил мне 19 марта 1900 года проф. Рамзай в Берлине… Для него это было весьма важно как утверждение положения вновь открытых элементов среди других известных, а для меня как новое блистательное утверждение общности периодического закона».
Итак, открытие Рамзая, так обеспокоившее Дмитрия Ивановича в 1895 году, еще раз подтвердило могущество принципов, заложенных в основу периодической системы. Но последние годы великого химика были отравлены тем мучительным разладом, который вносили в его представления быстро развивающиеся исследования в области радиоактивности, начавшиеся в 1896 году…
«…Мне лично, как участнику в открытии закона периодичности химических элементов, – не раз говорил Менделеев в своих спорах со сторонниками первичной материи, – было бы весьма интересно присутствовать при установке данных для доказательства превращения элементов друг в друга, потому что я тогда мог бы надеяться на то, что причина периодической законности будет открыта и понята». И эти слова объясняют, почему в его статьях, написанных в конце девяностых годов, такое неоправданно большое место отведено «аргентауруму» Эмменса.
С тех пор как химия окончательно стряхнула с себя шелуху алхимии и стала настоящей наукой, получение золота из других металлов, казалось, навсегда удалилось в область преданий. И хотя даже в XIX веке не было недостатка в компаниях вроде «Общества для превращения свинца в золото при помощи пара», в научных кругах считалось уже просто неприличным всерьез говорить о такой возможности. И вдруг весной 1897 года стало известно, что американский химик С. Эмменс создал синдикат «Аргентаурум» (термин составлен из латинских названий серебра – аргентум – и золота – аурум). А в последовавших затем корреспонденциях сообщалось, что в течение нескольких месяцев синдикат получил из серебряных мексиканских долларов девятнадцать золотых слитков, из которых восемнадцать после тщательных анализов приобрело казначейство США, а девятнадцатый – синдикат английских капиталистов.
Газеты подняли вокруг «Аргентаурума» огромный шум, и это удивляло Менделеева. Эмменс очень удачно выбрал момент: весь мир тогда волновался вопросом о преимуществах и недостатках чистого золотого и двойного денежного обращения, при котором золото и серебро считались равноправным денежным материалом. Для экономиста Менделеева не составляло большого труда понять истинный смысл эмменсовского предприятия. Сообщение о дешевом способе превращения серебра в золото очень на руку владельцам серебряных рудников…
Взяться за перо Менделеева побудили не столько сами корреспонденции об авантюристе от науки, сколько реакция на них части русского общества. Он с грустью убеждался: достаточно нескольких газетных заметок, и люди, называющие себя образованными, готовы принять на веру самые дикие алхимические утверждения и осыпать науку попреками и намеками. Он с раздражением читал письма дилетантов, которые от него или требовали объяснении, или прямо указывали на необходимость оставить существующие в науке представления о непревращаемости химических элементов друг в друга. Он с гневом выслушивал химиков, которым эмменсовское открытие «было очень на руку по их излюбленному представлению о единстве материи и о эволюционизме вещества элементов». Именно эти причины побудили его резко выступить против Эмменса, а позднее и против сообщений о превращении фосфора в мышьяк. И, отражая эти лобовые атаки на периодический закон, Дмитрий Иванович поначалу не оценил той угрозы, которую несли его детищу другие сенсационные открытия тех лет, и в первую очередь исследования А. Беккереля и супругов П. и М. Кюри.
Первое сообщение о том, что в 1896 году французский физик А. Беккерель обнаружил таинственные лучи, испускаемые солями урана, прошло почти мимо внимания Менделеева. Но два года спустя он получил письмо, приведшее его в состояние крайнего возбуждения. Давний сотрудник Дмитрия Ивановича И. Богусский, тот самый, с которым он в 1870-х годах занимался разреженными газами и который потом поехал профессорствовать в Варшаву, писал об интереснейших работах своей кузины Марии: «Сестра моя г-жа Кюри-Склодовская… открыла два элемента: радий и полоний. Первый несомненный, я получил уже рисунок его спектра, но второй (полоний) труднее изолировать… Может быть, он окажется экасурьмой. Радий похож на барий… а все его соединения испускают огромное количество вторичных лучей X».
