Текст книги "Сочинения"
Автор книги: Джорж Беркли
Жанр:
Философия
сообщить о нарушении
Текущая страница: 26 (всего у книги 37 страниц)
381
лицо бесконечно малая разность между NM и NL. В силу этого NM или S было слишком мало для вашего допущения (когда вы допускали, что оно равно NL) и эта ошибка была компенсирована второй ошибкой, состоявшей в отбрасывании v, и в результате этой последней ошибки s стала больше, чем ее истинное значение, и вместо него дала значение подкасательной. Таково истинное положение вещей в нашем случае, каким бы замаскированным он ни был. и к этому он сводится в действительности и в основе своей остается тем же самым, даже если мы позволим себе найти подкасательную, сначала определив с помощью уравнения кривой и подобных треугольников общее выражение для всех поднормалей, а затем подведя подкасательную под это общее правило, считая ее поднормалью, когда v приближается к нулю или становится равным ему.
25. По поводу всего примера в целом я замечу, во-первых, что vвообще не может быть равным нулю, поскольку имеется секущая. Во-вторых, одна и та же прямая не может быть и касательной, и секущей. В-третьих, когда vили NO * приближается к нулю, PS и SR также приближаются к нулю, а с ними и пропорциональность подобных треугольников. Следовательно, все выражение, полученное с помощью этой пропорциональности и на ней основанное, приближается к нулю, когда приближается к нулю v. В-четвертых, способ нахождения секущих или их выражения, каким бы общим он ни был, не может с точки зрения здравого смысла распространяться за пределы нахождения именно всех секущих; и поскольку он необходимо предполагает наличие подобных треугольников, то в тех случаях, когда подобных треугольников нет, его применение нельзя даже предполагать. В-пятых, поднормаль всегда будет меньше подкасательной и никогда не может с ней совпадать; допускать подобное совпадение было бы абсурдно, ибо это означало бы допускать, что одна и та же прямая в одно и то же время пересекает и не пересекает другую данную линию; это представляет собой очевидное противоречие, подрывающее гипотезу и служащее доказательством ее ложности. В-шестых, если это доказательство не будет признано, я потребую, чтобы мне назвали причину, почему не это, а какое-либо иное апагогическое доказательство, или доказательство ad absurdum, признано в геометрии, или же между моим доказательством
* См. предыдущий рисунок.
382
и другими подобными доказательствами должно быть найдено какое-либо реальное различие. В-седьмых, замечу: предположить, что NO или RP, PS я SR являются конечными реальными прямыми, образующими треугольник RPS, чтобы получить пропорции при помощи подобных треугольников, а затем допустить, что таких прямых (а следовательно, и подобных треугольников) не существует, но тем не менее сохранить следствие первого предположения после того, как такое предположение уничтожено прямо противоположным, – это чистая софистика. В-восьмых, хотя в данном случае при помощи несовместимых допущений можно получить истину, тем не менее такая истина не доказана; подобный метод не соответствует правилам логики и правильного мышления; каким бы полезным он ни был, его необходимо считать только предположением, ловким приемом (knack), хитростью, скорее уловкой, но не научным доказательством.
26. Изложенная выше теория может быть далее проиллюстрирована следующим простым и легким примером, в котором я использую приближающиеся к нулю приращения. Положим, АВ=х, ВС=у, BD=o, а ххравен площади ABC; предполагается найти ординату уили ВС. Когда благодаря возрастанию хстановится (x+o), тогда ххстановится (хх+2хо+оо); а площадь ABC становится ADH, и приращение ххбудет равно BDHC, приращению площади, т. е. (BCFD+CFH). и если мы положим, что криволинейное пространство CHF равно qoo, тогда
что при делении на о дает 2x+o=y+qo. и если допустить, что о исчезает, тогда 2х=у, и в этом случае АСН будет прямой, а фигуры ABC, CFH – треугольниками. Но в отношении такого хода рассуждений было уже замечено *: допускать, что о приближается к нулю, т. е. равно нулю, неправомерно и нелогично, если только мы одновременно
* § 12 и 13 supra [11].
