Текст книги "Голубая моя планета"
Автор книги: Герман Титов
Жанр:
Биографии и мемуары
сообщить о нарушении
Текущая страница: 18 (всего у книги 20 страниц)
Велика наша планета Земля. Но в иллюминаторах космического корабля ее тысячеверстные материки проплывают быстро. Только что мы находились над Африкой, а теперь снизу уже просторы нашей Родины с ее огромными квадратами полей, массивами тайги, широкими реками, темными горными цепями, изрезанными глубокими ущельями. По окраске можно различить еще не сжатые хлеба и поля, уже вспаханные под озимь. У нас осень – уборка урожая, а через полчаса в Южной Америке мы наблюдаем весну.
В полетах космонавты, конечно, не просто любуются открывающимися внизу картинами. Визуальное наблюдение с орбиты составляет важную задачу любого полета космического корабля. Экипажи всех космических кораблей и орбитальной станции «Салют» наблюдали и фотографировали тайфуны и ураганы, облачный и снежный покров различных участков земного шара, проводили визуальные наблюдения дневного, сумеречного и ночного горизонтов Земли.
Во время полетов космонавты не раз предупреждали наземные службы о надвигающихся циклонах, пыльных бурях, степных и лесных пожарах.
Как мы уже говорили, космическому аппарату, чтобы он смог совершить полет, нужно сообщить строго определенную скорость.
Какую скорость должен иметь искусственный спутник Земли? А если космический корабль отправится к Луне? А с какой скоростью нужно отправить к Венере автоматическую станцию? Ответы на эти вопросы дает астродинамика – наука, являющаяся инженерным приложением небесной механики и ряда других дисциплин.
Многие слышали о трех космических скоростях. Определяют их так: «Первая космическая скорость – это та, которая необходима для запуска искусственного спутника Земли, вторая – для того, чтобы отправиться к планетам, а третья – чтобы улететь за пределы Солнечной системы». На вопрос «Чему равны первая и вторая космические скорости?» в подавляющем большинстве случаев можно услышать ответы: «7,9 и 11,2 километра в секунду». Однако такие ответы будут неправильными. Почему? Потому что спутники и космические корабли летают с меньшими скоростями.
В чем же дело? Оказывается, 7,9 или 11,2 (более точно 11,19) – это космические скорости, приведенные к поверхности Земли. А космические аппараты получают нужные скорости на удалении нескольких сот километров от ее поверхности, где отсутствует атмосфера. Но там и сила притяжения Земли меньше. Поэтому и скорости нужны меньшие. Другими словами, чем дальше от поверхности планеты проходит орбита, тем с меньшей скоростью летит космический аппарат. Первой космической скоростью должен обладать аппарат, чтобы стать искусственным спутником планеты и двигаться вокруг нее по орбите. Но поскольку на формирование такой орбиты решающее влияние оказывает сила притяжения планеты, то, очевидно, для разных планет круговая скорость на одной и той же высоте будет различной. Почему? Потому что планеты располагают различной массой и, следовательно, силой притяжения. На высоте 200 километров спутник Земли, например, имеет круговую скорость 7,791 километра в секунду, на такой же высоте спутник Венеры будет обращаться со скоростью 7,201 километра в секунду, спутник Марса – 3,461 километра в секунду, а у спутника Луны эта скорость составит всего 1,590 километра в секунду.
Второй космической скоростью называют скорость, которую надо сообщить аппарату, чтобы он преодолел притяжение Земли и улетел в космическое пространство. В этом случае он будет двигаться не по замкнутой орбите вокруг Земли, а устремится по параболической траектории, навсегда удаляясь от нашей планеты. Поэтому такую скорость часто называют параболической. Ее величина в √2 раза, то есть примерно на 40 процентов, больше круговой скорости. Это соотношение справедливо не только для Земли, но и для всех других планет.
