355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Герман Титов » Голубая моя планета » Текст книги (страница 17)
Голубая моя планета
  • Текст добавлен: 8 октября 2016, 16:43

Текст книги "Голубая моя планета"


Автор книги: Герман Титов



сообщить о нарушении

Текущая страница: 17 (всего у книги 20 страниц)

Сложность этой задачи очевидна, так как при ее решении приходится иметь дело с непрерывно изменяющимися величинами: меняется масса ракеты по мере расходования топлива, происходит разделение отработавших ступеней, все время увеличивается скорость, а с высотой изменяется плотность атмосферы и т. д.

Русский ученый Иван Всеволодович Мещерский, разработавший основы механики тел переменной массы, составил уравнение, описывающее движение тела переменной массы. По этому уравнению и производится расчет активного участка полета ракеты. Суть расчета состоит в том, что для каждого момента времени вычисляются силы, действующие на ракету, по равнодействующей всех сил – ускорению, а по ускорению – увеличение скорости за определенный отрезок времени.

С какими силами при этом приходится иметь дело? Во-первых, с тягой двигателя, во-вторых, с силой сопротивления воздуха и, наконец, весом ракеты. Между этими силами, образно говоря, идет борьба: тяга двигателя влечет ракету вперед, сопротивление воздуха препятствует ее движению, а вес ракеты тянет вниз. В полете величины этих сил изменяются. Меняется и направление их действия.

Расчет свободного полета ракеты в космическом пространстве происходит по законам небесной механики, как движение любого небесного тела.

Расчет траектории ракеты – задача чрезвычайно сложная и трудоемкая. А так как обычно выбирают наиболее выгодный (с разных точек зрения: энергетики, времени запуска, научной и др.) вариант полета, то приходится производить расчеты многих траекторий. При обычном способе расчета это потребовало бы очень много времени. Но на помощь ученым пришли электронные вычислительные машины, которые быстро и точно выполняют эту работу.

...До старта остается несколько минут. Представитель группы телеметрии сообщает о прохождении первой стартовой команды – «Ключ на старт». Это значит, что включаются все цепи, обеспечивающие одновременный запуск двигательных установок с центрального пульта и управление запуском автоматикой, чтобы время старта соответствовало расчетному с точностью до сотых долей секунды.

Одна за другой проходят последующие стартовые команды: «Протяжка», «Продувка», «Ключ на дренаж». По команде «Протяжка» осуществляется контроль состояния всех систем ракеты-носителя. Для этого протягиваются лепты телеметрической записи. Многоканальная телеметрическая информация, регистрируемая на лентах, позволяет оценить параметры всех систем и агрегатов ракетно-космического комплекса непосредственно перед стартом. По команде «Продувка» азотом продуваются трубопроводы и камеры сгорания двигательных установок. Команда «Ключ па дренаж» означает, что закрываются все дренажные клапаны и прекращается подпитка топливных баков.

Непосредственно перед стартом отводятся фермы обслуживания. По команде «Земля – борт» отсоединяются штепсельные разъемы кабелей, соединяющие ракету-носитель с наземными коммуникациями (она переводится на автономное управление и бортовое питание), отводится заправочная кабель-мачта. Заканчивается продувка азотом топливных магистралей.

Открывается главный клапан горючего, а затем клапан окислителя на предварительную ступень.

...В шлемофонах, надетых на голову, мы слышим команду «Зажигание». Это значит, что горючее и окислитель уже поступили в камеры сгорания. Сейчас сработает пирозажигающее устройство; оно создаст в камерах сгорания факел пламени.

Из-под ракеты вырывается ослепительное пламя. Раздается оглушительный грохот. Но ракета еще неподвижна. К нам в кабину не проникает ни ослепительный отблеск пламени, ни грохот включившихся двигателей. Мы слышим лишь небольшой шум и ощущаем вибрацию.

Двигатели ракеты выходят сначала на промежуточный, а затем на расчетный режим тяги. Вот они набрали полную мощность, давление в камерах сгорания достигло рабочего, тяга двигателей превысила вес ракеты-носителя – и она медленно поднимается над стартовым столом, освобождаясь от захватов поддерживающих ферм. Ракета начинает стремительный разгон в космические дали.