383
с самим приращением не отбросим все следствия такого приращения, т. е. все то, чего нельзя получить, коль скоро не допускают такого приращения. Необходимо тем не менее признать, что задача решается правильно и вывод, к которому нас привел этот метод, правилен. Поэтому могут спросить: как же получается, что отбрасывание о не сопровождается никакими ошибками в выводе? Я отвечу: подлинная причина этого очевидна: раз q составляет единицу, qoравно о; и в силу этого
поскольку qoи о, как равные величины с противоположными знаками, взаимно уничтожаются.
27. Хотя, с одной стороны, было бы абсурдным избавляться от о, заявив: «Разрешите мне противоречить самому себе. Разрешите мне опровергнуть свое собственное предположение. Разрешите мне считать доказанным, что нет никакого приращения, хотя я сохраняю величину, которую я вообще не мог бы получить, если бы не предположил наличие приращения», с другой стороны, было бы в равной мере неправильным вообразить, что в геометрическом доказательстве нам может быть позволено допускать ошибки, какими бы незначительными они ни были, или что по самой природе вещей возможно сделать правильный вывод на основе неточных принципов. Поэтому о может быть отброшено не как бесконечно малая величина и не на том основании, что бесконечно малыми величинами можно спокойно пренебрегать, а только потому, что оно уничтожается равной величиной с отрицательным знаком, отсюда ( о—qo) равно нулю. и поскольку неправомерно сокращать уравнение путем вычитания из одной его части какой-либо величины, если только она не должна быть уничтожена или если из другой части уравнения не вычитается равная ей величина, то наш способ вести рассуждение необходимо признать в качестве весьма логичного и правильного и в заключение заявить, что, если из равных величин вычесть равные величины или нули, их равенство не нарушится. и это – истинная причина того, что в конечном итоге отбрасывание о не приводит к ошибке, что, следовательно, не должно быть отнесено за счет учения о дифференциалах, бесконечно малых величинах, исчезающих величинах, [механических] моментах или флюксиях.
384
28. Допустим, имеется самый общий пример и х nравен площади ABC; отсюда при помощи метода флюксий найдем значение ординаты – nх n-1, которое мы примем за истинное, и рассмотрим, как оно было получено. Если мы довольствуемся тем, что придем к выводу самым общим путем, предположив, что найдено * отношение флюксий хи х n, равное 1 : nх n-1, и что ордината упомянутой площади считается ее флюксией, мы не увидим ясно свой путь и не поймем, как обнаруживается истина, поскольку, как мы показали ранее, этот метод неясен и нелогичен. Но если мы четко обозначим площадь и ее приращение, разделим последнее на две части BCFD и CFH ** и будем действовать последовательно при помощи уравнений, составленных из алгебраических и геометрических величин, тогда совершенно четко выявится внутреннее обоснование всего решения. Ибо если х nравен площади ABC, то приращение х nравно приращению площади, т. е. BDHC; другими словами
И поскольку сохраняются только первые члены из каждой части уравнения, nox n-1= BDFC. Разделив обе части на оили BD, получим nox n-1= ВС. В силу чего допустим, что криволинейное пространство CFH равно величине oox n -2и т. д., которую можно отбросить, и, когда одно отброшено из одной части, а другое – из другой, ход рассуждения становится правильным, а вывод верным. и совершенно безразлично, какое значение вы придадите BD – бесконечно малого дифференциала или большого конечного приращения. Отсюда очевидно, что предположение о том, что подлежащая отбрасыванию алгебраическая величина является бесконечно малой или исчезающей и поэтому ею можно пренебречь, должно было бы привести к ошибке, если бы криволинейные не были бы равными ей и не вычитались бы одновременно из другой части уравнения, в соответствии с аксиомой: если от равных величин отнять равные части, остатки тоже будут равны. Ибо те величины, которыми, по утверждению аналитиков, следует пренебречь, или же которые следует считать ис-
* § 13.
** См. рисунок в § 26.
385
чезающими, в действительности вычитаются. Поэтому, чтобы вывод был верен, абсолютно необходимо, чтобы конечное пространство CFH было равно остатку приращения, выраженному через
равно, как я сказал бы, конечному остатку конечного приращения.