Чтобы преодолеть притяжение Солнца и лететь к другим звездным мирам, аппарату надо сообщить скорость в 16,7 километра в секунду. Это третья космическая скорость. С ней аппарат станет удаляться от Земли по дуге гиперболы.
Рассказ о космических скоростях мы закончим ответом на вопрос: «Изменяются ли скорости космических аппаратов, если да, то как именно?»
В сообщениях ТАСС о запусках спутников и космических кораблей встречаются термины «апогей» и «перигей». Происходят они от греческих слов «апо» – вдали и «пери» – около, а также от греческого слова «ге» – Земля. Терминами «апогей» и «перигей» обозначают две самые характерные точки эллиптической орбиты, которая возникает, когда космическому аппарату сообщается скорость, отличная от круговой. Апогей – это точка орбиты, находящаяся на максимальном расстоянии от центра Земли, а перигей – на минимальном.
При полете по эллиптической орбите скорость аппарата будет непрерывно изменяться. Максимальную скорость он будет иметь в перигее. Здесь на минимальной высоте аппарат имеет наименьший запас потенциальной энергии. Зато величина кинетической энергии, определяемая его скоростью, имеет в этой точке максимум. Пройдя перигей, аппарат, двигаясь по эллиптической орбите, набирает высоту. Потенциальная энергия его возрастает за счет уменьшения энергии кинетической. Поэтому по мере увеличения высоты полета скорость аппарата убывает. Вот, например, какие скорости будут у аппарата, обращающегося на эллиптической орбите с апогеем 10000 километров, а перигеем 200 километров. Они равны в апогее 3,7-3,8 и в перигее 9,306 километра в секунду.
Термины «апогей» и «перигей» применимы только к орбитам искусственных спутников Земли. Противоположные точки эллиптической орбиты спутника Луны называются апоселений и периселений, спутника Солнца – афелий и перигелий.
Поскольку у нас зашла речь об элементах орбиты искусственных спутников, следует сказать и о периоде обращения и наклонения орбиты. Период обращения – это промежуток времени, в течение которого спутник совершает полный оборот вокруг небесного тела – Земли, Луны, Марса, Солнца и т. д. Наклонение орбиты искусственного спутника Земли представляет собой угол между плоскостью, мысленно проведенной через земной экватор, и плоскостью, в которой движется спутник. Это единственный параметр орбиты, обладающий тем замечательным свойством, что его значение остается практически постоянным на протяжении всего существования спутника, в то время как другие параметры могут претерпевать некоторые изменения.
Изменение плоскости орбиты (на несколько градусов и более) в принципе возможно, но для этого необходимо вмешательство в пассивный полет космического аппарата. Например, если включить реактивные двигатели при определенной ориентации аппарата. Однако чтобы изменить плоскости орбиты даже на несколько градусов, нужна большая энергия, сравнимая подчас с той, что была затрачена на выведение аппарата на орбиту. Изменение плоскости орбиты может произойти также, если космический аппарат будет пролетать в зоне протяжения Луны. Тогда под действием возмущающих сил наклонение орбиты может измениться. Однако, приняв новое положение, в дальнейшем она уже существенных изменений не претерпевает.
Есть еще одна космическая скорость, имеющая важнее значение для межпланетных перелетов. Речь идет о скорости, с которой космический аппарат, преодолев силу притяжения планеты, удаляется от нее в бескрайние просторы Вселенной. Ее называют скоростью удаления.
Вторая космическая скорость, как мы уже говорили, равна 11,2 километра в секунду. Если мы сообщим межпланетному аппарату такую скорость, он преодолеет силу земного притяжения и не упадет обратно на поверхность Земли, но и не удалится от ее орбиты. Вместе с Землей он станет двигаться вокруг Солнца по одинаковой или близкой к ней орбите.
Чтобы послать корабль или автоматическую станцию к планетам, надо при старте сообщить им такое количество энергии, чтобы они не только преодолели силу земной тяжести, но и сохранили за пределами сферы земного притяжения необходимую скорость.