Автоматические и пилотируемые аппараты запускаются на орбиты искусственных спутников Земли и к другим небесным телам с помощью космических ракет. Их называют ракетами-носителями. В Советском Союзе создано несколько типов таких ракет. Это ракета-носитель «Космос», которая выводит на околоземные орбиты спутники, ракета-носитель «Восток», благодаря которой стал возможен полет человека, ракета-носитель «Протон», обеспечивающая запуск тяжелых спутников. Создаются еще более мощные и совершенные космические ракеты.

Традиционным при встречах со школьниками стал вопрос, почему ракеты делают многоступенчатыми.

Одноступенчатая ракета, даже самая лучшая, с самым хорошим двигателем, заправленная лучшим топливом, не в состоянии вывести на орбиту даже маленький спутник Земли. В гравитационном полете без учета сопротивления воздуха она в лучшем случае сможет достичь скорости около 4570 метров в секунду. Как же быть? Увеличить скорость можно, соединяя последовательно две или несколько ракет, то есть образуя многоступенчатую ракету!

Почему же все-таки нельзя создать одну большую одноступенчатую ракету? А дело в том, что в соотношении масс топлива и конструкции ракеты устанавливается определенный предел. Помните, мы говорили, что хороша та ракета, у которой наибольшую массу занимает топливо. Но количество топлива при заданной конструкции имеет определенную конечную величину. Попытки увеличить количество топлива неизбежно приведут к утяжелению конструкции ракеты. А чтобы сообщить ускорение этому дополнительному весу конструкции, опять нужно топливо. Словом, достигнув определенного соотношения масс топлива и конструкции ракеты, мы окажемся в заколдованном круге.

Выход тут в одном – как можно быстрее отделять от ракеты те массы, которые уже не нужны для продолжения ее движения, – отработавшие двигатели, пустые баки. Этого можно достичь в схеме многоступенчатой ракеты, где каждая ступень представляет собой самостоятельный блок с собственным двигателем и собственными баками для топлива. Когда все топливо в ступени сгорает, она отделяется от остальной ракеты, и таким образом масса, которой двигатель следующей ступени должен сообщить ускорение, становится значительно меньше.

Но не следует думать, что число ступеней ракеты можно увеличивать неограниченно. Расчеты показывают, что, если максимальная скорость, которую можно достичь с помощью многоступенчатой ракеты, возрастает в арифметической прогрессии, полная масса ракеты возрастает в геометрической прогрессии. В стремлении получить все большую скорость ракеты мы очень скоро убедимся, что достигается это слишком дорогой ценой.

...Однако вернемся к нашему полету, тем более что сейчас самый ответственный момент – выведение корабля на орбиту. Надо доложить на Землю, как у нас обстоят дела: там, естественно, беспокоятся.

Вы чувствуете, как наливается свинцом тело, плотнее вдавливается в кресло? Попробуйте поднять руку! Она стала тяжелей в несколько раз. Во сколько? Вот прибор, показывающий величину перегрузки. В его окошечке цифра «2,5». Это значит, что вес нашего тела стал как бы в два с половиной раза больше.

Исследованиями и экспериментами установлено, что здоровый и тренированный человек удовлетворительно переносит 6-7-кратное превышение своего веса в течение пяти минут и более; 10-кратное – в течение двух минут и 12-кратное – в течение нескольких десятков секунд. И это не в любом положении тела, а лишь тогда, когда перегрузка действует в направлении «грудь – спина». В таком положении мы сейчас с вами находимся. Так в космическом корабле устанавливаются кресла.

А что случится, если перегрузки превысят те, о которых мы говорили выше? В этом случае человек может потерять сознание. С нетренированным человеком это может произойти, когда перегрузка достигнет всего лишь пяти единиц.

...Нас продолжает сильнее вдавливать в кресло. Перегрузка растет. Но вот, достигнув максимума, она ослабевает. Уменьшились шум, вибрация. Это значит, произошло отделение первой ступени, в результате чего тяга снизилась. Через несколько секунд перегрузка снова возрастает.

Снижение и увеличение перегрузки происходит и после отделения второй ступени – это время выключения двигателей одной ступени и выхода на расчетный режим тяги другой.