29. Следовательно, о какой бы степени ни шла речь, в одной части возникает алгебраическое выражение, а в другой – геометрическая величина, каждая из которых естественно распадается на три члена: [первый —] алгебраическое или флюксионное выражение, в которое не входит ни выражение приращения абсциссы, ни какой-либо ее степени; второй, в который входит выражение самого приращения; и третий, включающий выражение степеней приращения. Геометрическая величина, или же вся увеличившаяся площадь, тоже состоит из трех частей или членов, первый из которых – заданная площадь, второй – прямоугольник под ординатой и приращением абсциссы и третий – площадь, ограниченная кривыми линиями. И, сравнивая аналогичные или соответственные члены в каждой части, обнаруживаем, что первый член алгебраического выражения есть выражение заданной площади, в то время как второй член алгебраического выражения дает значение прямоугольника, или второго члена геометрической величины, а третий, содержащий степени приращения, выражает площадь, ограниченную кривыми, или третий член геометрической величины. Вероятно, те, у кого есть досуг и кто проявляет любопытство в отношении таких вопросов, могут дальше развить эти начатки мыслей и применить их для каких-либо благих целей. Я же использую их для того, чтобы показать, что данный анализ можно признать действительным не только в отношении приращений и дифференциалов, но (как было замечено ранее) также и в отношении конечных величин, если даже они так велики, как было выше замечено.
386
30. Следовательно, в целом, как представляется, мы можем совершенно определенно заявить, что заключение не может быть правильным, если для его получения какая-либо величина объявляется приближающейся к нулю или игнорируется, за исключением тех случаев, когда одна ошибка компеисируотся другой; или же, во-вторых, когда в одной и той же части уравнения взаимно уничтожаются равные величины, имеющие противоположные знаки, так что величина, которую мы имеем в виду отбросить, прежде уже уничтожается; или же, наконец, когда из каждой части уравнения вычитаются равные величины. и в силу этого избавляться от каких-либо величин в соответствии с принятыми принципами флюксий, или дифференциалов, – значит противоречить как истинной геометрии, так и истинной логике. Когда приращения исчезают, скорости тоже приближаются к нулю. Заявляют, что скорости, или флюксии, суть primo и ultimo [12] как приращения зарождающиеся и исчезающие. Но тогда возьмите соотношение (ratio) исчезающих величин, оно равно соотношению флюксий. В силу атого оно также отвечает всем целям. Зачем же тогда вводятся флюксии? Разве не для того, чтобы избежать применения величин бесконечно малых или, скорее, затушевать (palliate) его? Но у нас нет иных понятий для понимания и измерения различных степеней скорости, кроме пространства и времени, а когда отрезки времени даны – только пространства. У нас даже нет понятия о скорости, отделенной от пространства и времени. Поэтому, когда говорится, что какая-либо точка движется в данные отрезки времени, у нас нет понятия о большей или меньшей скорости или о соотношении скоростей, а только о более длинных или коротких отрезках прямой и о соотношении между такими отрезками, образованными за равные промежутки времени.
31. Точка может служить пределом линии. Линия может служить пределом поверхности. Мгновение может завершить отрезок времени. Но как мы можем представить себе скорость при помощи таких пределов? Она необходимо подразумевает как время, так и пространство и не можег быть представлена без них. А если скорости зарождающихся и приближающихся к нулю величин, т. е. абстрагированных от времени и пространства, не могут быть поняты, то как мы можем понять и доказать их соотношения? Или возьмем их rationes primae и ultimae [13]. Рассмотрение пропорции или отношения (ratio) вещей подразумевает, что у таких вещей есть определенное значение, что такие их значения могут быть измерены, а их отношения друг к другу – найдены. Но поскольку скорость измеряется только через время и пространственное [протяжение], соотношение скоростей может быть составлено только из прямой пропорции расстояний (spaces) и обратной пропорции времен; не следует ли из этого, что говорить об исследовании, получении и рассмотрении соотношений скоростей, в отрыве от времени и пространства, – значит говорить нечто невразумительное?