Упоминание об Х-лучах заставило Менделеева поморщиться. Давно ли Крукс, открывший катодные лучи, носился с идеями четвертого состояния вещества и единой материи, а совсем недавно, в 1897 году, другой английский физик, Дж. Томсон, из исследования этих самых катодных лучей сделал даже вывод о существовании мельчайших заряженных частичек – «электронов». Да еще не удержался и заявил, не имея к тому достаточно веских оснований, будто электроны и есть первичная материя и будто химические элементы отличаются друг от друга лишь количеством электронов, из которых состоят их атомы… «Признание распадения атомов на «электроны», – грустно размышлял Менделеев, – на мой взгляд, только усложняет и ничуть не выясняет дело, столь реальное со времен Лавуазье…»
Исследования радиоактивности вызывали у Дмитрия Ивановича противоречивые чувства. С одной стороны, открытие радия, полония, актиния давало периодическому закону новое блистательное подтверждение. Но очень уж его смущали эти таинственные лучи… Жизненный опыт старого человека подсказывал ему: где таинственность – там свобода умозрениям, туманным рассуждениям о первичной материи, о четвертом состоянии вещества… И предчувствия не обманули его.
В начале 1900 годов стало известно, что англичанин Э. Резерфорд в Канаде обнаружил странный радиоактивный газ (Резерфорд назвал его эманацией), излучаемый в окружающую атмосферу соединениями тория. Почти одновременно с ним Дорн в Германии обнаружил эманацию, испускаемую соединениями радия. По истечении некоторого времени в спектрах этих эманации начинали появляться линии недавно открытых инертных газов, в частности гелия. В научных кругах заговорили о самопроизвольном распаде радиоактивных элементов и о превращении их в другие элементы.
Обеспокоенный не на шутку Менделеев во время очередной заграничной поездки весной 1902 года решил посетить лаборатории Беккереля и супругов Кюри. Он был принят очень любезно. «Все, что можно, радиоактивное видел», – с удовлетворением записал он в своей записной книжке. И действительно, коллеги показали ему все – и приборы, и бесценные препараты, и наиболее интересные эксперименты. Беккерель даже продемонстрировал Дмитрию Ивановичу язву – страшный след, оставленный на его теле препаратом радия, легкомысленно положенным в жилетный карман. Когда Дмитрий Иванович рассматривал микроскопические препараты, все его чувства восставали против того, что эти ничтожные крупицы радия таят в себе смертельную, как ему казалось, угрозу стройности периодической системы. Но конечно, с любезными хозяевами он ни словом не обмолвился о том, что его мозг лихорадочно искал другие объяснения их опытам и наблюдениям.
«По моему мнению, – писал он через несколько месяцев после своего визита, – в настоящее время радиоактивность можно считать свойством или состоянием, в которое могут прийти довольно разнообразные… вещества, подобно тому, как некоторые тела могут быть намагничены, и на радиоактивные вещества можно глядеть как на такие, которые способны приходить в такое состояние». И здесь давний оппонент Дмитрия Ивановича Крукс как будто даже подтверждал соображения Менделеева своими экспериментами: он заявлял, что ему удалось получить уран, совершенно лишенный радиоактивности.
Уезжая из Парижа, Дмитрий Иванович увозил воспоминание о поразившем его опыте, показанном супругами Кюри. Прибор состоял из двух колб, соединенных трубкой с притертым краном. В одной – студенистая масса сернистого цинка, в другой – раствор радиоактивного вещества. Поворот крана, и сернистый цинк в колбе начинает сиять ярким фосфоресцирующим светом. Новый поворот, и свечение медленно-медленно начинает гаснуть, возобновляясь при новом открытии крана. У Менделеева сложилось впечатление, что из радиоактивного вещества истекает нечто материальное, «что в радиоактивное вещество входит и из него выходит особый тонкий эфирный газ (как комета входит в солнечную систему и из нее вырывается), способный возбуждать световые колебания…».