Наконец наступает полная тишина. Отработала третья ступень ракеты-носителя. Вскоре она отделяется от корабля и, сверкая в солнечных лучах, остается позади.

Мы на орбите!

По команде программно-временного устройства раскрываются панели солнечных батарей, антенны бортовых радиотехнических средств.

Но что это, наш корабль медленно вращается? В иллюминаторах попеременно показываются Земля, Солнце. Здесь нет ничего необычного: произошло это из-за возмущений при отделении от последней ступени. Сейчас включится одна из основных систем корабля – система ориентации и управления движением, и вращение прекратится.

Не успели мы прийти в себя от состояния перегрузки, как оказались в другом – в состоянии невесомости. Оно наступает сразу же, как только корабль достигнет орбитальной скорости и прекратится работа двигательной установки последней ступени ракеты-носителя.

Невесомость – наиболее характерный фактор космического полета. С другими факторами – шум, вибрация, ограниченный объем жизненного пространства, искусственная атмосфера – человек в той пли иной мере встречается в земной деятельности, например во время плавания па подводных лодках, в полетах на самолетах. Невесомость же присуща только космическому полету.

Когда наш корабль достиг первой космической скорости, сила земного тяготения уравновесилась центробежной силой, действующей в противоположном направлении. В результате этого возник эффект потери веса. Появилась так называемая динамическая невесомость. При полетах к планетам, далеко удаленным от Земли, возможен другой вид невесомости – статическая невесомость. В этом случае тело практически не будет испытывать воздействия силы тяжести или в равной мере будет подвергаться притяжению Земли и других небесных тел.

Еще недавно писатели-фантасты писали о невесомости как об удивительно приятном состоянии, чувстве пьянящей легкости. В действительности дело оказалось сложней.

Организм человека в течение миллионов лет формировался под воздействием силы тяжести. Под ее влиянием человек после рождения вырабатывает координацию движений. Работа органов человеческого тела также в значительной мере связана с действием силы тяжести. Поэтому каждый дерзнувший отправиться в космос сознательно обрекает себя на испытание невесомостью.

Но невесомость действует на разных людей по-разному. Специалисты космической медицины установили, по крайней мере, три группы людей, резко различающихся поведением в условиях невесомости.

Первая группа вообще не переносит невесомости. Люди этой группы испытывают непроходящее чувство падения. Их поведение напоминает поведение до смерти напуганного человека. Ни о каких осознанных действиях такого человека не может быть и речи. Путь в космос таким запрещен.

Люди, относящиеся ко второй группе, испытывают всевозможные неудобства, или, как говорят, дискомфорт. Например, им кажется, что они находятся в перевернутом положении или что они опрокидываются на спину: невесомость отвлекает их внимание, снижает работоспособность. Если степень снижения работоспособности не очень велика, такие люди могут быть космонавтами.

К третьей группе относятся люди, которым невесомость не доставляет заметных неприятностей. Оказавшись в ней, они быстро приспособляются и даже испытывают радость, возбуждение, подъем. Это, прежде всего летчики-истребители, много летавшие на реактивных самолетах, люди, которым чувство невесомости более или менее знакомо.

Можно ли повысить устойчивость организма к невесомости? Можно. Для этой цели разработаны специальные тренажеры. У нас, в Центре подготовки, такую тренировку проходят люди, уже отобранные в космонавты. Относятся они, понятно, ко второй и третьей группам.

А теперь давайте понаблюдаем, что происходит в корабле, проанализируем наши ощущения.

Все, что не было закреплено, вдруг оказывается плавающим по кабине. Бортжурнал, немало весивший на Земле, висит в воздухе. Стоит его слегка толкнуть пальцем, как он уплывает в сторону. Едва освободившись от привязных ремней, мы сразу же оказываемся у потолка. Свои движения приходится соизмерять. Помните: сила действия равна силе противодействия! В земных условиях противодействие не столь заметно. Зато здесь с какой силой оттолкнешься от кресла, с такой и встретишься со стенкой кабины.