387
32. Но вы можете сказать, что при использовании и применении флюксий люди не перенапрягают свои способности с целью абсолютно точно понять концепцию вышеупомянутых скоростей, приращений, бесконечно малых величин или каких-либо иных подобных идей столь деликатного (nice), тонкого и мимолетного (evanescent) характера. и в силу этого вы, может быть, будете утверждать, что задачи можно решать без упомянутых допущений, которые не доступны пониманию, и что, следовательно, учение о флюксиях, по крайней мере в своей практической части, свободно от всех таких трудностей. Я отвечу, что, если при использовании и применении этого метода упомянутые трудные и неясные моменты не принимаются во внимание явно, они тем не менее предполагаются. Они являются фундаментом, на который опираются современные математики, принципами, на основе которых они действуют, решая задачи и открывая теоремы. С методом флюксий дело обстоит так же, как со всеми другими методами, которые предполагают наличие соответствующих принципов и основаны на них, хотя правила, вытекающие из методов, могут применяться людьми, которые и не обращают внимания на принципы и, может быть, их даже не знают. В силу этого подобным же образом моряк может на практике применять определенные правила, основанные на геометрии и астрономии, принципов которых он не понимает, и так же любой обыкновенный человек может решать различные числовые примеры, используя общедоступные правила и действия арифметики, которые он выполняет и применяет, не зная их обоснования. Более того, нельзя отрицать, что вы можете применять правила метода флюксий; вы можете сравнивать и сводить частные случаи к общим формам; при помощи его вы можете производить действия, высчитывать и решать задачи, не только действительно не обращая внимания на основы этого метода и принципы, от которых он зависит и из которых он выведен, и фактически не зная их, но даже вообще никогда не рассматривая и не понимая их.
388
33. Но тогда следует не забывать, что в таком случае, хотя вы можете сойти за художника, вычислителя или аналитика, вас по справедливости нельзя было бы считать человеком науки, основывающим свои мнения на строгом доказательстве. Никто не должен так же, только в силу того, что он хорошо разбирается в таком туманном анализе, воображать, что его умственные способности более развиты, чем у тех, кто упражнял их каким-либо иным образом и в отношении других предметов, и тем более не ставить себя на роль судьи и оракула в отношении вопросов, которые никак не связаны с теми образами, символами или знаками, которыми он так ловко и умело распоряжается, являясь специалистом в атом деле, и от которых другие вопросы совершенно не зависят. Вас, например, искусного вычислителя и аналитика, возможно, в силу вышеизложенного, могут не считать искусным в анатомии, или vice versa [14]: человек, искусно рассекающий трупы, тем не менее может быть не сведущим в вашем искусстве вычисления; а вы оба вместе, несмотря на то что необыкновенно искусны каждый в своем соответствующем деле, в равной мере не компетентны решать вопросы, относящиеся к логике, метафизике, этике, религии. и так оно и будет, даже если признать, что вы понимаете свои собственные принципы и можете их доказывать.
34. Если скажут, что флюксии можно объяснить или выразить при помощи отрезков прямых, им пропорциональных; что поскольку эти отрезки можно отчетливо воспринять, познать и на них можно основываться, то их можно подставить вместо флюксий, а их отношения, или пропорции, рассматривать как пропорции флюксий; что благодаря такому приему теория флюксий становится ясной и полезной, – на это я отвечу: для того чтобы получить эти конечные прямые, пропорциональные флюксиям, необходимо предпринять определенные неясные шаги, которые представить себе невозможно; и пусть эти конечные прямые сами по себе воспринимаются очень ясно, тем не менее необходимо признать, что ход ваших рассуждений не ясен, а ваш метод не научен. Например, положим, что АВ – абсцисса, ВС – ордината, a VCH – касательная к кривой АС; Вb или СЕ – приращение абсциссы, Еc – приращение ординаты, которая, будучи продолжена, пересекает VH в точке Т, а Сс – приращение кривой. Если прямую Сс продолжить до К, образуется три небольших треугольника – прямолинейный СЕс, треугольник со смешанными прямо– и криволинейными сторонами СЕс и прямолинейный треугольник СЕТ. Очевидно, что эти три треугольника отличаются друг от друга: прямолинейный
389
треугольпик СЕс меньше треугольника СЕс со смешанными прямо– и криволинейными сторонами, которые представляют собой три вышеупомянутых приращения; в свою очередь последний меньше треугольника СЕТ. Допустим, что ордината bc перемещается на место ВС, так что точка с совпадает с точкой С, а прямая СК и, следовательно, кривая Сс совпадает с касательной СН. В таком случае треугольник СЕс со смешанными криво– и прямолинейными сторонами, приближающийся к исчезновению, в своей последней форме будет подобен треугольнику СЕТ, а его приближающиеся к нулю стороны СЕ, Еc, Сс будут про-
порциональны СЕ, ЕТ, СТ – сторонам треугольника СЕТ. и в силу этого делается вывод, что флюксии отрезков АВ, ВС и АС, входящие в последнее отношение их исчезающих приращений, пропорциональны сторонам треугольника СЕТ, или, что одно и то же, сторонам треугольника VBC, ему подобного *. Великий автор данного анализа специально замечает и особенно настаивает на том, что точки С и с не должны отстоять друг от друга ни на какой самый малейший интервал, но что для нахождения окончательных пропорций отрезков СЕ, Еc и Сс (т. е. отношения флюксий или скоростей), выраженных конечными сторонами треугольника VBC, точки Сиc должны точно совпадать друг с другом, т. е. быть одной и той же точкой. Следовательно, точка рассматривается как треугольник или же допускается, что в точке образуется треугольник. Понять это представляется совершенно невозможным. Однако находятся люди, которые недовольно морщатся, сталкиваясь с какими-либо непостижимыми тайнами у всех других, в то же время не видят ничего трудного в таких же непостижимостях у себя самих, которые подавятся комаром, но проглотят верблюда.