Например, чтобы достичь орбиты Венеры, аппаратам нужно удаляться от Земли со скоростью минимум 2,494 километра в секунду. Для этого скорость его отлета с Земли должна составлять 11,462 километра в секунду. Для достижения орбиты Марса требуется скорость удаления 2,943 километра в секунду, а скорость отлета в этом случае должна быть равна 11,570 километра в секунду.
Неизменный интерес у всех аудиторий, в которых мне довелось бывать, вызывает вопрос о том, как управляют космическим кораблем.
Наиболее часто выполняемой в полете операцией является ориентация корабля в пространстве. Большее время полета он медленно вращается вокруг своих осей. Но в таком случае его солнечные батареи будут лишь время от времени освещаться солнцем и не дадут нужной электроэнергии. Тут нужна одноосная ориентация корабля на Солнце. Для связи с Землей при полетах к Луне и другим планетам антенны корабля должны быть ориентированы на Землю. Для коррекции орбиты, стыковки с другими кораблями и орбитальными станциями, для проведения многих научных и технических экспериментов, для спуска с орбиты необходима также пространственная ориентация космического корабля.
В настоящее время пространственная ориентация корабля может осуществляться с помощью различных систем: инерциальных, ионных, инфракрасных, радиотехнических, оптических и других. Однако наибольшую точность обеспечивают астрономические системы.
Расположение небесных объектов – Солнца, Луны, планет, звезд относительно друг друга в каждый момент времени точно известно, и если мы под нужными углами придадим осям корабля направление на небесные объекты, то получим требуемое положение корабля в пространстве.
Вот, например, как проводится астроориентация корабля по Солнцу и звезде.
Сначала в программно-временное устройство по командам с Земли вводятся необходимые данные, содержащие нужные нам значения углов. Один из оптических датчиков устанавливается в такое положение, чтобы угол между осью этого датчика и осью датчика Солнца соответствовал взаимному расположению Солнца и звезды в данный момент.
Процесс ориентации начинается с поиска Солнца. Двигатели малой тяги разворачивают корабль вокруг продольной оси до тех пор, пока Солнце не попадет в поле зрения датчика Солнца. Если мы в этом положении удержим корабль, то он окажется сориентированным лишь в одной плоскости: например, мы будет видеть внизу Землю. Но по орбите корабль может двигаться и задом наперед и боком. Чтобы этого не произошло, другие двигатели малой тяги разворачивают корабль вокруг оси, направленной на Солнце, до тех пор, пока звездный датчик не «захватит» нужную звезду. В этом положении корабль стабилизируется и далее удерживается двигателями ориентации по командам от гироскопических приборов, волчки которых раскручиваются во время стабилизации.
Почему звездный датчик не путает звезды, ведь их так много? Действительно, в каждый момент под одним и тем же углом от Солнца со всех сторон могут оказаться десятки звезд. Тем не менее, датчик «захватывает» только нужную звезду. Не ошибается он потому, что для ориентации берутся не любые звезды, а лишь самые яркие.
На высотах около 200 километров над поверхностью Земли, где чаще всего проходят орбиты космических кораблей, плотность атмосферы сравнительно невелика. Но, несмотря на значительное ее разрежение, она все же оказывает определенное тормозящее воздействие на корабль таких размеров, как «Союз». Если полет продолжается долго, к примеру несколько недель, то высота орбиты будет постепенно снижаться, а тормозящее влияние атмосферы возрастать. Если не предпринять мер, корабль войдет в плотные слои атмосферы, потеряет орбитальную скорость и совершит «вынужденную» посадку.
Чтобы продлить полет, посредством коррекции увеличивают высоту полета корабля.