Открываем крышку люка, ведущего в орбитальный отсек, убедившись предварительно, что там такое же, как в кабине, давление. Ныряем в образовавшееся над головой отверстие. Здесь, в серванте, в застегивающихся карманах уложены научная аппаратура, приборы. На первом витке инженер-исследователь обычно занят тем, что достает их и укрепляет на рабочих местах. Делать это не трудно: тяжелые на Земле, они теперь легче пушинки.

Помню, от кинокамеры, с которой мы бегали по Звездному в поисках объекта для съемки во время подготовки к полету, очень быстро уставали руки: как-никак больше трех килограммов. Зато здесь с ней можно было делать что угодно.

Для удобства передвижения к полу отсека прикреплены петли, куда можно вставлять носки ног, а вдоль стен, чтобы держаться руками, укреплен поручень.

Фиксация тела в невесомости превратилась в настоящую проблему. К примеру, вам надо сфотографировать через иллюминатор горизонт Земли. Аппарат установлен на специальном кронштейне. А чтобы горизонт попал в кадр, надо заглянуть в видоискатель. Попробуйте-ка сделать это, не зафиксировав положение своего тела!

Не очень-то удобно и спать, плавая по всему отсеку.

В корабле еще до полета поддерживают чистоту не хуже, чем в хирургической палате. Пылесосами из него убираются все до последней соринки. В противном случае весь мусор плавал бы по кабине.

Пищу готовят в таком виде, чтобы она не крошилась. А чтобы удобно было ее употреблять, помещают в тубы разных размеров.

Много хлопот доставляет вода. Пить ее приходится через мундштук с краником. Разливаясь, она приобретает форму шариков различных размеров и летает по отсеку, подобно мыльным пузырям. Попробуйте их потом собрать!

В невесомости нарушается привычная координация движений. Требуется какое-то время, пока держать, доставать предметы вы будете так же, как на Земле. Вот вы протягиваете руку, собираясь нажать кнопку на пульте управления, а палец попадает выше кнопки – вес руки исчез, а координация движений осталась земная. Все движения, которые в земных условиях мы делаем как бы автоматически, здесь первое время приходится тщательно контролировать визуально: смотреть, куда, к примеру, достает рука, и корректировать ее движения.

Новая координация движений в невесомости вырабатывается довольно быстро – в течение нескольких часов, но влияние невесомости на этом не кончается. При длительных полетах мышцы, скелет, все органы тела человека, лишенные привычной нагрузки, претерпевают изменения. Правда, мы пока еще не знаем, как далеко могут зайти эти изменения. Однако чтобы длительное пребывание в невесомости не вызвало серьезных нарушений в организме человека, его загружают в полете физическими упражнениями. Для этой цели были созданы специальные снаряды: эспандеры, тренировочно-нагрузочный костюм, бегущая дорожка и другие. Но, несмотря на это, после возвращения из полета космонавтам все равно трудно снова привыкать к земной тяжести. Первые дни они как бы испытывают перегрузку. Им трудно ходить, жестко лежать. Они быстро утомляются.

Ученые считают, что решением этой проблемы могло бы стать создание на космических кораблях, отправляющихся в дальний космос, и на долговременных орбитальных станциях искусственной силы тяжести, равной хотя бы 0,3 земной. Но это – задача чрезвычайной сложности. Поэтому специалисты космической медицины настойчиво ищут другие пути повышения устойчивости человеческого организма к длительной невесомости.

Конечно, невесомость создает неудобства в корабле, но их еще больше, когда космонавты покидают его и выходят в открытое космическое пространство. Для чего? Чтобы заменить неисправные антенны и датчики, проверить состояние обшивки и агрегатов, установленных на внешней поверхности корабля, чтобы провести профилактику автоматическим аппаратам, выполнить монтаж крупногабаритных устройств. Да мало ли для чего понадобится космонавтам выходить за борт своих кораблей и орбитальных станций! Для космонавта это все равно что моряку уметь плавать.

Послушаем человека, который первым вышел в открытый космос, – Алексея Архиповича Леонова.

«Экипажу «Восхода-2» нужно было испытать шлюз для выхода в космос, новый скафандр, систему жизнеобеспечения, определить способность человека жить и работать в условиях открытого космического пространства. Мне предстояло выйти из корабля, выполнить ряд операций, установить, а затем демонтировать кинокамеры, после чего войти в корабль.