* Introduct. ad «Quad. Curv.» [15].
390
35. Я не знаю, стоит ли особо отметить, что, может быть, некоторые надеются оперировать символами и допущениями, дабы избежать применения флюксий, [механических] моментов и бесконечно малых величин, действуя с помощью следующею метода. Пусть х – абсцисса кривой, а z – еще одна абсцисса той же самой кривой. Положим так/не, что соответствующие площади равны ххх и zzz, что (z – х) – приращение абсциссы, a (zzz – – ххх) – приращение площади, не обращая внимания на то, насколько велики или малы пи приращения. Разделим теперь (zzz – ххх) на (z – х) и получим частое (zz+zx+-хх); если допустим, что z х, тогда это же самое частное будет равно 3 хх, что в каком случае и будет значением ординаты; таким образом, последнее можно найти независимо от флюксий и бесконечно малых величин. Но здесь прямая подтасовка: ибо, во-первых, мы полагаем, что абсциссы x и z не равны между собой, и без такого предположения нельзя было бы сделать ни одного шага; а во-вторых, мы допускаем, что те же абсциссы равны, а это явная непоследовательность, и это равнозначно тому, что уже рассматривалось ранее *. И, действительно, есть основания опасаться, что все попытки поставить эту трудную для понимания и точную геометрию на верный фундамент и избежать теории скоростей, механических моментов и т. п. окажутся бесплодными до тех пор, пока предмет и цель геометрии не будут поняты лучше, чем, как представляется, понимали до сих пор. Великий автор метода флюксий чувствовал эту трудность и поэтому пустился во все эти изящные (nice) абстракции и геометрическую метафизику, без которых, как он понимал, ничего нельзя сделать на основе общепринятых принципов, и читатель сам может судить, что у него из всею этого получилось в смысле доказательства. Правда, надо признать, что он использовал флюксии, подобно лесам при строительстве здания, которые нужно было отбросить в сторону или от которых нужно было избавиться, когда уже было найдено, что конечные линии пропорциональны эгим флюксиям. Но ведь эти конечные показатели определяются с помощью флюксий. Поэтому все, что получается с помощью таких показателей и пропорций, необходимо отнести за счет флюксий, которые, следовательно, предварительно надо понять. А что такое эти флюксии? Скорости исчезающих приращений. А что такое эти самые исчезающие приращения? Они не есть ни конечные величины, ни величины бесконечно малые, но они и не нули. Разве мы не имеем права назвать их призраками (ghosts) исчезнувших величин?
* § 15.
391
36. Люди слишком часто внушают самим себе и другим, будто они представили себе и поняли явления, выраженные при помощи знаков, тогда как в действительности они не имеют о них ни малейшего представления, а понимают только сами знаки. и есть основания опасаться, что именно так обстоит дело в данном случае. Скорости исчезающих или же зарождающихся величин могут выражаться
как конечными отрезками определенной величины, так и алгебраическими символами, но я подозреваю, что многие, кто, вероятно, никогда не рассматривал этого положения и считает его само собой разумеющимся, при тщательном его изучении обнаружили бы, что не в состоянии составить какое-либо представление или какое-либо понятие об этих скоростях, вне выражения их такими конечными величинами и знаками.