В октябре 1902 года Дмитрий Иванович приступил к работе над статьей «Попытка химического понимания мирового эфира». Великие механики и оптики XVII века, стремясь решить проблемы тяготения и распространения света, видели в эфире некую субстанцию, «откликавшуюся» только на свет и тяготение и лишенную каких-либо других свойств. Подход Менделеева к вопросу об эфире был совсем иным. «Уже с 70-х годов у меня назойливо засел вопрос, – писал он, – да что же такое эфир в химическом смысле?.. Сперва я полагал, что эфир есть сумма разреженнейших газов в предельном состоянии… Но представление о мировом эфире как предельном разрежении паров и газов не выдерживает даже первых приступов вдумчивости…»
В самом деле, эфир должен быть всюду однообразен: должен быть весом, но с легкостью должен проницать все тела и при этом не вступать с ними в химическое взаимодействие; наконец, он должен сжиматься под действием высоких давлений. Пары и газы, даже в разреженном состоянии, не способны удовлетворить этим требованиям. Но им, по мнению Дмитрия Ивановича, мог удовлетворить легчайший из всех инертных газов.
«В 1869 году… у меня мелькали мысли о том, что раньше водорода можно ждать элементов, обладающих атомным весом менее 1, но я не решался высказываться в этом смысле по причине гадательности и особенно потому, что тогда я остерегся испортить впечатление предполагавшейся новой системы… Теперь же… мне кажется невозможным отрицать существование элементов более легких, чем водород».
Основываясь на числовых закономерностях периодической системы и привлекая ряд астрономических соображений, Дмитрий Иванович попытался описать свойства двух инертных газов, предшествующих в таблице водороду и гелию. Первый из этих газов, обозначенный буквой У, был, по мнению Менделеева, тем самым «коронием», спектр которого наряду со спектром гелия Локьер обнаружил в короне солнца еще в 1869 году. Его атомный вес, по оценке Дмитрия Ивановича, должен был быть около 0,4. Атомный вес второго инертного газа, обозначенного буквой X, должен был быть близким к 0,0000001, а средняя скорость его атомов – 2250 м/сек. Вот этот-то элемент (Дмитрий Иванович предлагал называть его «ньютонием») и следовало, по его мнению, рассматривать как мировой эфир.
Будучи весомыми, атомы «ньютония», хотя и заполняют все пространство, но преимущественно скапливаются близ больших центров притяжения. В мире светил это Солнце и звезды, в мире атомов – атомы тяжелейших элементов. «Это не будет определенное соединение, которое обуславливается согласным общим движением, подобным системе планеты и ее спутников, – писал Менделеев, – а это будет зачаток такого соединения, подобный кометам – в мире небесных индивидуальностей… Если же допустить такое особое скопление эфирных атомов около частиц урановых и ториевых соединении, то для них можно ждать особых явлении, определяемых истечением части этого эфира…»
Конечно, Дмитрий Иванович не мог не чувствовать, сколько натяжек, сколько туманных аналогий, сколько не подтвержденных опытом гипотез содержится в таком объяснении радиоактивности. Его статья наполнена оговорками, как бы извинениями за ту смелость, с которой он предсказывает гипотетические элементы; подчеркиваниями трудности и запутанности вопроса. «Я бы охотно еще помолчал, но у меня уже нет впереди годов для размышления и нет возможностей для продолжения опытных попыток, а потому решаюсь изложить предмет в его незрелом виде, полагая, что замалчивать – тоже неладно».
Широкую публику подкупила эта откровенность и смелость менделеевской статьи. Каким-то внутренним чутьем читатели уловили, что за этими оговорками и извинениями кроется драматическая борьба великого ума за сохранение выстраданного и глубокого научного мировоззрения. «Попытку химического понимания мирового эфира» много читали, о ней много толковали. «Ее потом воспроизвели даже на эсперанто, – писал Дмитрий Иванович, – а я считаю неважною».
Видимо, желая с максимальной ясностью высказать свои взгляды, он в очередном – седьмом – издании своих «Основ химии» писал: «Мне кажется, что радиоактивность связана со свойством вещества поглощать из окружающего пространства и выделить в него особое, еще неизвестное вещество, быть может, близкое к тому, которое образует мировой эфир и проницает все тела. Особым указанием в этом последнем отношении служат два обстоятельства: во-первых, то, что в урановых и торцевых минералах найдены гелий, аргон и т. п. газы… а эти газы, по-видимому, составляют своего рода переход к веществу, наполняющему небесное пространство; и, во-вторых, то, что г. Кюри и др. при накаливании природных урановых соединений получили газ, обладающим радиоактивными свойствами, но их теряющий».