В результате многочисленных тренировок я не только мог на память в нужном темпе выполнить все операции, но и знал, в какой момент какой район поверхности Земли подо мной окажется.

Казалось, что ничего непредвиденного произойти не может. И, тем не менее, я страшно удивился, когда, выйдя из корабля и держась за поручень, установленный на срезе шлюза, почувствовал, как корабль начал медленно поворачиваться. Сравнить это можно с состоянием, когда пловец пытается влезть в лодку, а она под его тяжестью накреняется. А до моего выхода «Восход-2» был сориентирован, как и предусматривалось: внизу – Земля, вверху – Солнце. Мой выход должен был сниматься на фоне Земли. Солнце должно было меня освещать, а не лезть в объективы аппаратов. Словом, все предусматривалось, как в павильоне Мосфильма. Но космос стал диктовать своп условия. Пришлось быстро вводить поправки в свой сценарный план.

До полета мы предполагали, что передвижение вне корабля как-то скажется на его ориентации, но не думали, что в такой степени. Казалось, разница в весе человека и корабля огромная (в скафандре я весил около 100 килограммов, а корабль около 6 тонн), а если еще не делать резких движений, толчков, то, казалось, все будет нормально. И тем не менее...

Я вышел над Черным морем. Высота равнялась примерно 450 километрам. Поэтому в поле зрения находилось все море – от Одессы до Батуми, от Ялты до Синопа. Были видны весь Крымский полуостров, часть Кавказа. Впечатление было такое, словно я лечу над знакомой с детства большой географической картой.

Эффектно выглядел корабль, ощетинившийся пиками антенн. Он сверкал, переливался на солнце, разбрасывал во все стороны стрелы ослепительных лучей и безмолвно парил в черно-синем небе».

В это время командир корабля Павел Иванович Беляев управлял аппаратурой, предназначенной для выхода в космос, наблюдал за Леоновым, контролировал его состояние и поддерживал с ним непрерывную связь, обеспечивая безопасность эксперимента.

Вопрос о наиболее целесообразном способе выхода в космос тщательно изучался специалистами, и, прежде чем они пришли к окончательному решению, были взвешены все плюсы и минусы.

Практически возможны два основных способа выхода человека в открытое космическое пространство: с помощью шлюзования и разгерметизации кабины корабля. Шлюзование – более сложный способ, но зато менее опасный, а выход с разгерметизацией кабины менее сложен, но зато в этом случае в вакууме оказываются все члены экипажа и все оборудование, находящееся здесь. Уже тогда было ясно, что наибольшее распространение получит первый способ. И, несмотря на то, что установка шлюза на корабле типа «Восход» была сопряжена с определенными трудностями, специалисты пошли на это.

С созданием кораблей «Союз» роль шлюза стал выполнять орбитальный отсек, оснащенный соответствующим оборудованием. В январе 1969 года советские космонавты Алексей Станиславович Елисеев и Евгений Васильевич Хрунов перешли через открытое космическое пространство из корабля в корабль, выполнив по пути ряд научных экспериментов.

Выход человека в открытый космос имел огромное значение. Он открыл путь большому направлению в разработке космических аппаратов и в космических исследованиях.

Не следует думать, что работать за бортом корабля просто и легко. Как только человек выходит в открытый космос, сразу возникает несколько проблем: как и с помощью чего передвигаться, как и с помощью чего фиксировать свое тело в нужном положении для работы. Здесь нужен специальный безынерционный рабочий инструмент: ключи, отвертка. Нужны специальная технология монтажных и ремонтных работ, комплекс устройств для передвижения космонавтов.

Простейшее приспособление, обеспечивающее выход космонавта и его возвращение в корабль, – это тросовая система, гибко связывающая космонавта с аппаратом. Однако, как показывают исследования, тросовая система позволяет космонавту удаляться от корабля лишь на сравнительно небольшое расстояние – порядка десяти метров. При дальнейшем увеличении расстояния может возникнуть нежелательное вращение корабля относительно его центра масс, в результате чего трос будет накручиваться на корабль, а это в свою очередь приведет к увеличению скорости сближения космонавта с кораблем и чрезмерному натяжению троса. Конечно, можно устранить закручивание троса за счет активного управления пространственным положением корабля, созданием реактивной тяги на обоих концах троса, применением дополнительной, «якорной», массы и другими способами. Но вполне очевидно, что подобная система не даст возможности космонавту работать на значительном удалении от корабля.