Положим, прямая КР образуется при движении с постоянным ускорением какой-либо точки и за равные отрезки времени образуются неравные отрезки прямой KL, LM, MN, NO и т. д. [16] Положим также, что а, b, с, d, e и т. д. обозначают скорости точки, образующей прямую, в разные периоды частей или приращений, получаемых таким образом. Легко заметить, что каждое из этих приращений пропорционально сумме скоростей, которыми оно образуется; что, следовательно, полученные несколько сумм скоростей, образованных за равные отрезки времени, могут быть изображены соответственно отрезками KL, LM, MN и т. д., образованными за те же промежутки времени. В равной мере легко сказать, что последняя скорость, образованная за первую частицу времени, может быть выражена символом а, последняя за вторую – b, последняя, образованная за третью, – с и т. д.; что а – скорость LM в statu nascendi, а b, с, d, е и т. д. – скорости приращений MN, NO, OP и т. д. в соответствующих со-
392
стояниях их зарождения. Можно пойти дальше и считать сами эти скорости текущими (flowing) или возрастающими величинами, взяв скорости скоростей и скорости скоростей скоростей, т. е. первые, вторые, третьи и т. д. скорости ad infinitum; этот последовательный ряд скоростей может быть выражен следующим образом:
Можно назвать их первыми, вторыми, третьими, четвертыми флюксиями. А с целью более удобного выражения можно обозначить переменную текущую прямую KL, KM, KN ит. д. буквой х,а первые флюксии вторые – третьи – и т. д. ad infinitum.
37. Нет ничего легче, как указать названия, символы или выражения для этих флюксий, не трудно также высчитывать и производить действия с помощью таких знаков. Но гораздо более трудным оказывается опустить эти знаки и тем не менее сохранить в наших умах то, что, по нашему предположению, они означают. Рассматривать показатели, будь то геометрические, алгебраические или флюксионные, не трудно. Но, например, составить точное представление о скорости третьего порядка, самой по себе и при помощи ее самой, – Hoc opus, hic labor [17]. Нелегко также составить ясное и четкое представление вообще о любой скорости вне связи со всякой протяженностью во времени и пространстве и в отрыве от нее, а также от всех обозначений, знаков и символов; если же мне позволят судить о других по себе, это просто невозможно. Мне представляется очевидным, что измерения и знаки абсолютно необходимы для того, чтобы понять скорости и рассуждать о них, и что, следовательно, когда мы хотим представить себе скорости просто и сами по себе, нас вводят в заблуждение пустые абстракции.
38. Может быть, некоторые люди вообразят, что было бы легче понимать флюксии, если предположить, что они являются скоростями, с помощью которых образуются бесконечно малые приращения, так что первые флюксии будут скоростями первых приращений, вторые флюксии будут скоростями вторых приращений, третьи флюксии – скоростями третьих приращений и т. д. ad infinitum. Но, не говоря уже о непреодолимой трудности признания или понимания бесконечно малых величин и бесконечно малых взятых от бесконечно малых величин и т. д., ясно, что такое понятие о флюксиях не будет соответствовать
393
точке зрения великого автора, который полагал, что нельзя пренебрегать ни наималейшей величиной, что, в силу этого, теория бесконечно малых приращений не может быть допущена в геометрии, и который совершенно очевидно ввел использование скоростей или флюксий с целью исключить бесконечно малые или же обойтись без них.
39. Позможио, некоторым другим покажется, что у нас будет более правильное представление о флюксиях, если мы допустим конечные неравные изохронные приращения KL, LM, АГХ и т. д. и будем считать и их, и их приращения – в statu nasendli, а также и зарождающиеся приращения тех приращений и т. д., полагая, что первые зарождающиеся приращения пропорциональны первым флюксиям или скоростям, зарождающиеся приращения этих приращений пропорциональны вторым флюксиям, третьи зарождающиеся приращения пропорциональны третьим флюксиям и т. д. А так как первые флюксии являются скоростями первых зарождающихся приращений, то вторые флюксии можно скорее считать скоростями вторых зарождающихся приращений, а не скоростями скоростей. Может показаться, что благодаря такому приему аналогия флюксий может быть лучше сохранена, а само понятие сделано более вразумительным.