Но коррекция орбиты проводится и для других целей. Например, для того чтобы обеспечить прохождение космического корабля под заданным районом в определенное время. Если мы увеличим высоту полета, возрастет период обращения корабля вокруг Земли. Проведя соответствующую коррекцию, можно обеспечить прохождение своего корабля над местом старта другого корабля и наблюдать из космоса за его выведением на орбиту.
Коррекция орбиты может проводиться вручную или автоматически, с использованием астроориентации.
Давайте выполним коррекцию орбиты с использованном ручной ориентации.
Обычно необходимые данные для коррекции поступают с Земли и фиксируются в бортовом запоминающем устройстве. Однако величину разгонного или тормозного импульса, а также время включения двигательной установки может рассчитать и ввести в запоминающее устройство экипаж корабля. Для этого существует специальный пульт. Но поскольку параметры орбиты корабля более точно определяются средствами наземного комплекса, специалистам координационно-вычислительного центра, как говорится, и карты в руки.
Предположим, что данные для коррекции рассчитаны и введены в запоминающее устройство. Теперь включаем клавишу. Засветились надписи «Маневр с ручной ориентацией», «Визир для ориентации». Беремся за ручки управления. Внимание – на экран визира. Медленно движется по экрану Земля. Оперируя ручками управления, включаем реактивные микродвигатели и поворачиваем корабль до совмещения центральной части экрана с направлением на центр Земли. Вот перекрестие совпало с этим направлением. Корабль сориентирован. Нажимаем другую кнопку – вспыхивает транспарант «Ориентация на гироскопах». Это значит, что волчки-гироскопы начали стремительное вращение и «запомнили» пространственное положение корабля. Теперь при любых отклонениях автоматически выдаются команды на двигатели, которые возвращают корабль в исходное положение.
Но произошла пока только одноосная ориентация корабля. Теперь надо развернуть его так, чтобы основная двигательная установка была направлена вперед по движению. Все последующие операции выполняются автоматически. Из запоминающего устройства поступает сигнал на разворот корабля в горизонтальной плоскости. Вот корабль занял нужное положение в пространстве. Автоматически выдается команда на включение двигательной установки.
На индикаторе «скачут» цифры, показывающие вели чину отработанного импульса скорости. Вот их бег остановился – двигатель выключился. Нам остается доложить на пункт управления полетом, что коррекция прошла нормально, корабль был сориентирован правильно, а двигатель включен в расчетное время.
Теперь координационно-вычислительный центр по данным траекторных изменений определит нашу новую орбиту и сообщит нам ее параметры. А можем сделать это мы и сами.
Однако пока мы занимались ориентацией корабля и коррекцией орбиты, наши источники электроэнергии несколько израсходовались. Надо их пополнить.
Электрическим током бортовая аппаратура и оборудование корабля снабжаются от аккумуляторов, которые подзаряжаются от солнечных батарей.
Вот как это делается.
Находим на пульте клавишу с надписью «Закрутка». Что означает это странное слово? Сразу же после нажатия на клавишу включаются двигатели малой тяги, обеспечивая вращение корабля вокруг одной из осей. На экране, сменяя друг друга, проплывают изображения Земли, Луны, звезд. Как только появляется изображение Солнца, я делаю небольшое движение правой ручкой управления (помните, для чего она предназначена?) – и Солнце начинает описывать круг в поле зрения визира. Еще одно движение – и перекрестие совпадает с изображением Солнца. В этом положении корабль сориентирован так, что ось корабль – Солнце перпендикулярна поверхности панелей солнечных батарей. А это значит, что на них теперь падает максимальный световой поток и вырабатывается наибольший электрический ток. Электроэнергия, собираемая с поверхности солнечных батарей, подзаряжает аккумуляторы корабля.
Но чтобы долго удерживать корабль в таком положении, пришлось бы все время расходовать топливо в двигателях системы ориентации, а космонавту следить, чтобы Солнце находилось в центре визира-ориентатора. Однако этого можно избежать, если придать кораблю вращение вокруг оси корабль – Солнце со скоростью в несколько градусов в секунду. В результате гироскопического эффекта ориентация солнечных батарей на Солнце будет сохраняться.