Для проведения работ в открытом космосе, когда возникает необходимость в передвижении космонавта от одного космического объекта к другому, он должен будет располагать специальным устройством.

К настоящему времени с этой целью созданы или создаются различные устройства такого рода. Уже существуют устройства ручные, ножные, ранцевого типа. Есть проекты специально оборудованных платформ.

Ручное устройство, представляющее в простейшем случае реактивное сопло или систему из нескольких сопел, смонтированных на рукоятке, создает небольшую тягу и позволяет космонавту перемещаться в пространстве в непосредственной близости от корабля. Рабочая смесь (например, гидразин с водой) хранится в бачке, который крепится к рукоятке или помещается в ранце на спине космонавта.

Подобная система при всей простоте имеет, однако, существенные недостатки: небольшие запасы рабочего тела, а, следовательно, ограниченный радиус действия, заняты руки космонавта, не обеспечивается стабилизация тела.

Ножное устройство перемещения в космосе отличается от ручного тем, что реактивные сопла устанавливаются на ботинках космонавта под некоторым углом к плоскости подошвы. Освобождаются руки космонавта. Однако испытания такого устройства, проводившиеся на орбитальной станции «Скайлэб», показали, что пользоваться им практически невозможно из-за трудностей управления пространственным положением тела.

Устройства ранцевого и контейнерного типа предназначаются для перемещения космонавта на значительно большие расстояния от космического аппарата. Ранцевая установка может быть довольно массивной (свыше ста килограммов) и состоять из нагрудного и заплечного ранцев. В этих ранцах наряду с элементами системы жизнеобеспечения можно разместить баллоны с рабочим телом для двигательной установки, гироскопическую систему управления, телеметрическую и радиотехническую аппаратуру. Датчики расхода, связанные со световыми и звуковыми сигнальными устройствами, вовремя предупредят космонавта, если запас рабочего тела или кислорода для дыхания будет на исходе. Такая установка, имеющая несколько групп реактивных сопел, в состоянии обеспечить не только перемещение в пространстве, но и стабилизацию работающего в космосе относительно осей тангажа, рыскания и крена. Управлять ею может как сам космонавт, так и другие члены экипажа, оставшиеся на космическом аппарате.

Поскольку мы коснулись дистанционного управления установками для перемещения космонавтов в открытом космосе, очевидно, следует несколько слов сказать о беспилотных устройствах такого рода. Специалисты считают, что беспилотные устройства (среди них дистанционные манипуляторы, управляемые оператором с Земли или с борта орбитальной станции) найдут применение в первую очередь при выполнении операций, не гарантирующих безопасности космонавтов. Это операции по сборке и обслуживанию ядерных энергетических установок и двигателей. При выполнении опасных для человека операций они обеспечат гибкость, недоступную полностью автоматизированным системам.

Одна из наиболее важных операций в открытом космосе – проведение спасательных работ. Здесь может понадобиться установка, управляемая дистанционно с космического аппарата, например, с помощью телевизионной или радиолокационной системы.

Представим себе, что вышедший в открытый космос потерял способность управлять установкой для перемещения. В этом случае находящиеся на борту корабля возьмут дистанционное управление на себя и возвратят установку и космонавта на борт корабля.

При возникновении каких-либо технических неисправностей во время работы в открытом космосе члены экипажа, оставшиеся на базовом корабле, могут выслать своему товарищу установку с оборудованием для ремонта или с запасными частями.

Еще более сложными аппаратами, предназначенными для различных операций на орбите, могут стать специально оборудованные платформы.

С. П. Королев называл подобные аппараты космическими «такси». Сергей Павлович говорил о возможности их использования для перевозки людей с корабля на корабль. Такая платформа служит для перемещения космонавтов на сотни километров от базового корабля. Она может иметь герметизированную кабину. Считается целесообразным оборудовать в ней два люка: один для выхода в открытый космос, другой для перехода в корабль, к которому пристыковывается платформа. Подобные аппараты могут также иметь дистанционно управляемые захваты, позволяющие закреплять их в нужном положении относительно обслуживаемого объекта.