40. И, действительно, должно бы казаться, что для получения второй или третьей флюксии уравнения данные флюксии рассматривались скорее не как скорости, а как приращения. Однако представляется, что рассмотрение их иногда в одном смысле, а иногда в другом, то в их собственном виде, то в виде их показателей, в значительной мере вызвало ту путаницу и неясность, которую мы обнаруживаем в теории флюксий. Поэтому может показаться, что это понятие еще можно как-то улучшить и что вместо флюксий флюксий или флюксий флюксий флюксий и вместо вторых, третьих, четвертых и т. д. флюксий данной величины было бы более последовательно и менее вызывало бы возражения, если говорить: флюксия первого зарождающегося приращения, т. е. вторая флюксия; флюксия второго зарождающегося приращения, т. е. третья флюксия; флюксия третьего зарождающегося приращения, т. е. четвертая флюксия, причем имеется в виду, что каждая из этих флюксий соответственно пропорциональна зарождающемуся началу приращения, следующего за тем, флюксией которого она является.
394
41. Для более четкого понимания всего этого можно принять во внимание, что если конечное приращение LM * разделить на изохронные части Lm, mn, по, оМ, а приращение MN – на части Мр, pq, qr, rN, изохронные предыдущим, то, так как приращения LM, MN пропорциональны суммам их образующих скоростей, соответствующие им части Lm, Мр также пропорциональны соответствующим увеличенным скоростям, которые их образуют. А так как скорость, с которой образуется Мр, превышает ту, с которой была образована Lm, то и часть Мр больше части Lm. и вообще, раз изохронные скорости, образующие отрезки MN, превышают изохронные скорости, образующие отрезки LM, то и отрезки первой больше соответствующих им отрезков второй. и это будет справедливо, какими бы малыми ни были упомянутые отрезки. Следовательно, если LM и MN обе взяты в их зарождающемся состоянии, MN будет больше LM, притом на величину, пропорциональную превышению скорости b над скоростью а. Отсюда мы можем видеть, что в конечном итоге это последнее объяснение флюксий приводит к тому же, что и первое **.
42. Но независимо от всего сказанного надо все же признать, что конечные части Lm или Мр, даже если их взять совсем малыми, пропорциональны не скоростям а и Ь, а каждая – ряду скоростей, меняющихся каждое мгновение, или, что одно и то же, всевозрастающей скорости, с помощью которой эта часть образуется в течение определенной мельчайшей частицы времени; что только зарождающиеся начала или исчезающие окончания конечных величин, которые образуются в мгновение или в течение бесконечно малых отрезков времени, пропорциональны данным скоростям; что, следовательно, для того чтобы представить себе первые флюксии, мы должны представить себе время, разделенное на мгновения, приращения, образованные в течение этих мгновений, и скорости, пропорциональные этим приращениям; для того чтобы представить себе вторые и третьи флюксии, мы должны допустить, что зарождающиеся начала или мгновенные приращения сами имеют также другие мгновенные приращения, пропорциональные соответствующим образующим их скоростям; что скорости этих вторых мгновенных приращений являются вторыми флюксиями, а скорости их зарождающихся мгновенных приращений – третьими флюксиями. и т. д. ad infinitum.
* См. предыдущую схему в § 36.
** § 36.
395
43. Вычтя приращение, образованное за первое мгновение, из приращения, образованного в течение второго мгновения, мы получим приращение приращения. А вычтя скорость, образующую отрезок прямой в первое мгновение, из скорости, образующей отрезок прямой во второе мгновение, получим флюксию флюксии. Подобным же образом, вычтя разность скоростей, образующих отрезок прямой в первые два мгновения, из превышения скорости в третье мгновение над скоростью во второе мгновение, получим третью флюксию. И, действуя аналогичным образом, мы можем перейти к четвертой, пятой, шестой и т. д. флюксиям. А если мы обозначим скорости первого, второго, третьего, четвертого мгновений а, b, с, d, то ряд флюксий будет такой же, какой приводился выше: а.b – а.с – 2b+a.d – 3с+3b—a, ad infinitum, т. е. ad infinitum.