...Одной из самых сложных операций, выполняемых в полете космических кораблей, является их стыковка между собой и с беспилотными аппаратами. Она выполняется автоматически и с участием экипажей. Стыковка может понадобиться для монтажа крупных орбитальных станций, межпланетных кораблей из отдельных блоков, последовательно выводимых на околоземную орбиту. Стыковка необходима также для оказания помощи или спасения экипажа корабля, терпящего бедствие. Предложена она К. Э. Циолковским.
Впервые эта сложная научно-техническая задача была успешно разрешена советскими учеными, конструкторами, космонавтами. Сначала в нашей стране была дважды выполнена стыковка автоматических аппаратов, а затем экипажи «Союз-4» и «Союз-5» осуществили ручную стыковку пилотируемых кораблей.
На устных выпусках журнала командир «Союза-4» Владимир Александрович Шаталов рассказывал о том, как выполняется стыковка. Его корабль стартовал 14 января 1969 года. А на следующий день он должен был состыковать его с кораблем «Союз-5», которым командовал Борис Валентинович Волынов, и принять на свой борт двоих космонавтов – Алексея Станиславовича Елисеева и Евгения Васильевича Хрунова.
«На второй день полета, пролетая в районе Байконура, я наблюдал по инверсионному следу выведение корабля «Союз-5».
После успешного выведения его на орбиту начался этап сближения и стыковки кораблей. «Союз-4» и «Союз-5» выполнили ряд маневров с ручным управлением, которые обеспечили их дальнее сближение с расстояния более 1000 километров. На удалении в несколько километров вступила в работу автоматическая система сближения. По командам этой системы на корабле «Союз-4» несколько раз включалась сближающе-корректирующая двигательная установка. При этом было обеспечено постепенное сближение кораблей с переменной в зависимости от расстояния скоростью. Автоматическое сближение контролировалось мною по приборам и визуально через оптический визир и телевизионную установку. Во время сближения космический корабль «Союз-5» ориентировался стыковочным узлом в направлении корабля «Союз-4».
С расстояния 100 метров я и Борис Волынов перешли на ручное управление кораблями.
Управляя кораблями, мы поддерживали необходимую их взаимную ориентацию. Скорость сближения кораблей я изменял в зависимости от расстояния между ними.
У берегов Африки, на удалении 7-8 тысяч километров от границ Советского Союза, мы подошли друг к другу на расстояние около 40 метров и выполнили зависание. На этом расстоянии мы с Борисом Волыновым провели несколько маневрирований, при которых изменяли взаимное положение кораблей, фотографируя при этом друг друга. Далее продолжали сближение и в зоне прямой телевизионной связи с Землей осуществили стыковку. Этот процесс можно было видеть на экранах телевизоров.
Во избежание грубого соударения относительная скорость к моменту касания была доведена до нескольких десятков сантиметров в секунду.
С этой скоростью и произошло причаливание кораблей «Союз-4» и «Союз-5». При причаливании штанга стыковочного механизма корабля «Союз-4» вошла в гнездо приемного конуса корабля «Союз-5», и произошел взаимный механический захват. Далее было осуществлено жесткое стягивание кораблей и соединение их электрических разъемов».
Напомним, что корабли в это время неслись над Землей с первой космической скоростью, делая один оборот вокруг шарика за 90 минут, и что сблизиться кораблям надо было со скоростью не больше чем 30 сантиметров в секунду.
...Космический полет подходит к концу. Остается заключительный этап – посадка. Но если посадка самолета представляет собой сложную задачу, то сход космического корабля с орбиты, спуск его в атмосферу – задача поистине колоссальной сложности.
Многотонный корабль, движущийся с орбитальной скоростью около 8 километров в секунду на высоте более 200 километров над поверхностью Земли, обладает огромной кинетической и потенциальной энергией.