Выход космонавтов в открытый космос, обеспечение их деятельности требуют от специалистов учета многих особенностей при разработке необходимой техники. Возьмем хотя бы закономерности движения космонавта относительно корабля после отделения от него и условия возвращения в корабль. Оказавшись за бортом, он сам становится искусственным спутником Земли и подпадает под действие законов небесной механики.

В принципе космонавт, снабженный установкой для перемещения, может направиться в любую сторону от космического аппарата. В зависимости от направления удаления космонавта будут складываться различные случаи движения.

Например, если он отправится от корабля в направлении его полета, то сначала обгонит корабль и одновременно поднимется над ним. Почему это произойдет? Потому, что любое, даже незначительное, приращение орбитальной скорости повышает высоту орбиты. Затем космонавт начнет отставать от корабля, все время находясь выше его. Здесь уже скажется большой период обращения. В дальнейшем характер движения будет повторяться, и космонавт все больше будет отставать от корабля.

При отделении космонавта в направлении, противоположном полету, он будет лететь ниже корабля, обгоняя его.

При движении в других направлениях результирующая траектория будет сложнее.

Эти особенности космонавт должен обязательно учитывать, иначе ему будет трудно вернуться на корабль или достичь другого корабля без использования каких-либо дополнительных средств. Кроме того, их нужно учитывать и для того, чтобы экономно расходовать рабочее тело установок.

В зависимости от предназначения установки для перемещения будут отличаться по конструкции, мощности двигателей и запасам топлива. В связи с этим оценка энергетических затрат для перемещения в открытом космосе также представляет сложную проблему.

Расход топлива для перемещения космонавта между двумя космическими объектами с возвращением на базовый корабль будет зависеть от большого числа факторов, к которым, очевидно, следует отнести массы устройства и космонавта, продолжительность операции и отдельных ее этапов, значения параметров относительного движения двух космических объектов, применяемые методы управления движением в открытом космосе. Не последнюю роль при этом будет играть натренированность космонавта для выполнения операций ручного управления устройством перемещения.

Учесть в полной мере все эти факторы, по-видимому, можно лишь в результате экспериментальной отработки конкретных устройств перемещения.

Таким образом, в создании средств для перемещения человека в открытом космосе еще много нерешенных проблем. Не до конца исследованы возможности их применения и требования, которым они должны удовлетворять. Однако основное требование можно сформулировать достаточно четко – это максимальная надежность. Космонавты, которым придется пользоваться такими средствами, должны быть уверены, что они не подведут ни в рабочей, ни в критической ситуации.

...С нашим кораблем поддерживается бесперебойная радиосвязь. Телеметрическая информация о состоянии бортовых систем и агрегатов корабля постоянно поступает на наземные измерительные пункты.

Ослепительно яркое солнце врывается в иллюминатор. Его свет напоминает свет электросварки. Незащищенными глазами на солнце смотреть нельзя – можно потерять зрение. Поэтому иллюминаторы снабжены специальными фильтрами.

Выключим в кабине освещение и посмотрим на Землю.

Внизу проплывают белые стайки облаков, в просвете между ними виднеется очертание морского побережья. Примерно 70 процентов поверхности нашей планеты постоянно закрыто облаками. Поэтому отсюда, из космоса, она кажется большим перламутровым шаром.

В кабине быстро темнеет – корабль входит в тень Земли. За бортом корабля, в бездонном небе, загорелись звезды. Точно яркие алмазы на черном бархате, горят, не мигая, далекие светила!

После «ухода» корабля с территории Советского Союза связь с космическим кораблем еще некоторое время поддерживается через научно-исследовательские суда Академии наук, находящиеся в Тихом океане. Но орбита уводит нас все дальше, и стрелки часов показывают, что близится момент выхода корабля из тени Земли. Прошло около получаса – и мы снова видим рассвет. Над Землей, там, где небо сливается с горизонтом, вспыхивают цвета радуги. Через иллюминатор она кажется предвестницей нового утра.


    Ваша оценка произведения:

Популярные книги за неделю