Вы помните, какая энергия потребовалась для выведения нашего корабля на орбиту? Ее ему сообщила огромная трехступенчатая ракета-носитель. Казалось бы, для того чтобы осуществить сход с орбиты, нужны столь же мощные двигательные установки. Представляете, каким бы был вес нашего корабля? Но оказывается, полностью можно не гасить орбитальную скорость с помощью тормозных двигателей. Достаточно сообщить кораблю сравнительно небольшой тормозной импульс, чтобы он вошел в плотные слои атмосферы, где и будет происходить основное торможение за счет сопротивления воздуха.
Возвращение корабля на Землю можно разделить на два этапа: первый – сход корабля с орбиты и полет до входа в плотные слои атмосферы, второй – полет в плотных слоях атмосферы и посадка на Землю.
На предпосадочном витке орбиты в программно-временное устройство корабля с Земли поступают команды, содержащие информацию о времени включения двигательной установки и о величине тормозного импульса. В принципе эти данные может рассчитать и экипаж корабля.
На посадочном витке корабль надо сориентировать в пространстве таким образом, чтобы тормозная двигательная установка была направлена вперед по направлению полета.
После того как сопло двигательной установки будет направлено вперед по движению корабля, система ориентации и управления движением удерживает корабль в этом положении. В расчетное время по команде, поступающей из программно-временного устройства, включается двигательная установка. Другая команда, поступающая от измерителя скорости, производит «отсечку» двигателя, для того чтобы последующий спуск проходил по расчетной траектории.
После отработки тормозного импульса скорость корабля уменьшается, происходит разделение отсеков и спускаемый аппарат устремляется к Земле.
Дальнейший полет спускаемого аппарата может быть управляемым (с использованием аэродинамического качества) или неуправляемым (баллистическим).
Снижение кораблей «Восток» и «Восход», спускаемый аппарат которых не обладал аэродинамическим качеством, происходило по баллистической траектории. Неуправляемый спуск выполняется сравнительно просто. В плотных слоях атмосферы происходит аэродинамическое торможение аппарата, его скорость уменьшается примерно до 200 метров в секунду. Затем вводится в действие парашютная система, снижающая скорость до посадочной.
При баллистическом торможении спускаемого аппарата в плотных слоях атмосферы перегрузки возрастают довольно быстро и достигают значительной величины – 6-8 единиц, что находится почти на пределе физических возможностей человека.
Так обстоит дело с перегрузкой при неуправляемом, или баллистическом, спуске. При таком спуске нельзя добиться и высокой точности посадки в заданном районе, так как не представляется возможным учесть все факторы, влияющие на формирование траектории спуска.
Лучшие условия для космонавтов при спуске и большая точность приземления достигаются при управляемом спуске корабля, когда используется его аэродинамическое качество. Однако такой способ снижения с орбиты потребовал преодоления многих технических трудностей. Необходимо было найти наиболее приемлемую форму спускаемого аппарата, создать систему, обеспечивающую управление аппаратом на атмосферном участке полета.
Система, установленная на корабле «Союз», стабилизирует спускаемый аппарат па внеатмосферном участке спуска, выполняет программные развороты аппарата для ориентированного входа в атмосферу, управляет дальностью спуска путем изменения направления аэродинамической подъемной силы спускаемого аппарата по крену.
Исполнительными органами управления спускаемого аппарата являются бортовые реактивные двигатели малой тяги, установленные в его корпусе. В качестве же чувствительных элементов применяются гироскопические приборы. При управляемом спуске перегрузки снижаются до 3-4 единиц и становится возможным уменьшить разброс точки приземления.
При достижении спускаемым аппаратом заданного района на высоте около 10 километров вводится в действие парашютная система. Перед приземлением включаются двигатели мягкой посадки.
Полет окончен. Мы снова на Земле – земле первооткрывателей космоса, земле строителей коммунистического общества.